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Combining the catalytic activities of an oxygen reduction reaction (ORR) and oxygen
evolution reaction (OER) into one electrocatalyst is of great significance in simultaneously
prompting the charge-discharge cycles of various renewable energy storage and
conversion systems, such as metal-air batteries. Herein we report a ternary metallic-
based MgNiO2/CoNC porous hollow nanocage composite, which was assembled with
intimate contacted MgNiO2 and Co species to form ultrathin nanocage shells and serve as
the ORR and OER active components, respectively, to produce a highly bi-functional
catalytic performance. The possible synergy of each seamlessly connected metallic site
renders the hybrid material with excellent ORR and OER activities, which outperform the
corresponding benchmarks. Particularly, we speculate that such efficient catalytic activity
might arise from the synergistic chemical coupling effects within MgNiO2/CoNC and,
therefore, these results reveal promising prospects in developing multi-metallic
composites toward efficient electrochemical energy devices.

Keywords: metal–organic frameworks, bifunctional catalyst, oxygen reduction reaction, oxygen evolution reaction,
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INTRODUCTION

Owing to increasing energy demands, renewable energy storage and conversion technologies, such as
fuel cells, metal-air batteries, and water splitting, are drawing considerable attention due to their
theoretically high energy densities and affordable environmental features (Lee et al., 2015; Fu et al.,
2018; Zhu et al., 2019a; Hu et al. (2020)). The metal−air rechargeable batteries, therein, have become
an emerging research hotspot for their intriguing advantages of environmental friendliness, low cost,
and safety. However, the reaction cycles of bifunctional electrocatalysts with durability and activity
for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) need to be expedited,
which severely impedes the metal-air battery technologies potential to be applied in practice. This has
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therefore motivated extensive amounts of research on exploiting
low-cost catalysts with high activity to simultaneously accelerate
these reactions (Chen et al., 2016; Li and Lu, 2017; Tiwari et al.,
2017; Wang et al., 2017; Cano et al., 2018; Hegde et al., 2020). In
the past decade, precious metals and their corresponding
composites have been manifested to possess superior
electrochemical activity. For example, Pt-based materials have
been widely used for ORR, while Ir- and Ru- based materials are
well-known as the most popular OER catalysts. However, all of
the aforementioned catalysts rarely possess satisfactory ORR and
OER activities simultaneously. Additionally, they are also
restricted by their excessive cost and deficient stability (Dai
et al., 2015; Liang et al., 2016; Zhang et al., 2017; Chen et al.,
2019; Lee et al., 2019). Thus, making extensive studies to seek
alternative catalysts based on non-precious metals with rich
resource, low cost, and comparable electrocatalytic activity for
both ORR and OER is urgent (Jahan et al., 2013; Shi and Zhang,
2016; Zhu et al., 2019b; Gao et al. 2017).

In recent decades, metal–organic frameworks (MOFs) have
been considered as potential materials in many applications
because of their diverse component and structural features
(Hirai et al., 2011; Callejas et al., 2014; Tan et al., 2016; Yang
et al., 2017; Bai et al., 2018). Recently, outperforming OER
catalysts derived from cobalt-based MOFs have been
extensively studied because of their excellent electron transfer
and plentiful active components. For instance, the derived
materials from the classic Co-based MOF (ZIF-67) proved to
have excellent OER activities in alkaline conditions, which is
derived from their sufficient accessibility to catalytic centers,
resulting in rapid diffusion of oxygen species and electrolytes
(Morales et al., 2014; Bai et al., 2019). However, metal-nitrogen-
carbon catalysts calcined by pristine ZIF-67 commonly have only
moderate performance toward ORR, which limited their
applications as cathodes on metal-air batteries. On the
contrary, non-precious metal oxide (MeO, with Me � Ni, Co,
Fe, etc.) catalysts have been regarded as one of the most
significant candidates for ORR (Lee et al., 2011a; Lee et al.,
2011b; Lu et al., 2017; Song et al., 2019). Therefore, some
ingenious integration of MeO and ZIF-67 can synergistically
electrocatalyze ORR and OER to serve as a bi-functional
catalyst (Chen et al., 2013; Hu et al., 2014; Huo et al., 2019;
Zhang and Lou 2014).

Herein, we demonstrate an innovative approach for the
general and feasible synthesis of multi-compositional MgNiO2/
CoNC porous hollow nanocages via MOF-templated reactions as
a high performance bi-functional catalyst toward ORR and OER,
of which some facile steps mainly involve solvothermal coating of
MgNiO2 on ZIF-67 to form porous hollow nanocage structures,
followed by thermal annealing in argon.

EXPERIMENTAL

Synthesis of ZIF-67 Single Nanocrystals
ZIF-67 was synthesized according to a reported method (Yu et al.,
2015). Specially, 1.0 mmol cobalt nitrate hexahydrate 4.0 mmol 2-
methylimidazole was dissolved in 25.0 ml methanol. These two

solutions were then mixed and incubated for 24 h at room
temperature. The obtained product was harvested by several
centrifugal washing cycles and dried overnight in vacuum at
60°C (Sun et al., 2013).

Synthesis of Porous MgNiO2/CoNC and
NiO2/CoNC Hollow Nanocages
40.0 mg of the prepared ZIF-67 powder was transferred into a
100.0 ml round bottom flask containing 80.0 mg nickel nitrate,
80.0 mg magnesium nitrate, and 40.0 ml absolute ethanol. The
mixture was then heated to 90°C for 1 h in a water bath. The
greenish product, named MgNiO2/ZIF-67, was collected by
several centrifugal washes with absolute ethanol and vacuum
dried overnight at 60°C. The obtained product was subsequently
calcined at 350°C in argon for 2 h with a heating rate of 2°C min−1

to finally produce MgNiO2/CoNC.
For comparison, NiO2/CoNC hollow nanocages were also

prepared through the same procedure as described above,
except the Mg source was absent.

RESULTS AND DISCUSSION

In this work, porous MgNiO2/CoNC hollow nanocages were
successfully synthesized through MOF-templated reactions,
and explored as a high performance bi-functional catalyst. As
illustrated in Scheme 1 during the preparation, first, a cation
exchange process was employed. In particular, well-defined ZIF-
67 polyhedra assembled by a modified method (see in
experimental section) were homogenously dispersed into the
ethanol solution in the presence of acertain amount of
Ni(NO3)2 and Mg(NO3)2. After a period of heating at 90°C,
protons produced by the hydrolysis of Mg2+ and Ni2+ ions
gradually corroded the ZIF-67 templates to release Co2+ ions,
which were then partially oxidized by the nitrate ions and oxygen
molecules in the solvothermal system and subsequently
coprecipitated with Mg2+ and Ni2+ to assemble the MgNiCo/
ZIF-67 shells (Hu et al., 2015). Afterwards, pyrolysis was
employed to further convert the MgNiCo/ZIF-67 into porous
hollow nanocage architectures with appealing shells of dual
primary active sites. The ORR active site was composed of
MgNiO2 pyrolyzed from MgNiCo and the OER active site was
attributable to Co species, signified as CoNC, pyrolyzed from both
the above MgNiCo component and the residual ZIF-67 template.

The morphology and microstructure of both the target
products, the benchmarks, and the intermediate species
formed at each step are presented in Figure 1. As revealed by
FESEM, the average size of the ZIF-67 precursors is about 600 nm
with defined dodecahedral structures and a smooth surface
(Figures 1A,B). TEM suggests that ZIF-67 particles are dense
and have a polyhedral morphology with high uniformity (Figures
1C,D). After the reaction in the ethanol solution of Ni(NO3)2 and
subsequent pyrolysis, NiO2/CoNC particles were produced as the
control group. FESEM images show that the sample has the same
morphology with the MOFs precursors but the surface was more
folded (Figures 1E,F). As characterized by TEM, NiO2/CoNC
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particles become hollow nanocages (Figure 1G) with ultrathin
shells (Figure 1H). Figures 1I–L show the FESEM and TEM
images of the obtained MgNiO2/CoNC nanoparticles. As
revealed by FESEM, the prepared products also have the same
morphology as ZIF-67 (Figures 1I,J). The TEM images show that
the sample maintained the morphology of non-aggregate
dodecahedrons, as shown in Figure 1K. FESEM (Figures 1I,J)
and TEM (Figures 1K,L) reveal that the obtainedMgNiO2/CoNC
possess porous hollow dodecahedron nanocage structures and
the average particle size is ∼500 nm. It is worth mentioning that
the electron microscopy images also identified the good structural
stability of ultrathin MgNiO2/CoNC shells, which can be robust
enough to withstand annealing up to 350°C. Benefiting from this
pyrolysis process, the porous surface and embedded
nanoparticles were formed by the recrystallization and the gas
molecules spilling out. In addition, from the nitrogen adsorption-
desorption test, we can conclude that the MgNiO2/CoNC catalyst

and the contrast experiments NiO2/CoNC and ZIF-67 are all
mesoporous (Supplementary Figure 1).

In order to study the components and architectures of the
MgNiO2/CoNC shell, a series of subsequent characterizations were
performed. The PXRD pattern in Figure 2Awith five peaks at 37.1,
43.1, 62.6, 75.0, and 78.9° are well matched with the characteristics
crystal planes (111), (200), (220), (311), and (222) of MgNiO2,

respectively (Rodrigues et al., 2016). This is due to the diffusion of
Ni2+ ions into an MgO lattice, which might be a result of the high
temperature calcination step. In addition, the weaker characteristic
peaks of cobalt can be also observed at 44.1, 51.8, and 76.0o, because
the amount of cobalt on the surface is relatively small, which served
as active components during the OER process. The HR-TEM
image of MgNiO2/CoNC (Supplementary Figure 3) shows the
lattice spacings of 0.210 and 0.243 nm, corresponding to the (200)
and (111) planes of MgNiO2, respectively, with the 0.205 nm
corresponding to the (111) planes of Co. There is Co-N species

SCHEME 1 | llustration of the formation process of porous MgNiO2/CoNC hollow nanocages: (I) the formation of MgNiO2/ZIF-67 hollow nanocage structures by
heating at 90°C for 1 h; (II) the growth of porous MgNiO2/CoNC hollow nanocages by annealing MgNiO2/ZIF-67 hollow nanocage structures in Ar flow.

FIGURE 1 | FESEM and TEM characterizations of samples, ZIF-67 (A–D), NiO2/CoNC (E–H), MgNiO2/CoNC (I-L).
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in the XPS of N1s (Chao et al., 2016), and there are also amorphous
active sites in the catalyst (Supplementary Figure 2).

The high-resolution XPS spectrum of Ni 2p, Mg 1s, and Co 2p
are given in Figures 2B–D. The Ni 2p spectrum displays two
spin-orbit doublets (Ni2+ and Ni3+) as well as their satellites
(Figure 2B). Mg 1s can be fitted to a single contribution at
1,303.0 eV, which can be assigned to MgO derived from the
MgNiO2 structure from Figure 2C. As shown in the Co 2p curve
(Figure 2D), the peaks at 797 and 782 eV can be assigned to Co
2p3/2 and Co 2p1/2. The Co 2p spectrum shows the presence of Co
2p3/2 and Co 2p1/2 peaks. The peaks at 780.5 and 781.8 eV are
attributed to Co3+ and Co2+ of Co 2p3/2, and a Co2+ satellite
located at 786.3 eV (Ma et al., 2010; Zhang et al., 2014; Bai et al.,
2016; Elizabetha et al., 2017).

The elemental composition and distribution information of
the porous MgNiO2/CoNC hollow nanocages are further studied
(Figure 3). The elemental mapping images manifest that O, N,
Co, Ni, and Mg are dispersed uniformly throughout the inside
region and are richest at the edge. These results further verified
that the shell mainly consists of Co species intimately contacted
withMgNiO2, and verified, the successful formation of the porous
and hollow dodecahedron nanocages.

The hollow cage architectures of the catalysts not only exposed
the Co-based active sites on the shell surface of the catalyst, but
also significantly expedited the mass transfer between the
electrolyte and the catalyst owing to the abundant porosity of
the shell, thereby being favorable for electrocatalytic reactions.
Moreover, the elemental mapping results indicate that Ni and Mg
are distributed uniformly throughout the shell. These results
demonstrate that the components in MgNiO2 are seamlessly

integrated at the nano scale. As far as we know, the strategy of
designing and assembling hollow nanocages with dual
components and ternary metals by annealing modified ZIF-67
crystals has not been widely reported before.

The electrochemical performance of the MgNiO2/CoNC
hybrid material was studied in alkaline solution to verify the
expected synergistic effects from the dual component shell of
MgNiO2 and CoNC, by employing a typical system with a
saturated calomel electrode (SCE) as the reference electrode
and Pt foil as the counter electrode in a three electrode system
in N2-saturated 0.1 M KOH aqueous electrolyte at a scan rate of
5 mV s−1 (Hu et al., 2015). As shown in Figure 4A, all three
curves tested in the O2-saturated KOH electrolyte revealed
obvious oxygen reduction peaks, which cannot be observed in
an N2-saturated electrolyte. Moreover, a higher peak current
density of 0.59 V vs. RHE for MgNiO2/CoNC than NiO2/
CoNC and ZIF-67 were shown. The linear scan voltammogram
(LSV) curves in Figure 4B obtained at 1,600 rpm were used to
compare the ORR catalytic activity of the MgNiO2/CoNC, NiO2/
CoNC, and ZIF-67. The hybrid MgNiO2/CoNC also shows a higher
onset potential, half-wave potential, and limiting current of about
0.80, 0.70 V vs. RHE, and 5.2 mA/cm2, respectively, than those of the
NiO2/CoNC and ZIF-67 as ORR catalysts. It is worthy to mention
that, among all the catalysts above, the enhanced performances of
MgNiO2/CoNC further emphasized the significance of the
multicomponent co-existence, especially Mg, for promoting ORR.
To reveal the ORR kinetics of the MgNiO2/CoNC, the LSV curves
for the ORR on the electrode recorded at different speeds are
displayed under 0.1M KOH. As shown in Figure 4C, the
current density is gradually enhanced at different rotation rates

FIGURE 2 | XRD patterns (A) XPS (B–D) and of the MgNiO2/CoNC.
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from 400 to 2,025 rpm at the scan rate of 5 mV s−1 due to facilitating
the diffusion of electrolytes. The linearity of the Koutecky–Levich
plots (Figure 4C inset) and near the fitting lines indicate first-order
reaction kinetics toward the concentration of dissolved oxygen and
similar electron transfer numbers for ORR at different potentials
(Liang et al., 2011). Figure 4D displays the LSV curves of the
MgNiO2/CoNC measured at first and 1,000th potential cycles,
which revealed that the current density of the MgNiO2/CoNC
only decreased a little after 1,000 cycles. These results indicate

that the MgNiO2/CoNC catalyst possesses a high stability in the
ORR process.

The OER during the charging process of rechargeable metal-
air batteries is regarded as the counterpart of ORR for the overall
process. To evaluate the OER catalytic activity of the catalysts, we
conducted LSV measurements on the MgNiO2/CoNC, NiO2/
CoNC, and ZIF-67 in N2-saturated 0.1 M KOH solution at
1,600 rpm at a scan rate of 5 mV S−1. Figure 4E shows the onset
potential of∼1.52 V vs. RHE and the rapidly increased anodic current

FIGURE 3 | HAADF-STEM image of an individual MgNiO2/CoNC and the corresponding elemental mapping.

FIGURE 4 | CVs of MgNiO2/CoNC (Ⅰ), NiO2/CoNC (Ⅱ), and ZIF-67 (Ⅲ) in an O2- and N2-saturated in 0.1 M KOH solution (A), Electrochemical characterizations of ORR
polarization curves of MgNiO2/CoNC (Ⅰ), NiO2/CoNC (Ⅱ), and ZIF-67 (Ⅲ) at 1,600 rpm (B), ORR polarization curves of the MgNiO2/CoNC catalyst at different rotating speeds
(C), ORR stability test of theMgNiO2/CoNCcatalyst before and after 1,000cycles of CV (D), Polarization curvesof the three electrodes at 1,600 rpm inN2-saturated 0.1 MKOH
solution of MgNiO2/CoNC (Ⅰ), NiO2/CoNC (Ⅱ), and ZIF-67 (Ⅲ) (E), Comparative OER activities of the MgNiO2/CoNC catalyst before and after 1,000 cycles of CV (F).
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above ∼1.8 V associated with OER. It is manifested that MgNiO2/
CoNC shows better OER activity than NiO2/CoNC and ZIF-67.
Subsequently, we performed the stability test for the MgNiO2/CoNC
catalyst in N2-saturated 0.1MKOH. As shown in Figure 4F, the LSV
curves of the MgNiO2/CoNCmeasured in first and 1,000th potential
cycles manifested that the current density decreased a little after 1,000
cycles. The result indicates that theMgNiO2/CoNC catalyst exhibits a
decent durability in the OER process.

Electrochemical impedance spectroscopy (EIS) technique was
further performed to provide insight into the kinetics of electrode
reactions. As shown in Supplementary Figure 4, the diameter of the
semicircle for MgNiO2/CoNC is smaller than those for NiO2/CoNC
and ZIF-67. The solution resistance Rs and charge-transfer
resistance Rct are also related to the electrocatalytic kinetics and
a higher value corresponds to a slower reaction rate (Jin et al., 2015).
Therefore, the MgNiO2/CoNC has a higher reaction rate.

To gain insight into the intrinsic activity of the catalysts, we
measured the double-layer capacitances (Cdl) to estimate the
electrocatalytic active surface areas (ECSA) (Ren et al., 2019)
and further normalized the geometric current density to the
corresponding ECSA. As shown in Supplementary Figure 5,
the MgNiO2/CoNC has the biggest Cdl, thus the highest
catalytically relevant surface area, which could be mainly
attributable to the porous structure andmore exposed active sites.

CONCLUSION

Herein, we demonstrate an innovatively facile approach for the
effective synthesis of dual-component and ternary metallic
MgNiO2/CoNC porous hollow nanocages via MOF-templated
reactions for use as a high performance bi-functional catalyst. In
brief, this strategy mainly involves the preparation of MgNiO2/
ZIF-67 porous hollow nanocages and subsequent thermal
annealing in argon. The combination of MgNiO2 and Co
species on the outer/inner surface of the shell integrates the
OER and ORR catalytic performances of the two active
components into one nanostructure to exhibit an expected

decent synergetic effect. Moreover, with the introduction of
magnesium, the possible synergetic effects between each metal
toward the ORR and OER catalytic activities further enhanced at
low potentials, which is comparable with, or even better than, some
top-performing bifunctional catalysts. This work may also offer
perspectives for well-designed multi-component hollow nano-
architectures with excellent properties for non-noble metal ORR/
OER bifunctional cathodic electrocatalysts with great potential for
use in rechargeable metal-air batteries (Rosen et al., 2013).
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