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Biosensors can convert the concentration of biological analytes into an electrical signal or
other signals for detection. They are widely used in medical diagnostics, food safety,
process control, and environmental monitoring fields. In recent years, new schemes of
stable biosensor interfaces have attracted much attention. Interface design is a vital part of
biosensor development, since its stability can be directly related to the quality of sensing
performance such as sensitivity, stability, and linearity. This review summarized the latest
methods and materials used to construct stable biosensor interfaces and pointed some
future perspectives and challenges of them. From the literature, we found that
nanomaterials, polymers, and their composites such as chitosan, cellulose, and
conducting polymers are the most common materials used in the biosensor interface
design. Apart from materials, there are increasing developments in monolayer membrane
techniques, three-dimensional constructions, and other interface techniques. This review
is a study of the latest progress in biosensor interface stability solutions, which may provide
some references and innovative directions of biosensor interface design for researchers in
biosensor fields and encourage people to further explore new materials and methods.
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INTRODUCTION

Biosensor
A biosensor is a device that can transform chemical information coming from the concentration of
biomolecules into useful analysis signals (Thévenot et al., 2001). It is widely used in the fields of
medical diagnostics, food safety, process control, environmental monitoring, and so on (Kowalczyk,
2020). In the past 40 years, research on biosensors has made considerable progress, which benefits
from the achievements of nanoscience, electronics, biotechnology, and silicon technology (Schuster,
2018). Furthermore, with the development of artificial intelligence (AI) and big data, intelligent
biosensor has become a new hot research field. Biosensors play an increasingly important role in
daily life and scientific research.

Biosensors basically contain the following four constructions: sensing elements (or receptors),
which are used to specifically bind to the analyte to be tested; an interface, which provides a working
environment for biosensor elements (Schmidt and Montemagno, 2004); a transducer, which
transforms the physical or chemical information produced from the interaction between the
sensing elements and the analyte into electrical signals (Turner, 2015); a series of electronic
equipment including signal amplification, signal processing, and interface circuit for data
analysis and processing (Cavalcanti et al., 2008). The structure of a biosensor is shown in Figure 1.
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Generally, biosensors can be classified on the basis of three
schemes. According to the different receptor types, biosensors
can be divided into biocatalytic biosensors (i.e., enzyme),
immunological biosensors (i.e., antibody), and nucleic acid
biosensors (i.e., DNA). According to the physics of the
transduction process, it involves electrochemical biosensor,
optical biosensor, piezoelectric biosensor, and thermal or
calorimetric biosensor. According to the application fields, it
covers more types such as medical and clinical biosensors,
environmental biosensors, and wearable biosensors. Moreover,
commercial biosensors can be divided into two categories
depending on whether they are laboratorial or portable (Nicu
and Leichle, 2008). However, all of these biosensors need a stable
interface to work properly and to have better performance in
sensing.

Interface of Biosensor
How to combine the bionic system with silicon technology to
form a functional interface is one of the most challenging work
in biosensor design (Schmidt and Montemagno, 2004). A
crucial step involved in it is the immobilization of
biomolecules at the sensor surface. However, since
biomolecules are highly susceptible to their environment and
could denature rapidly due to changes in their surroundings,
biomolecules cannot be directly immobilized on the surface of
electrodes or other inorganic solid. In order to keep the
biological activity of molecules, which is necessary for
normal function of sensors, there should be a biocompatible
intermedium layer between the sensing elements (or receptors)
and the surface of electrodes (Matharu et al., 2012; Schuster,
2018). The layer is called a biosensor interface here. The
stability of interface will affect the interaction of analytes on
it and then affect the sensing performance of biosensor.
Therefore, it is vital to design a stable interface in biosensor
applications. This review tries to make a simple summary of the
latest materials and structures in biosensor interface design and
hopes to provide some references and innovation directions for
biosensor researchers.

Scope and Organization of the Review
In this review, taking the stability of biosensor interfaces as the
main line, some new materials and structures as well as
preparation methods used in biosensor interface design in
recent years are discussed. This review is organized as follows:
firstly, Materials of Biosensor Interfaces with Stability introduces
the materials commonly used in biosensor interfaces. Then,
Structures and Preparation Methods of Stable Biosensor
Interfaces summarizes the recent development in the interface
structure of biosensors and gives some relevant examples. Finally,
Conclusion makes a conclusion of these studies and gives the
potential prospect as well as challenges in the future.

MATERIALS OF BIOSENSOR INTERFACES
WITH STABILITY

Nanomaterials
Metallic Nanomaterials
In recent years, the biosensor interface has made great
improvement due to the development of nanomaterials.
Nanomaterials can be used to improve the adsorption capacity
of molecules, signal response speed, and the stability of the
modified electrode because of their special physics and
chemistry properties (Qian et al., 2014). There have been
various nanomaterials and structures applied to biosensor
interfaces such as nanospheres (Zhu et al., 2012), nanoporous
structures (Matharu et al., 2017), nanotubes (Isaac et al., 2017),
and nanowires (Hernández et al., 2016).

Gold nanoparticles (AuNPs) have the advantages of good
microenvironment, large specific surface area, good
biocompatibility, and high conductivity between the
biomolecule and electrode surface, which makes them the
ideal immobilization material for the fabrication of biosensor
interfaces (Shi and Ma, 2011). Sun et al. developed a novel
immunobiosensor based on glassy carbon (GC) electrode
interface modified with AuNPs for carcinoembryonic antigen
(CEA) detection. Experiment results showed just 4% current

FIGURE 1 | The structure of a biosensor.
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increase of the sensor within one month compared with the other
two methods of 8% and 14%, respectively (Sun and Ma, 2012),
which indicated great stability of the AuNP-based biosensor. It is
reported that some nanoparticles based on metal oxides have
been successfully applied into biosensors. Thiagarajan et al.
synthesized ZnO nanoparticles as the biosensor interface to
immobilize the choline oxidase. ZnO has good catalytic
property and biocompatibility, high surface-area-to-volume
ratio, and high isoelectric point (IEP) of 9.5, which is helpful
to immobilization of ChOx (IEP � 4.1) (Zhao et al., 2013). They
evaluated the sensor performance in the detection of choline from
breast cancer cells by using the hydrothermal method. The results
showed a higher stability compared with the biosensors using
other interfaces (Thiagarajan et al., 2016). Parlak et al. reported a
nanoparticle-structured MoS2 nanosheet as the semiconductor
interface of electrochemical glucose biosensors. The well-
dispersed Au nanoparticles were assembled by exploiting the
affinity between the coordinated structures of MoS2 and Au
nanoparticles. The results proved that it enhanced both
electrocatalytic reactions and electrochemical properties
(Parlak et al., 2017).

There are several other effects of nanomaterials applied in
biosensor interfaces. For example, nanomaterials can act as
mimic enzyme to replace bioenzyme to improve stability
(Zhang and Wei, 2016). Noble metal and alloy nanomaterials
are very popular in biosensor application for their high-catalytic
and biocompatible properties (Zhang et al., 2016). Moreover,
research has indicated that bimetallic nanocrystals (NCs) with
core-shell structures have higher stability and catalytic activity
(Liu et al., 2016). Another example is the application of a
microporous structure. Nanomaterials with a microporous
structure have a large effective area and can exhibit capacitive
properties. Ren et al. studied electrochemiluminescence (ECL)-
modified electrodes based on nanoporous cobalt (NPCo) with a
three-dimensional network nanostructure, obtaining satisfactory
catalytic activity and high structure stability (Lv et al., 2015).

On the other hand, there are increasing applications of
nanocomposites in biosensor interface design. Azureen et al.
studied gold-microrods (AuMRs), Pd-nanoparticles (PdNPs),
and polyaniline (PANI) nanocomposite interfaces as
peroxidase-mimic to form a label-free electrochemical
biosensor (Mohamad et al., 2020). Xinmeng et al. combined
two-dimensional hexagonal NiCo2O4 nanoplates with poly 3,
4-ethylenedioxythiophene (PEDOT) and graphene to form
nanocomposite for the detection of H2O2. PEDOT enhanced
the stability of NiCo2O4@PEDOT/RGO interfaces as the binder
existing between RGO and NiCo2O4 (Zhang et al., 2020). It was
proved that the combination of nanomaterials and polymers was
an effective solution for biosensor interface stability.

Carbon-Based Nanomaterials
Carbon-based materials have high electrocatalytic activity and
electrical conductivity because of its special characteristics such as
large surface area and numerous edge-plane-like defects (Inagaki
et al., 2016). The good properties and various forms such as
carbon flakes, carbon nanotubes, carbon nanofibers, and
nanoporous carbons make carbon-based materials one of the

significant materials in the application of biosensor interfaces.
Among the carbon-based materials, grapheme- and graphene-
based nanomaterials are the most common used materials owing
to their high specific surface which can provide a platform for
biomolecule loading and high conductivity that accelerates the
electron transfer between the biomolecules and the surface (Fang
et al., 2017). Zhou et al. proposed a chemiluminescent
immunosensor based on graphene oxide (GO)-chitosan (CS)
complex for the detection of Hg2+ (Zhou et al., 2019). GO can
be used to immobilize antigens effectively in the biosensor
because of its good water solubility and biocompatibility. CS
has great biodegradability, film-forming ability, and
biocompatibility. Thus, GO-CS composite can provide a stable
environment for the fixation of biological receptors. The relative
standard deviation (RSD) results of 0.01, 1, 100, and 300 ng ml−1

Hg2+ detection ranged from 0.21% to 1.95% (n � 5), which
showed good stability of the biosensor (Zhou et al., 2019).

Moreover, the interface structures based on carbon-mixed
materials have aroused a lot of research interest recently.
Although carbon-based materials have great inherent
properties, adding heteroatoms such as nitrogen, sulfur,
phosphorus, and boron into the graphite carbon network can
improve their performance further such as electrocatalytic
activity, hydrophobicity, resistivity, charge transfer ability, and
pH of the surface characteristics (Xiao et al., 2005; Ismagilov et al.,
2009). Emran et al. reported a constructed electrode based on
sulfur-doped microporous carbon (S-MC) for the selective
detection of monobioactive molecules in the biological fluids
and molecules secreted from living cells. The experiment results
showed satisfactory sensing properties (Emran et al., 2018).

In addition to the materials mentioned above, there are many
other types of nanomaterials. A list of nanomaterials commonly
used in biosensor interfaces is shown in Table 1.

Polymer
Polymers are important materials in the construction of
biosensor interfaces, because they are easy to process and their
chemical and physical properties can be tailored as required. In
particular, some polymers can be inert in an environment
containing analytes, which is beneficial to the accuracy of
detection. A survey of the literature revealed that polymers
had gained a major position in many sensor devices. There are
two main functions of polymers in biosensors. Conductive
polymers are used as coating or encapsulating materials on the
electrode surface, and nonconductive polymers are used to
immobilize specific receptors on the sensor device (Adhikari
and Majumdar, 2004; Cichosz et al., 2018). Nowadays, various
polymers have been used in biosensors such as chitosan, agarose,
polyethylene glycol, hydrogel, and polyelectrolyte (Sackmann,
1996). We will introduce three common types as examples here.

Chitosan
Chitosan has played a vital role in the development of biosensors
due to its good biocompatibility, adhesion, and excellent film-
forming ability, which means strong binding force for proteins
and enzymes. Jain et al. prepared a biosensor interface by co-
immobilizing the AChe and choline oxidase (ChOx) onto
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palladium nanoparticles (Pdnano). The Pdnano was adsorbed
over molybdenum disulfide (MoS2) nanostructures which were
electrodeposited on the surface of gold electrode. The chitosan
was used to improve interface stability and enzyme loading at the
same time. By combining large surface area and stability of
Pdnano, the biosensor showed good electrical performance
(Jain et al., 2019). Ding et al. prepared a novel nanocomposite
gel for cell immobilization and electrochemical studies by
neutralizing chitosan nanocomposite formed from the
reduction of tetrachloroauric acid in the original position of
chitosan. The nanocomposite gel performed good
immobilization ability and could maintain activity of
immobilized living cells, which enhanced the biosensor
stability greatly (Ding et al., 2007).

Cellulose Membrane
Cellulose, which is composed of glucose-based polymer chains, is
the main component of plant cell walls and now is a widely used
biopolymer (Kim et al., 2014). Cellulose has unique
characteristics such as high transparency, good dimensional
stability, and easy modification (El-Saied et al., 2020; Khattab
et al., 2020). In addition, both cellulose and its derivatives exhibit
high biocompatibility, which makes them suitable substrates for
incorporation of biologically active substances. Since the typical
carrier substrate for enzymes should be stable, inert, and resistant
to mechanical changes, the cellulose matrix is also an ideal
material for chemical covalent bonding, physical adsorption,
and immobilization (Sternberg et al., 1988; Yun et al., 2008).
Cellulose can be used to detect a variety of biomolecules, such as
urea, lactic acid, glucose, genes, amino acid, cholesterol, and
proteins.

In the study of Neelam et al., DAO from Pisum sativum (Pea)
seedlings was extracted and purified by dialysis and gel filtration.
Then, the DAO was covalently fixed on the surface of
nitrocellulose membrane with glutaraldehyde. The obtained
biological affinity supports demonstrated the high yield of

immobilized DAO from pea seedlings and the enhanced
storage stability of immobilized enzyme compared with free
enzyme (Neelam et al., 2020), which indicated good stability
of the cellulose membrane.

Conducting Polymer
Many polymers used in biosensors are conducting polymers.
They can produce measurable signals by changing their electrical
properties through the effects of different stimuli. This
phenomenon can be observed due to their molecular and
macroscopic structure. Thus, sensors can take advantage of
physical changes when a conducting polymer is exposed to
different chemicals (Janata and Josowicz, 2003; Moon et al.,
2018).

Ammam et al. reported a glutamate microbial sensor based on
polypyrrole (PPy), multiwalled carbon nanotubes (MWCNT),
and glutamate oxidase (GluOx). The first layer of the interface
structure is polypyrrole (PPy), which was used as a selective
permeable membrane on the platinum (Pt) electrode for the
rejection of interferences. Compared with nonconducting
polymer, the rate of alternating current electrophoretic
deposition (AC-EPD) was significantly enhanced by using PPy
for its high electrical conductivity. According to experimental
data, the response to interferences remained constant for 30 days,
proving that the PPy layer was stable and did not deteriorate.
Upon the PPy layer, a controlled layer of MWCNT was followed
by asymmetrical AC-EPD. This layer served as a support for
enzyme deposition and increased the effective surface area of the
sensor. The third step of interface construction involved
depositing glutamate oxidase (GluOx) on the previously
deposited carbon nanotubes by AC-EPD. The last step was to
apply a thin polyurethane (PU) outer membrane to prevent the
dissolution of deposited MWCNT and enzymes, which provided
stability of the sensor (Ammam and Fransaer, 2010). Figure 2
shows the schematic representation of the glutamate sensor
preparation, step 1: electropolymerization of polypyrrole; step

TABLE 1 | Nanomaterials used in biosensor interfaces.

Nanomaterials Properties Applications References

Noble metal nanoparticles
(Au, Ag)

Localized surface plasmon resonance (LSPR), good
biocompatibility

Biomolecular recognition Shen et al. (2012)

Noble metal nanoparticles
(Pt, Pd)

High surface energy, good catalytic performance Nonenzymatic glucose oxidation, detection
signal amplification

Song et al. (2010)

Noble metallic
nanoclusters (NMNCs)

Good optical stability and biocompatibility Detection of tumor cells, being used as receptors
after biological modification

Tanaka et al. (2011)

Quantum dots (QDs) Quantum size effect, long fluorescence lifetime Fluorescent biological probe Wu et al. (2003)
Magnetic nanoparticles
(MNPs)

Magnetic property High sensitivity sensor, immunoassay, catalyzing Omar and Abu-Reziq (2014),
Zhang et al. (2014)

SiO2 High hardness, hydrophilic, good stability, easy to modify,
good biocompatibility, mesoporous feature

Controlled drug release system Chen et al. (2012)

TiO2 Nontoxic, stable chemical properties, mesoporous
properties, photocatalytic oxidation ability

The target molecule can be loaded by the
channel inside the mesoporous structure

Rajh et al. (2014)

Carbon nanotube Good dispersity and stability Being used as receptors after biological
modification

Tsai et al. (2009)

Graphene High thermal conductivity, large surface area, good
conductivity

Catalyst carrier, being receptors Liu et al. (2008)

Carbon dots (CDs) Good luminescence performance, small size characteristic Metal ion detection Liu et al. (2012)
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2: AC-EPD of MWCNT; step 3: AC-EPD of GluOx; step 4: spray
coating with polyurethane outer layer (Ammam and Fransaer,
2010).

Metal-Organic Framework
In recent years, metal-organic framework (MOF), a new type of
porous hybrid material, has attracted extensive interest in
research. It contains metal ions and organic ligands, which are
linked together by strong coordination bonds (Lee et al., 2009;
Falcaro et al., 2014). Compared with inorganic nanomaterials,
MOFs have potential advantages in biological applications due to
their inherent biodegradability and the ability to use
biocompatible components. Many types of MOFs have been
applied to detect DNA, RNA, enzymes, small molecules, and
so on. Others are applied in clinical diagnosis such as bioimaging
(Blodgett, 1935).

Due to its superior properties of high surface area, large
porosity, easy tenability of pore size, and modifiable surfaces
(Lee et al., 2009; Falcaro et al., 2014), MOF is proved to be a
suitable matrix for enzyme immobilization. Its large hierarchical
surface area with remarkable porosity can provide high loading
capacity, and its strong affinity can prevent enzyme leaching
(Gkaniatsou et al., 2016).

Wang et al. immobilized xanthine oxidase (XOD) on a
biocompatible copper fund organic skeleton nanofiber (Cu-
MOF) membrane to develop a hypoxanthine and xanthine
electrochemical biosensor. The Cu-MOF was proved to have
good topochemical properties, chemical stability, and thermal
stability, which provided high storage stability of 20 days for the
biosensor (Wang et al., 2019). Figure 3 shows the immobilization
of XOD onto a copper-based metal organic framework fiber film
and the fabrication of a XOD-electrochemical biosensor (Wang
et al., 2019).

S. H. et al. reported a newmethod to enhance the lipase activity
under low intensity ultrasound treatment by entrapping lipase
within MOF in highly active conformation with the
biomineralization method at room temperature. To evaluate
the storage stability of different lipase forms, free lipase,
sonicated lipase, and lipase-MOF were incubated at room
temperature in phosphate buffer (100 mM, pH 7.0) separately

for 25 days. It was found that the residual activity of lipase-MOF,
free lipase, and ultrasonic treatment lipase was 90, 68, and 66%,
respectively. Furthermore, the thermal stability of lipase-MOF
was evaluated based on half-life in the range of 55–75°C, which
showed a 3.2-fold increment compared with the free lipase. The
results indicated that the lipase-embedded MOF hybrid
composites had high chemical and structural stability (Gyepi-
Garbrah and Silerova, 2002).

STRUCTURES AND PREPARATION
METHODS OF STABLE BIOSENSOR
INTERFACES
Monolayer Membrane Techniques
Studies on monolayer membranes have mainly focused on three
different preparation methods: the Langmuir–Blodgett (LB)
technique, self-assembly monolayer (SAM) technique, and
layer-by-layer (LBL) self-assembly technique. These techniques
can be used to form an almost complete monolayer with a highly
dense molecular ordered structure on the biofunctionalized
surface. The loading of biomolecules on the surface is quite
high, which can be beneficial for the development of highly
specific and sensitive sensors. Careful tailoring of sensor
surfaces by LB/SAM/LBL offers promising possibilities for
development of new biosensor surfaces (Matharu et al., 2012).
We will introduce LB and SAM in detail, which are the most
widely used fabrication techniques in biosensor interfaces.

Self-Assembled Monolayer Technique
Several research groups have come up with different definitions of
self-assembly. Maybe the best one is as follows: “self-assembly
refers to the spontaneous formation of organized structures
through a stochastic process that involves pre-existing
components, is reversible, and can be controlled by
appropriate design of the components, the environment, and
the driving force” (Hosokawa et al., 1996; Campbell et al., 2002;
Sahu et al., 2005).

The self-assembled monolayer (SAM) is formed by the
chemical adsorption of molecules at the liquid–solid interface.

FIGURE 2 | Schematic representation of the glutamate sensor preparation.
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The general preparation method is to simply immerse a suitable
solid support into a solution containing self-assembling
molecules. During SAM growth, adsorption precedes
molecular organization, which is different from the LB films
(Langmuir, 1920).

There are three basic units of SAM: head groups bound to the
surface of electrode, tail groups exposing at the SAM surface for
chemical and physical properties adjustment, and spacer chains
which are between head groups and tail groups for separation
(Dubey et al., 2010).

Luo et al. designed a biosensor based on the SAM technique
and alternating current (AC) electric capacitive sensing method.
The biosensor interface was fabricated as the following steps: first,
SAMs are formed using mercaptan containing alkyl chains fixed
to the surface of the gold electrode via Au-S bonds by self-
assembly techniques. Then, N-hydroxysuccinimide (NHS) and 1-
(3 dimethylaminopropyl)-3-ethyl carbon diimide hydrochloride
(EDC) were used to form the amide bonds between the carboxyl
group of the self-assembled monolayer and the amino group of
the BPA antibodies (Luo et al., 2020). In this way, the interface
between electrode and receptors (antibodies) had been built up.
The next step was to fix the antibodies onto the interface, and
then antibodies and antigens would have specific binding in the
sample solution. After special treatment, the chip could be reused.
The working principle diagram of the SAM-based biosensor is
shown in Figure 4 (Luo et al., 2020).

Langmuir–Blodgett Technique
A variant of self-assembly is the assembly occurring at the
gas–liquid interface. The Langmuir monolayer (LM) is a
monolayer formed in this way. The LM can be transferred to
a solid substrate to form a Langmuir–Blodgett (LB) membrane. In
LB technique, molecular organization precedes adsorption
(Langmuir, 1920). The earliest studies of monolayer
membranes at the gas–liquid interface were proposed by
Irving Langmuir in the late 1910s and early 1920s, and later
he reported the transfer of fatty acid molecules from the water
surface to solid carriers. The detailed transfer work was described

by his student Katherine Blodgett. So, in honor of their
outstanding contributions in this field, the monolayer
membranes are called L-B membranes (Langmuir, 1920;
Blodgett, 1935; Petty, 1983). A review reported by Matharu
et al. introduced LM preparation, its characteristics at the
gas–liquid interface, and the specific process of LB film
deposition in detail. According to the review, nanomaterials
and polymers are commonly used materials to prepare LB
films (Matharu et al., 2012).

Three-Dimensional Structure
Most of the biosensor interfaces are two-dimensional (2D) arrays.
However, biological molecules may require a more stable support
environment for reaction in some situations. Compared with 2D
structures, 3D structures could provide better structural stability.
Moreover, considering that the real living environment of cells is
in a complex 3D microenvironment, the 3D interface structure
can better simulate the real cell environment in cell biosensors.

Wang et al. proposed a new 3D interface of biosensors. The
preparation process is shown as follows: first, magnetic
manganese phosphate nanoparticles Fe3o4-Mn3(PO4)2NPs
were synthesized by surface self-assembly monolayer (SAM)
technology. Then, Fe3o4-Mn3(PO4)2NPs were directly and
firmly anchored on 3D nickel foam based on mussel-inspired
adhesion technology. Finally, the 3D nickel foam was adsorbed
on a magnetic electrode to construct the biosensor (Wang et al.,
2018). As a matter of fact, real cells live in 3D space with a
complex microenvironment (Liu et al., 2013). The 3D interface
could provide a better simulated living environment for cells than
2D interfaces used mostly now. The method could be a new way
for interface design of cell biosensors. However, although there
are some good properties of 3D interfaces, the preparation of it is
quite complex to operate. It will be a more practical method if
some simplification can be made in preparation or other
operation solutions can be found.

Peng et al. introduced tetrahedral DNA nanostructures
(TDNs) into the formation of aptasensors. They combined
aflatoxin B1 (AFB1) adaptors with TDNs and three-

FIGURE 3 | The fabrication of XOD-electrochemical biosensor.

Frontiers in Materials | www.frontiersin.org January 2021 | Volume 7 | Article 5837396

Song et al. Solutions of Biosensor Interface Stability

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


dimensionally ordered microporous MoS2-AuNPs hybrid
(3DOM MoS2-AuNPs) thin film to construct the sensing
interface (Peng et al., 2018). TDN is a new DNA structure
with good mechanical rigidity, structural stability, precise
controlled identification units, and specific orientation (Feng
et al., 2017; Chen et al., 2014), which provides a stable
environment for combination of biomolecules. Furthermore,
the study showed that aptamers were expected to replace the
traditional antigen–antibody binding reactions for its high
specificity, good affinity, excellent stability, and easy
preservation. The interface structure diagram of TDN-based
aptasensor is shown in Figure 5 (Peng et al., 2018).

From the research examples in recent years, it is obvious that
three-dimensional structure design presents new opportunities
for interface stability of biosensors due to its special structure as
well as the good properties owing to it. It may be a popular
research direction in the future. However, on the other hand,
there is still much space waiting to be studied in the field of 3D
structure for its complex preparation process.

Liquid Crystal Interfaces
In addition to the above categories, there are many new methods
and structures used in the biosensor interfaces. Here are several
other examples proposed in the latest research studies.

Over the past 20 years, liquid crystal (LC)-based biosensors
have been used for unlabeled sensing of biomolecules (Niu et al.,
2017). Liquid crystal molecules can change their orientation due
to the ability of adsorption or desorption at the interface and

response to stimuli, which can be observed and reported by
tracking the changes in liquid crystal optical birefringence in
real time (Munir et al., 2016). Sundas et al. realized an unlabeled
and enzyme-free detection of glucose by using boronic acid-
coupled poly(styrene-b-acrylic acid) at liquid crystal/aqueous
interfaces. The liquid crystal-based glucose biosensor had good
stability within 40 days, low production cost, and simple
immobilization technology (Munir and Park, 2018).

S-layer
S-layer, which is defined as “two-dimensional array of
proteinaceous subunits forming the surface layer on
prokaryotic cells,” is a kind of highly porous protein lattices
(Sleytr et al., 2014). It is also considered as the simplest biological
protein or glycoprotein membrane during biological evolution
(Sleytr et al., 2007). S-layer protein coatings can immobilize
various receptors or provide a necessary environment for the
recombination of functional membrane proteins and membrane-
active peptides by self-assembling an ultrathin, porous two-
dimensional protein lattice on many surfaces and interfaces
(Schuster and Sleytr, 2014). S-layer protein has three common
applications in biosensor construction: firstly, it is very suitable
for immobilization of biological molecules; secondly, S-layer
protein can be fused with bioreceptors for recrystallization;
thirdly, S lattice can be used as an anchoring scaffold and/or
ion library to generate lipid film platforms (Schuster, 2018). The
SUM (S-layer ultrafiltration membrane)-supported phospholipid
bilayer is a highly isolated structure with a life span of up to 17 h.

FIGURE 4 | Working principle diagram of the SAM-based biosensor. Reproduced with the permission from Luo et al. (2020).
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However, by attaching an S lattice on both sides of the lipid
membrane, the life span is significantly increased to about 24 h
(Schuster et al., 2001; Gufler et al., 2004). Furthermore, if the
lipid-head groups are cross-linked in contact with the domain on
the S-layer protein directly, the life span of the composite
membrane will further prolonged (Schuster and Sleytr, 2002).
Therefore, S-layer protein is a promising method for preparation
of stable and flowing lipid membranes on the biosensor interface.

Ferraz et al. reported a method for preparing a stable
monolayer of cholesterol oxidase (ChOx) at the water–air
interface. They prepared monomolecular films of ChOx and
mixed films of ChOx and S-layer proteins which were
extracted from B. sphaericus using a chaotropic agent
(guanidine hydrochloride). Among these films, the mixed film
containing S-layer showed more ideal performance than the pure
ChOx film. S-layer proteins in the mixed film played an
important role in protecting the active compound and
stabilizing the molecular layers. Their study indicated that the
use of S-layer proteins in biosensor production had a potential
stabilizing effect (Ferraz et al., 2011).

CONCLUSION

This review illustrated the significant impact of interface stability
on sensing performance through the analysis of biosensor
structure and summarized some latest materials, structures,
and preparation methods of biosensor interfaces by combining
with the related research studies in recent years. Obviously, many
innovative interface structures showed excellent stability and
good sensing performance. It can be seen that nanomaterials
and polymers as well as their compounds are the most popular
materials in interface designs due to their excellent surface effects.
Among these materials, noble metal particles, especially gold
particles, are ideal materials for biosensor interfaces because of

their good electrical conductivity, catalytic performance, and high
chemical stability. Furthermore, there has been increasing new
development in preparation methods such as monolayer
membranes techniques, construction of three-dimensional
interfaces, and other techniques of biosensor interfaces.

Since it involves different transduction modes, different
analyte species (such as proteins, small molecules, and cells),
different ways of functionalizing the active regions of the core
sensors, and different application situations, it is difficult to
compare the quality of various biosensor interfaces. In a word,
the best way to obtain the right biosensor interface for a particular
application is to assay the same biological model with various
types of biosensing systems and choose the satisfactory one by
comparing data.

Undoubtedly, much larger and faster development is observed
in the case of studies on biosensor interface stability. However,
there are still some challenges. Firstly, due to the specific selection
of biosensors, a new method may only be applicable to a certain
type or even a certain sensor but cannot be popularized. So, apart
from selecting the right materials, researchers should also refine
them and continually learn the mechanisms of reaction and
mechanisms that allow an optimal biosensor interface to be
obtained. Furthermore, the progress of interface science is
limited by the development of material science and micro-
nano technology to some extent. Searching for smart or new
materials and techniques for biosensor production will be always
on the way. In addition, although there has been good
performance of many interface designs, they can only be
completed in the laboratory because some of them need
complicated preparation process and professional operations,
which makes it difficult to put into extensive applications.
Therefore, there is still a big room of biosensor interfaces for
exploration.

However, the structures, materials, and interface preparation
methods discussed above are far from all the categories because of

FIGURE 5 | Interface structure diagram of TDNs-based aptasensor.
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the diversity and specificity of biological molecules detected, and
the richness of interface techniques and materials. The purpose of
this review is to do a simple summary of some commonly used
materials and methods for biosensor interfaces so far and to
provide part of new schemes of biosensor interfaces for reference.
A more comprehensive and more detailed review about the
stability solutions of biosensor interfaces needs further long-
term and in-depth research. Perhaps, it will be the future
research direction for us.
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