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To maintain infrastructure safety and integrity, nondestructive evaluation (NDE)
technologies are often used for detection of subsurface defects and for holistic
condition assessment of structures. While the rapid advances in data collection and
the diversity of available sensing technologies provide new opportunities, the ability to
efficiently process data and combine heterogeneous data sources to make robust
decisions remains a challenge. Heterogeneous NDE measurements often conflict with
one another and methods to visualize integrated results are usually developed ad hoc. In
this work, a framework is presented to support fusion of multiple NDE techniques in order
to improve both detection and quantification accuracy while also improving the
visualization of NDE results. For data sources with waveform representations, the
discrete wavelet transform (DWT) is used to extract salient features and facilitate fusion
with scalar-valued NDE measurements. The description of a signal in terms of its salient
features using a wavelet transform allows for capturing the significance of the original data,
while suppressing measurement noise. The complete set of measurements is then fused
using nonparametric machine learning so as to relax the need for Bayesian assumptions
regarding statistical distributions. A novel visualization schema based on classifier
confidence intervals is then employed to support holistic visualization and decision
making. To validate the capabilities of the proposed methodology, an experimental
prototype system was created and tested from NDE measurements of laboratory-
scale bridge decks at Turner-Fairbank highway research center (TFHRC). The
laboratory decks exhibit various types of artificial defects and several non-destructive
tests were previously carried out by research center technicians to characterize the
existing damages. The results suggest that the chosen feature extraction process, in
this case the DWT, plays a critical role in classifier performance. The experimental
evaluation also indicates a need for nonlinear machine learning algorithms for optimal
fusion performance. In particular, support vector machines provided the most robust and
consistent data fusion and defect detection capabilities. Overall, data fusion combinations
are shown to provide more accurate and consistent detection results when compared to
single NDE detection approaches, particularly for the detection of subsurface
delamination.
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INTRODUCTION

To preserve infrastructure safety and integrity, reliable and
effective damage detection techniques need to be established.
Increasingly, nondestructive evaluation (NDE) technologies are
used for the detection of surface and subsurface defects,
evaluation of the extent of defects, and as a critical aspect of
holistic asset management. A key challenge with NDE is that the
accuracy of the data from a single source is dependent on
operator training and environmental conditions that can add
considerable uncertainty to defect detection and quantification
(McCann and Forde 2001). From a practical standpoint, this
measurement uncertainty has inhibited the adoption of NDE
across many application domains.

To reduce measurement uncertainty, researchers have
explored the concept of using multiple NDE methods in
conjunction with data fusion algorithms. Recent advances in
sensing and data analytics have led to the adoption of data
fusion in fields such as computer vision and image analysis
(Chen et al., 2017), transportation systems (Faouzi, Leung, and
Kurian 2011; Faouzi and Klein 2016), biometrics (Haghighat,
Abdel-Mottaleb, and Alhalabi 2016), and structural health
monitoring (Sun et al., 2016; Wu and Jahanshahi, 2018;
Ramos et al., 2015; Chen et al., 2017; Habib et al., 2016;
Kralovec and Schagerl, 2020). In these cases, the use of data
fusion was shown to provide a better interpretation of observed
information by decreasing the measurement uncertainty present
in individual source data (Faouzi and Klein, 2016).

Data fusion encompasses a vast array of analytical methods
ranging from Bayesian probabilistic approaches, Dempster–Shafer
(DS) evidence approaches, fuzzy reasoning, and machine learning
(Wu and Jahanshahi, 2018; Khan and Anwar, 2019). These
methods have been used for damage identification,
quantification, and system response estimates (Hall and Llinas,
2001; Chair and Varshney, 1986; Liu et al., 1999; Vanik et al., 2000).
For example, a recursive Bayesian framework was used to update
the parameters of a crack growth model, as well as the probability
distribution of the crack size and crack growth rate (Rabiei and
Modarres, 2013), and a neural network and fuzzy inference were
combined to evaluate the structural condition of a cable bridge
(Sun et al., 2016).

Data fusion can generally be carried out at various “levels” of
data processing ranging from combinations of raw data to a
fusion of individual operational decisions (Steinberg and
Bowman, 2017). Data-level fusion refers to combining raw
data directly and it is possible only if the sensors measure the
same physical quantities. On the other hand, if the survey
observations are heterogeneous, then the data must be fused at
the feature-level or decision-level. For feature-level fusion, a vector
of data descriptors is extracted from the raw measurements of
individual NDE results and the features are then combined
together into a single concatenated descriptor vector (Chen
and Jen, 2000). This combined vector can be further processed
through machine learning techniques based on neural networks
or clustering algorithms (Kittler 1975; Sun et al., 2016). Once
features are fused through machine learning, the resulting output

reflects the correlations in data content and reduces the
uncertainty of results. Decision-level fusion is the blending of
operational decisions derived from individual data streams
considered in isolation. Decision-level fusion naturally leads to
loss of performance, but this type of fusion represents a feasible
fusion approach when fusion at lower levels is not practical or
advisable.

Frequently applied fusion methods in structural health
monitoring include: Bayesian probabilistic approaches
including techniques such as Kalman filtering (Vanik et al.,
2000; Rabiei and Modarres, 2013; Ramos et al., 2015),
Dempster–Shafer (DS) evidential reasoning (Wu, 2004; Huang
et al., 2014), and machine learning algorithms such as artificial
neural networks (ANN) (Chen and Jahanshahi, 2018; Jiang et al.,
2011) or support vector machines (SVM) (Zhou et al., 2015).
SHM applications tend to focus on the fusion of time-series
sensor data, such as from accelerometers, to reduce measurement
and state-estimation uncertainty.

In this work, the application of machine learning driven data
fusion to the NDE assessment of concrete bridge decks is
considered. Bridge deck deterioration plays a critical role in
highway asset management due to the costs and traffic
disruptions associated with deck repair and replacement.
While pattern analysis and machine learning have been
studied for use with individual concrete NDE methods, they
have not been considered as a basis for data fusion. Furthermore,
how the results of NDE data fusion can be intuitively visualized
and assessed holistically by engineers remains an under-studied
problem.

The primary contributions of this work are:

• A wavelet-based approach to extracting statistically relevant
features from NDE waveforms

• A non-parametric machine learning approach to the fusion
of NDE data features

• A novel visualization schema for representing the fused
results and measurement uncertainty

In order to best illustrate the benefits of NDE fusion, the
machine learningmodels developed in this work were trained and
evaluated for the detection of single defect classes (binary
classification). As such, they do not provide defect diagnosis
across a range of observed defects. Such considerations may lead
to different conclusions regarding fusion efficacy and are an
avenue for future work.

The remainder of this paper is structured as follows. First, the
overall methodological framework is presented. This is followed
by an experimental case study to illustrate the behavior and
performance of the approach, based on laboratory scale data
collected at the Turner-Fairbank Highway Research Center
(TFHRC). The NDE data for this case study was captured in a
manner that mimicked the NDE systems available onboard an
inspection robot developed at TFHRC, illustrating a potential
practical application for the proposed framework. The following
NDE methods were considered (see Experimental Validation for
more details): ultrasonic surface waves (USW), impact echo (IE),
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ground penetrating radar (GPR), electrical resistivity (ER),
ultrasonic tomography (UT), half-cell potential (HCP),
infrared thermography (IRT), and impulse response (IR). The
paper concludes with a discussion of outstanding research efforts
that must be considered prior to practical implementation.

METHODOLOGY

The primary focus of this study was on the development of a
feature-level fusion approach (Figure 1). A decision-level fusion
approach was also developed for comparative purposes and is
discussed in Decision Fusion. First, data from multiple NDE
sources are preprocessed for spatial registration and salient
numerical features are extracted from each NDE data source.
Feature extraction is achieved through the discrete wavelet
transform (DWT). Once extracted, features are combined into
a concatenated feature (descriptor) vector. This feature vector
then serves as input to a supervised machine learning classifier
trained to detect subsurface defects in the concrete specimen. For
model training, features extracted from test data were manually
labeled to generate a ground truth. Once the machine learning
model assesses the likelihood of a defect at each location along a
bridge deck, the probability of occurrence of damage across the
deck is visualized as a red-blue heatmap.

Data Preprocessing
Data preprocessing encompasses a range of tasks such as data
cleaning, data transformation, and feature extraction

(Nantasenamat et al., 2009). In this work, the emphasis for
data preprocessing is on making heterogeneous NDE datasets
spatially compatible followed by feature extraction. Even for
robotic multi-NDE systems, discrepancies in the location of
measurements is inevitable. To accommodate, measurements
are linearly interpolated onto a consistent 2D grid spacing.
Incomplete data is also an inevitable problem in handling
most real-world data sources, and is interpolated as well.

Some NDE techniques provide scalar valued measurements at
each test point (e.g., HCP or ER) while others produce a
waveform result (e.g., IE or GPR). This data heterogeneity
necessitates fusion at either the feature or decision-level. To
fuse at the feature-level, numerical feature must first be
extracted from waveform measurements. These descriptors are
then concatenated with scalar response data (Figure 2).

Waveform Feature Extraction
Feature extraction refers to the process of extracting statistically
salient numerical descriptors from the original data. In most
conventional approaches to NDE data analysis, feature extraction
has focused on reducing an NDE waveform measurement to a
single scalar-valued representation. For data fusion, such
approaches dramatically reduce the amount of relevant
information. The wavelet transform is a time-frequency
analysis technique that is commonly used for advanced signal
processing (Daubechies, 1992). It was developed as an alternative
to the short time Fourier (Mallat 1989; Nouri Shirazi et al., 2014)
to overcome problems related to the simultaneous representation
of frequency and time resolution properties. Compared to a

FIGURE 1 | Schematic overview of the proposed methodology for multiple NDE feature fusion.
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traditional Fourier analysis, a wavelet transformation has the
ability to simultaneously reproduce temporal and scale data,
making it better suited for analyzing signals that are periodic,
transient (or non-stationary), and noisy. As a result, wavelet
transforms are increasingly employed in numerous applications
for feature extraction (Epinat et al., 2001; Ghazali et al., 2007; Luk
et al., 2008; Al Ghayab et al., 2019). In particular, wavelet
transforms have recently seen use in SHM and NDE analysis,
for instance in the assessment of acoustic IE measurements of
concrete slabs (Saadat et al., 2004; Khatam et al., 2007; Yeh and
Liu, 2008; Hou et al., 2015).

Wavelets can be considered as a family of functions
constructed from translations and dilations of a single
function called the “mother wavelet” (t) (Mallat, 2009). They
are defined by the following equation:

Ψa,b(t) � 1���|a|√ Ψ(t − b
a

) a, b ∈ R, a≠ 0 (1)

The parameter a is the scale, and it measures the degree of
compression. The parameter b is the translation parameter that
determines the time location of the wavelet and t is time (Debnath
and Shah, 2014). For a signal (t), the transformed wavelet

representation of the signal, Ws, at scale a, position b is
defined as an inner product:

Ws(b, a) � ∫∞

−∞
s(t) 1���|a|√ Ψ(t − b

a
)dt (2)

The wavelet transform can be implemented in either a
continuous or discrete form. The widely used DWT is
employed in this study. DWT is an adaptive decomposition
which decomposes a signal with high- and low-pass filters and
increases the frequency resolution in lower frequency bands
(Zhang et al., 2018a). The DWT decomposes a signal onto a
set of bases that correspond to different time and frequency scales
or resolutions (Figure 3). At the first stage of decomposition, the
initial signal is decomposed into approximation and detail
coefficients. The first level approximation coefficients are
further decomposed into second-level approximation and
detail coefficients, and the process is repeated, resulting in
levels of approximation and detail that capture both frequency
and time domain information about a signal (Zhang et al., 2016).
The approximations are the high-scale, low-frequency
components of the signal, while the details are low-scale, high
frequency. This wavelet decomposition also suppresses signal
noise, effectively serving to denoise the signals prior to data
fusion.

In this work, a fourth order variant of the Daubechies wavelet,
known as the Symlet wavelet, is used in conjunction with the
DWT. This particular wavelet feature extraction approach was
first developed in (Zhang et al., 2016) for the analysis of IE data.
In this study, this wavelet extraction approach is applied to both
IE and GPR signals. Both IE and GPR signals are considered
transient in nature with nonstationary noise characteristics,
indicating that they are well suited for wavelet representation
(Zhang et al., 2018b). Based on prior studies and empirical analysis
by the authors, a four-level decomposition is adopted for both IE
andGPR signals and decomposition, as illustrated in Figure 4. After
decomposition and reconstruction of sub-signals, four features are
extracted from each wavelet basis. The root mean square
(i.e., average power of signal), standard deviation (i.e., Second
spectral moment), kurtosis (i.e., Third spectral moment) and

FIGURE 2 | Combining scalar and waveform responses of interpolated data.

FIGURE 3 | Schematic discrete wavelet transforms for the four-level
Symlet wavelet decomposition used in this work.
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skewness (i.e., Fourth spectral moment). Overall, this results in 20
features for each original measurement signal. These features
extracted from IE and GPR signals are later combined into a
vector as an input to a given statistical model. The functions for
feature calculation are defined as follows:

Let xn, n � 1, 2, . . ., N be the time domain signals and [pi, fi], i �
1, 2, . . ., M be its corresponding spectrum, where pi and fi are the
amplitude and the frequency at ith frequency bin, respectively.

Total Power : TP � ∑M
i�1

pi,

Centroid : M1 � ∑M
i�1

pi.fi/TP (3)

Root Mean Square �

����������
1/M ∑M

i�1
p2i

√√
(4)

Standard Deviation : M2 �

�����������������∑M
i�1

(fi −M1)2.pi/TP

√√
(5)

Skewness : M3 � ∑M
i�1 (fi −M1)3.pi

M3
2 .TP

(6)

Kurtosis : M4 � ∑M
i�1 (fi −M1)4.pi

M4
2 .TP

(7)

Data Interpolation
In a multi-NDE assessment scenario, the goal is to capture
measurements at identical locations across an assessment area.
However, the practicalities of NDE mean that it is typically not
possible to achieve this goal. For instance, in the experimental

study of this work, NDEmeasurement spacing was not consistent
across NDE techniques and there were intermittent missing
measurements. Prior to data fusion, NDE values must be
interpolated onto a consistent grid spacing. In the example
shown in Figure 5, the grid spacings of measurements NDE 1
and NDE 2 are different. Features from NDE 2 are measured at
grid points x0, x, and x1, resulting in measurements u0, u, and
u1. Features extracted from NDE 1 are only measured at grid
points x0 and x1 (measurements f0 and f1). The features f at
location x are linearly interpolated via first order polynomial.
The relationship between spatially distributed NDE
measurements is not well-defined, and more complex
interpolation approaches could prove more suitable. This is
one potential avenue for future study.

Data Fusion
As discussed previously, feature and decision-level fusion are
considered in this study because the heterogeneity of bridge deck
NDE data prohibits the use of data level fusion. In general, the
“higher up” in the fusion ontology from data to decision-level, the
greater the loss of information. As such, it is generally advisable to
fuse data at the lowest possible level, motivating the focus on
feature-level fusion in this work.

The general concept is to take the concatenated set of wavelet
features extracted from each NDE measurement (Waveform
Feature Extraction) at each location and use the combined
vector of features as the inputs into a statistical model that
associates the vector with a statistical assessment of material
condition. Here this statistical model takes the form of a statistical
classification problem, one that classifies a feature vector as being
a member of either a “detected defect” or “sound concrete”
assessment class. Multiclass classifications are also possible,

FIGURE 4 | A)Original IE signal; (B–E) reconstructed detail coefficients at level 1(B), level 2 (C), level 3(D), level 4(E); (F) reconstructed approximation coefficients at
level 4.
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though they were not extensively studied here due to limited data
availability (see Experimental Validation for more details).
Ultimately, the end result is that the raw data from each NDE
source is effectively fused together to provide an enhanced
assessment.

There are a broad range of classification algorithms that can be
used such purposes. Generally, they can be divided into parametric
and nonparametric methods. Parametric techniques make
assumptions about the underlying statistical distribution or the
measurement uncertainty of observations in order to enable
inference. Implicitly, such techniques often require statistical
stationarity, as well as consistent and quantifiable measurement
uncertainty. The alternative are nonparametric fusion methods.
Nonparametric methods relax assumptions regarding underlying
statistical distributions and instead construct a model of
measurement states from sets of existing data (Tsiliki and
Kossida, 2011). Such approaches have the advantage of being
applicable to highly complex and nonlinear statistical problems.
Machine learning approaches have become the dominant
paradigm for nonparametric data fusion, with ANN and SVM
as the most widely used approaches. ANN have the advantage of
being more flexible with respect to data input and can be highly
tuned for optimization to a specific problem domain. SVM have
fewer user parameters (hyperparameters), making them more
suitable for rapid prototyping and problems with less data
available for model training (Dong et al., 2009). Given the
limited size of the available data sets for prototyping, the focus
here is on the use of SVM. The behavior of several other methods
are presented as well for comparative purposes. These methods
included: logistic regression, decision tree-based models and ANN.
The weighted decision-level fusion is also studied and is briefly
discussed (Lu and Michaels, 2009; Heideklang and Shokouhi,
2013).

Conventional machine learning performance metrics are
used to assess data fusion capabilities, including confusion
matrices, ROC curves and F1 scores (Fawcett, 2006). While
classifiers typically produce a discrete classification, statistical
probabilities are used for class separation. This statistical
probability provides a more nuanced representation of
classifier performance, and can be used for holistic
assessment and visualization purposes (see Holistic
Visualization for details).

Feature Fusion - SVM
SVM are a group of algorithms that were originally designed for
binary classification, and gained popularity due to promising
performance in a wide range of applications (Cortes and Vapnik,
1995; Cristianini and Shawe-Taylor, 2000; Ruiz and Lopez-de-
Teruel, 2001). SVMs attempt to discriminate between classes of
data by finding the optimal high-dimensional hyperplanes that
bisect the data, and then combining these hyperplane bi-sections
to enable more complex reasoning. The original data points from
an input feature vector are projected by a kernel function into a
higher dimension feature space (Figure 6). In this space, SVM
tends to find the hyperplane that separates the data with the
largest margin. The method places class-separating hyperplanes
in the original or transformed feature space, and the new sample
is labeled with the class label that maximizes the decision
function—the distance between support vectors (Boser et al.,
1992; Vapnik, 2000).

The SVM is especially suited for scenarios with smaller sample
sizes, as is the case for many NDE assessment scenarios (Luts
et al., 2012). In contrast to other algorithms, SVM tends to use all
available features, even if they are not of real statistical
importance, and therefore requires more care regarding
cleaning and preprocessing of the input data.

SVM Standardization
Standardization (i.e., feature scaling) refers to the process of
rescaling the values of the input variables so that they share a
common scale, in order to reduce classifier biasing.
Standardization is an important step for SVM classifiers. For
instance, many elements used in the RBF kernel of Support
Vector Machines assume that all features are centered around
0 and have variance in the same order. If a feature has a variance
that is orders of magnitude larger than others, it can potentially
dominate the objective function andmake the estimator unable to
learn from other features. Data standardization also can speed up
training time of SVM by starting the training process for each
feature within the same scale (Kotsiantis et al., 2006). Here,
features are standardized by removing the mean and scaling to
a unit variance. The standard score of a sample x is calculated as:

Z � (x − u)
s

(8)

FIGURE 5 | Linear interpolation of NDE data.
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where u is the mean of the training samples and s is the standard
deviation of the training samples (Shanker et al., 1996). Centering
and scaling happen independently on each feature by computing
the relevant statistics from samples in the training set. These
scaling parameters are then applied to the test data.

Hyperparameter Identification
Prior to model training and fitting, the model
hyperparameters must be optimized (Wang et al., 2010).
Good model selection is the key to getting good
performance from any machine learning algorithm. Also, if
the hyperparameters are not selected appropriately, an SVM
may take an unduly long time to train (Nalepa et al., 2018).
The SVM model contains two main parameters that must be
optimized: the kernel function used for dimensional
reprojection, and the regularization parameter (c). SVM
algorithms can use different types of kernel functions such
as linear, polynomial, sigmoid, and radial basis functions
(RBF). The regularization parameter (c) is used to prevent
overfitting. In this study, a hyperparameter search (grid
search) is performed across combinations of different
kernel functions and regularization parameters. The
performance of the selected hyperparameters and resulting
trained model is then measured on a dedicated evaluation set
that was not used during formal model selection and training.
Different combinations of hyperparameters are compared
against each other based on model predictive performance.
For the experimental data set discussed in Experimental
Validation, a combination of the Radial Based Function
and regularization parameter, c, equal to unity showed the
best performance among all combinations.

Other Considered Classifiers
To provide a point of comparison with SVM data fusion, logistic
regression, decision trees, and ANN are presented and evaluated
here as well. Logistic regression is a simple, parametric machine
learning algorithm which assumes a linear mapping function
between input data and output classification, and has been used
extensively in the data fusion literature (Pigeon et al., 2000; Sohn
and Lee, 2003). Generally, this function is a linear combination
of the input variables. The benefit of the algorithm is that it does
not require as much training data as methods such as methods

such as SVM and ANN, however it is constrained to the
specified logistic functional form, which may or may not be
sufficiently accurate. As will be shown in Experimental
Validation, since logistic regression is only suitable for linear
problems, its performance was strongly biased to one of the
technique’s results and did not provide a true fusion of
information for NDE data.

Tree-based learning models such as the Decision tree (DT)
classifier are nonparametric algorithms that first select the best
feature for an initial separation of the data (root node) using the
concept of information gain ratio. It then builds subtrees and
nodes in a recursive manner that splits the data into classes based
on an evaluation of each feature in an input vector (Demirbas,
1989). Decision trees generally work better for larger datasets and
are prone to overfitting.

An ANN employs a complex network of nonlinear response
functions, with the value of each function in the network
weighted based on an optimized fitting to training data
(Zhang et al., 2017). The input “layer” of the network can
range from combinations of raw data to a set of extracted
data features to a numerical representation of a set of
decisions. The output can be a layer of the same size and
type as the input, or smaller. Increasing the complexity of an
ANN architecture allows for more nonlinear and sophisticated
representations and fusions and is the basis for modern deep
learning strategies. However, such increases in complexity
typically require even larger increases in the amount of
training data used to find network weights. Similarly, SVM
outperformed the ANN in the preliminary analysis. The reason
is that unlike ANNs, the computational complexity of SVMs
does not depend on the dimensionality of the input space. ANNs
use empirical risk minimization, while SVMs use structural risk
minimization. The reason that SVMs often outperform ANNs
in practice, particularly for smaller data sets, is that SVMs are
less prone to overfitting (Olson and Dursun, 2008). In recent
years, deep learning–based approaches have become popular
across research fields due to their ability to automatically learn
meaningful feature representations from the raw data (Hinton
et al., 2006; Najafabadi et al., 2015). However for smaller dataset
sizes, such as those in this study, deep learning algorithms do
not perform well and become prone to overfitting (Brownlee,
2017).

FIGURE 6 | Support Vector Machine illustration of projection of 2D data into a higher dimension through kernel function projection.
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Decision Fusion
Decision-level fusion combines information after each sensor
source has been independently processed to make a preliminary
determination of the existence of damage. Such fusions are
valuable when an effective workflow for using a single data
source in decision making already exists. Decision-level fusion
then allows those existing workflows to be integrated and
combined. As a point of comparison, the weighted decision
combination algorithm (Hall and Llinas, 2001) was used in
this study.

Weighted decision making assumes that each individual
assessment has its own weight with respect to accuracy or
validity. These weights can be assumed equal for simplicity,
however usually the decision from a data source with less
precision and confidence is assigned a smaller weight
contribution prior to the fusion. For classification tasks, the
selection of appropriate thresholds is needed to assign the
predicted damage pattern. This method therefore requires a
priori assumptions regarding statistical distributions or the
uncertainty of any given measurement.

It should be noted that many data fusion techniques can be
used for decision-level fusion as easily as they can for feature or
data-level fusions.What differs across these levels is the simplicity
of the inputs to the algorithms, with data-level fusion requiring
the largest and most complex inputs and decision-level requiring
the simplest, with correlated requirements for the size of the data
necessary for training and testing. Feature-level stands as a
flexible compromise between the two extremes.

Holistic Visualization
The developed approach to visualization stemmed from a series
of interviews the authors performed with NDE end-users, as
well as recent advances in data visualization (Rangwala et al.,
2009; Choo et al., 2012). Rather than present the discrete output
classification of the machine learner at each measurement
location, the model’s statistical confidence in its prediction is
presented (Figure 7). To accomplish this, the aggregated
detection results across the deck slab are shown as a contour
heat map, as is common practice. But rather than indicate a
discretized detection, what is shown is in fact the machine
learning model’s classification confidence at each location,
represented by a probability score ranging from 0.0

(confident in no defect) to 1.0 (confident in a detected
defect). Once the probability of a defect’s existence is
estimated by the fusion algorithm for each measurement grid
location, the grids with the same probability value range are
then connected through polygonization. Further polygons are
filled with varying shades of color corresponding to their
probability score (Figure 8). The heat map uses a two color
diverging heat map scale, with varying shades of blue if no defect
is more likely, and varying shades of red for a likely detected
defect (Moreland, 2009). Lighter color intensity indicates lower
model confidence, with a white midpoint suggesting no
confidence in an assessment. The resulting heatmap provides
end users with a data product that is familiar to them while
presenting nuanced information in an intuitive and
comprehensible format. Moreover, the confidence thresholds
can potentially be tuned and controlled by the end user, as
several interview participants requested.

EXPERIMENTAL VALIDATION

This section presents an experimental study designed to illustrate
the potential capabilities of a machine-learning approach to data
fusion. Prior to this study, researchers at Turner-Fairbank
Highway Research Center (TFHRC) constructed a series of
laboratory-scale bridge decks and performed a set of NDE
assessments on those decks. Overall, eight NDE techniques
were used to collect synchronous data from the specimens.
Four of these NDE measurements simulate measurements
from the Federal Highway Administration (FHWA) Robotics-
Assisted Bridge Inspection Tool (RABIT), a robot designed to
perform synchronous multi-NDE assessments of bridge decks
(Gucunski et al., 2017; La et al., 2017; Gibb et al., 2018; Ahmed
et al., 2020). The other four are commonly used techniques for
bridge deck NDE.

The data from these NDE assessments was used to prototype
and test the data fusion algorithms discussed inMethodology. The
performance of the data fusion algorithm was tested for two
different types of defects and NDE methods. The first set of tests
focused on deck corrosion detection, while the second sets of tests
explored algorithm performance for sub-surface delamination
detection.

FIGURE 7 | Heat map showing confidence of defect prediction.
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FIGURE 8 | Flowchart of the process for generating fusion confidence visualizations.

FIGURE 9 | Laboratory-scale bridge deck specimen design. Section (A-A) shows the location for each defect type with respect to slab depth. Section (B-B) shows
defect placement for shallow delaminations. The placement of other defects in the cross-section is similar, accounting for variations in depth.
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It is important to note that these experiments were all
performed under idealized laboratory conditions. While the
test specimens and data are representative of real-world
scenarios, environmental conditions and the practicalities of
full-scale field assessments will inevitably degrade algorithm
behavior. Still, the results of these experiments illustrate the
potential benefits of data fusion and serve as motivation for
larger-scale testing under field conditions.

Nondestructive Evaluation Data Generation
Researchers at TFHRC constructed eight geometrically identical
concrete decks with a series of controlled subsurface defects
(Figure 9). These defects included deep and shallow
delamination, honeycombing, voids and vertical cracks and
accelerated corrosion. The 12 × 8 inch artificial delaminations
were built using plexiglass and plastic gutter guards. Two
plexiglass sheets with a thickness of 0.093 inches were cut to
size, and two layers of plastic gutter guard were placed between
the sheets to create an air gap, then the edges were sealed with
duct tape. This artificial delamination was used to simulate
shallow and deep delaminations at the top and bottom rebar
levels. The artificial honeycombing was simulated with a bag of
loose aggregates. For each honeycomb defect, 12 lbs of aggregate
were placed into mesh bags and the edges were stitched with wire.
The mesh bags were then placed in wood molds and secured to
the rebar cage. The 23 × 8 × 2 inch voids were simulated with
Styrofoam boards, Corrugated plastic sheets with a height of
either 6 inches or 2.5 inches, a thickness of 0.16 inch, and a length
of 10 inches were used to simulate vertical cracks within the
concrete structure. Then the RC decks were then constructed
using normal-weight concrete mix with a water-to-cement ratio
of 0.37.

After the RC decks were fully cured, prior to data collection,
accelerated corrosion was employed to create a corrosive
environment with elevated chloride content in the concrete
and active corrosion in the pre-corroded rebar. Different
levels and uneven distribution of chloride content were

introduced by a sponge saturated with NaCl solution. The
reader should consult (Meng et al., 2020) for more details on
deck construction and the development of the corrosive
environment. Of the eight specimens, four also had an
overlay. After construction of the test specimens, 8 NDE
techniques were used to collect synchronous data from the
specimens. Employed technologies included ultrasonic
surface waves (USW), IE, GPR, ER (RABIT-based
techniques), ultrasonic tomography (UT), HCP, infrared
thermography (IRT) and impulse response (IR).

Of all eight NDE techniques, HCP, ER and GPR A-scan data
were used in this research for corrosion detection: HCP for
detection of corrosion activity, ER for detection of corrosive
environment, and GPR for condition assessment. Previous
nondestructive testing (NDT) applications on RC decks have
demonstrated that ER and GPR can detect corrosive
environments in concrete (elevated chloride content in this
study), and HCP can detect active corrosion in the
reinforcement (Gucunski et al., 2011; Gucunski et al., 2012).
For delamination detection, GPR, IE and ER were used for
condition assessment. For each specimen, nine gridlines were
established with a spacing of 4 inches in the transverse direction,
and 29 gridlines with a spacing of 4 inches were set in the
longitudinal direction. For all techniques, data was collected
on a specific grid spacing across the deck surface, though that
spacing varied based on the specific NDE method used. ER, HCP
and IE data were collected at grid points, and GPR A-scans were
collected along each gridlines. The GPR was set to 36 scan/foot,
resulting 322 scans along the longitudinal direction. As discussed
in Data Interpolation, the data from each NDE method was
linearly interpolated to generate approximate measurements on a
consistent grid spacing. The specifics of the data set are shown in
Table 1.

Data Fusion for Corrosion Detection
There are various electrochemical and physical methods for the
detection of corrosion in concrete and the advantages and
disadvantages of each respective method is well-explained in
the literature (Alonso et al., 1988). The study concludes that
there is no optimal method, and usually a combination of
several techniques is used. For this study, three different
NDE methods were chosen for corrosion detection: HCP,
GPR, and ER. The HCP technique is a generally accepted
method for identifying active corrosion in reinforced concrete
bridge decks. The method is supported by an American Society
for Testing Materials C876–09 standard (ASTM C876–09, 1999)
with well-defined thresholds distinguishing actively corroded

TABLE 1 | Details of NDE measurements used for data fusion.

Method Measurement spacing Number of samples
prior to interpolation

IE 4 inches - data was not collected at centerline vertical crack 2,016
GPR (A-scan) 9 longitudinal scan lines at 4 inch spacing–GPR was set to 36

scans/foot
2,898

HCP 4 inches 2,088
ER 4 inches 2,088

TABLE 2 | Comparison of fusion algorithm performance for corrosion detection.

Fusion Algorithm Accuracy Precision Recall F1-score

SVM 0.96 0.92 0.91 0.91
ANN 0.95 0.92 0.89 0.90
Decision tree 0.91 0.89 0.89 0.89
Logistic regression 0.89 0.82 0.82 0.82
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and non-corroded areas. GPR data has been shown to correlate
reasonably well with HCP data on bridge decks (Martino et al.,
2014). ER probes are also frequently used in corrosion
monitoring systems in various industrial fields, especially in
the Petro-chemical industry (Legat, 2007). In previous study
(Legat et al., 2004) it was shown that measurements with ER
probes are efficient for measuring the corrosion of steel in
concrete.

The HCP and ER data sources provided scalar values (voltage
and resistivity value respectively) at each measurement location,
whereas the GPR data was a waveform. Wavelet features were
extracted from the GPR signal (including mean power of
reconstructed waveform and second, third, and fourth
spectral moment of spectrum of reconstructed waveform
from each wavelet basis, see Waveform Feature Extraction)
and combined with the scalar-valued HCP and ER data for
model training and testing. All the values were standardized and
hyperparameters were identified prior to training, as discussed
in Methodology. Classifiers were then trained using 70% of the
data and tested on the remaining 30%. Using the training
dataset, the classifier automatically determines an optimal
decision boundary, a hypersurface that partitions data into
defect and no defect classes. The classifier then classifies all
the points on one side of the decision boundary as belonging to
one class and all those on the other side as belonging to the other
class. Unfortunately, direct interpretation of this hypersurface is
challenging, and is a significant downside to machine learning
driven analysis.

Corrosion Detection: Results and Discussion
Once the scalar values from ER and HCP data sources and
extracted features from GPR waveform are combined into a
concatenated vector, this vector is then an input to a statistical
model. In this study, as explained in Feature fusion - SVM
(Other Considered Classifiers), ANN, decision tree, and logistic
regression algorithms are considered to provide a point of
comparison to SVM fusion. The performance of all
mentioned algorithms are shown in Table 2. The results of
this comparative analysis show that the SVM and ANN fusion
algorithms produced relatively similar results. Accuracy for the
decision tree model was slightly degraded, mostly due to a loss of
precision. The logistic regression approach yielded by far the
worst results, indicating that the statistical relationships
between NDE measurements and corrosion are sufficiently
nonlinear in nature to warrant more sophisticated machine
learning approaches. Given the comparably performance of the
SVM and ANN classifiers, the SVM approach is preferable due
to the fewer hyperparameters and reduced risk of model
overfitting.

Decision Fusion for Corrosion Detection
As a point of comparison, a decision-level fusion approach was
also developed. This approach combined the independent
detection assessments of various different NDE methods,
weighting them based on their statistical significance, a
technique referred to as a Weighted-Sum Model (Hall and
Llinas, 2001). Each NDE technique was used to generate an
independent decision based on its own features and an SVM
classifier, with a binary declaration of either “corrosion” or “no
corrosion.” The weight of each decision was then determined.
Several metrics for weighting were considered, including false
positive rate, probability of detection (recall), and precision (Lu
and Michaels, 2009). Using precision as the criterion, the order
of weights was GPR > HCP > ER. Considering recall, the order
of weights changed to HCP > GPR > ER. For the false positive
rate, the resulting weight order was GPR > HCP > ER. The
resulting weighted decisions were then combined and
compared against the SVM classifier (Table 3). As is shown,
the accuracy never reached the level of feature-level fusion via
SVM. Similar results were found for decision fusion of
delamination defects.

SVM Fusion Analysis
Once SVM was identified as the preferred machine learning
method for corrosion detection, a more in-depth analysis of
SVM model behavior was performed. In addition to a fusion of
all the techniques, different fusion combinations were studied.
The goal was to understand the effect of adding an NDE data
source to fusion models and identify the best combination of

TABLE 3 | Comparison of weighted decision combination with various weight order in corrosion detection.

Techniques HCP > GPR > ER GPR > ER > HCP GPR > HCP > ER SVM

Overall accuracy (%) 94.0 88.5 85.65 96.0

FIGURE 10 | Receiver Operating Characteristic curve of Support Vector
Machine for corrosion detection.
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techniques for deck assessment. The following data fusion
combinations were tested: ER + HCP, ER + GPR, HCP +
GPR, and ER + HCP + GPR. SVM classifiers were also
constructed for each NDE type separately. For scalar-valued
HCP and ER data a linear function was fit to the data, whereas
for the waveform GPR data, wavelet-based features were fit to
an SVM model with a RBF function, similar to the model used
for the fused case.

Some of these algorithms didn’t increase the corrosion
detection accuracy in compare with individual techniques, also
their underperformance in comparison with SVM was more for
delamination detection.

The resulting Receiver-Operator-Characteristic (ROC)
curves from each fusion combination for corrosion detection
is shown in Figure 10. The area under a ROC curve is an
effective measure of the sensitivity of a classifier to variations in
classification thresholds, with a larger area indicating a more
robust classifier. What can clearly be seen is that HCP on its own
is a highly effective method of quantifying corrosion, whereas
ER and GPR perform relatively poorly in isolation. In fact, GPR
actually serves to degrade classifier accuracy when fused with
HCP data. This behavior is due to the nature of laboratory
conditions for the HCP measurements that were idealized, and
may not be representative of performance under field
conditions. After the RC decks were fully cured, accelerated
corrosion was employed with elevated chloride content in the
concrete and active corrosion in the pre-corroded rebar. This
caused corrosion to occur much faster compared to natural
conditions (Meng et al., 2020). This type of accelerated
corrosion is ideal for HCP measurements and led to high
detection accuracy for HCP (Yuan et al., 2007). Such a result
reflects the potential for model biasing that can occur in
machine learning. The fusion of all three data sources is

slightly better than for HCP or HCP + ER, but these
differences are statistically negligible. The most notable result
is that the fusion of ER + GPR is measurably better than either
measurement on its own, and highlights the value of statistical
data fusion.

A visualization heat map for the complete fusion (HCP + ER +
GPR) is shown in Figure 11. An analysis of the visualization
shows that the certainty of corrosion was degraded near the upper
left corner of the slab. Again, the reasons for this loss in detection
certainty are likely due to experimental testing conditions.

FIGURE 11 | Fusion heat map based on Support Vector Machine indicating existence of corrosion in slab.

FIGURE 12 | Receiver Operating Characteristic curve of Support Vector
Machine classifiers for delamination detection.

Frontiers in Materials | www.frontiersin.org November 2020 | Volume 7 | Article 57691812

Mohamadi et al. Machine Learning for NDE Fusion

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


Data Fusion for Delamination and Crack
Detection
To evaluate the impact of data fusion for detecting subsurface
delamination and cracks, three NDE methods were considered:
GPR, ER and IE. Similar to the procedure for corrosion
detection, data from these techniques were combined into a
unified dataset. Like GPR, IE produces a waveform signal at each
grid location, and wavelet features were extracted from IE and
GPR (Waveform Feature Extraction). Once salient features were
extracted using wavelet transform, a series of classifiers were
prototyped. As with the corrosion tests, the SVM classifier
produced the most accurate and robust classifications. Results
for the ANN, decision tree, and logistic regression classifiers, as
well as the decision-level fusions were similar to the corrosion
tests and are not reported here.

Delamination Detection: Results and Discussion
The resulting ROC curves for SVM classifiers for delamination
and crack detection are shown in Figure 12, and the resulting
heat map is shown in Figure 13. For this set of tests, no single
NDE method dominated classifier performance and single-
source NDE assessments were consistently poor performers. In
all cases, fusions produced substantially improved assessments,
and the complete data fusion was substantially better than any
other combination. These results not only show that the fusion
algorithm significantly improve delamination detection
capabilities on their own, but the fusion of any combination
of techniques results in a substantial improvement in detection
accuracy compared individual techniques. This was most
notable for IE data. For example, IE + GPR fusion improved
detection accuracy by +50% compared to IE and GPR

detection. These results show the most dramatic
improvements from data fusion observed in this study and
should be the focus of future data fusion efforts.

The results for the ER data warrant additional discussion. ER
measurements are not designed to explicitly detect delaminations
in concrete, but rather the associated rebar corrosion, and the
artificial delaminations of this test were not corroded to simulate
this relationship. Yet adding ER data to the fusion of IR and GPR
had a measurable beneficial impact on detection accuracy and
served to reduce measurement uncertainty across the slab. An
analysis of the results indicates that this benefit is not isolated to
the corroded left-hand portion of the slab or any particular type of
defect within the slab. While not conclusive, the authors believe
that this result may be related to how the artificial defects are
installed within the test slabs and may not be representative of
field conditions. Further investigation is warranted and highlights
the need for physics-driven understanding of machine learning
analysis.

While not shown here for clarity, an initial series of tests
utilized scalar-valued measurements extracted from the IE
waveform results, as was done in (Hsiao et al., 2008). Single-
source classifications were comparable between waveform and
scalar valued NDE data. The benefits of data fusion without the
complete waveform response were negligible. What this suggests
is that components of an NDE signal that are not relevant for
single-source assessments can be of high value for a data fusion
scenario.

The behavior of the fused SVM classifier is more clearly seen in
the heatmap visualization of Figure 12. The upper and lower part
of the crack in the middle of the slab was detected while the
middle part was not detected because of the shallower crack depth

FIGURE 13 | Support Vector Machine fusion heat map indicating the existence and extents of delamination and cracking.
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(2” vs. 6”). While not every defect was perfectly identified, a large
portion of each of the eight defects was classified as a
delamination by the SVM. The worst performance was seen
for the honeycombing defect, where a smaller portion of the
defect was detected. The other six defects were more clearly
detected. For a holistic assessment, this kind of visualization goes
beyond defect detection and illustrates both the extents of a defect
and NDE detection confidence in an intuitive context that is
familiar to engineers and inspectors.

CONCLUSION AND FUTURE WORK

In this work, a methodology to process and fuse multiple NDE
data sources for bridge deck defect detection is developed.
This approach leverages a wavelet transform (DWT) to
extract numerical features from waveform NDE responses.
Using the DWT provides consistent feature extraction that is
well suited to signals that are periodic, transient (or non-
stationary), and noisy. In conjunction with scalar-valued NDE
measurements, these data sources are used as input in a
machine learning classifier to provide a feature-level data
fusion of NDE measurements. Support vector machine
methods showed demonstrably better detection accuracy
than other machine learning algorithms, most noticeably
when compared to linear classification methods that more
closely mirror conventional assessment methods. The benefits
of data fusion were most significant for the detection of
delaminations and cracks, while the results from the
corrosion analysis were likely biased by how HCP data was
collected in the laboratory and may not be representative of
realistic field performance. Overall, the findings of this study
show that data fusion has a measurable and positive impact on
defect detection performance for both corrosion assessment
and generalized defect detection. The visualization approach
developed in this study is capable of intuitively representing
the classifiers detection confidence—a key criterion for
inspectors and engineers managed as part of this
study—and provides a more nuanced representation of
NDE assessments that help to quantify the geometric
extents of a defect. As stated before, the laboratory
conditions for the test data likely overestimate classifier
accuracy under field conditions, but they do reflect the
relative benefits of data fusion over single-source NDE
assessments. It is also important to emphasize that the data
fusion processes developed in this work do not allow direct
insight into the capabilities of any single NDE method to
detect defects such as delaminations. Creating fusion
approaches that provide such insights is a compelling
avenue for future work.

This study was part of an on-going research program and
various part of the presented methodology are being
considered for further improvement. The goal of this study
was to fundamentally explore fusion viability, leveraging NDE
data relevant to the FHWA RABIT inspection system. While
the results show the promise of data fusion, there are many
unanswered questions. For instance, this study only considered

a small subset of possible data fusion combinations and defect
classes, and the results showed that data fusion was more
beneficial for delamination detection than corrosion. This
suggests the need for additional studies that consider a
broader range of NDE methods and defect types, and that
the benefits of fusion for any given scenario cannot be easily
generalized to other scenarios. However, the framework and
evaluative methodology presented here are generalizable
enough to be effective for a diverse range of experimental
scenarios. As stated earlier, the statistical learning models
developed here are not capable of distinguishing between
defect classes, a simplification that aided illustration of the
impact of NDE fusion. Future work could include expanding
the work to include defect diagnosis, rather than detection, for
instance the distinction between shallow and deep defects for a
given data fusion. Based on these initial findings, additional
studies on the wavelet decomposition-based feature extraction
methods are warranted as well. There is also a need to evaluate
these approaches under realistic field conditions. Lastly, the
probability score of damage in the structural component can be
modeled as stochastic process and tracked over time and using
time series modeling their future states can be predicted.
Tracking the fused data for prognostic purposes would be
highly beneficial to engineers and managers attempting to
do portfolio-level asset management.
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