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Many engineering applications leverage metamaterials to achieve elastic wave control. To
enhance the performance and expand the functionalities of elastic waveguides, the
concepts of electronic transport in topological insulators have been applied to elastic
metamaterials. Initial studies showed that topologically protected elastic wave
transmission in mechanical metamaterials could be realized that is immune to
backscattering and undesired localization in the presence of defects or disorder.
Recent studies have developed tunable topological elastic metamaterials to maximize
performance in the presence of varying external conditions, adapt to changing operating
requirements, and enable new functionalities such as a programmable wave path.
However, a challenge remains to achieve a tunable topological metamaterial that is
comprehensively adaptable in both the frequency and spatial domains and is effective
over a broad frequency bandwidth that includes a subwavelength regime. To advance the
state of the art, this research presents a piezoelectric metamaterial with the capability to
concurrently tailor the frequency, path, and mode shape of topological waves using
resonant circuitry. In the research presented in this manuscript, the plane wave expansion
method is used to detect a frequency tunable subwavelength Dirac point in the band
structure of the periodic unit cell and discover an operating region over which topological
wave propagation can exist. Dispersion analyses for a finite strip illuminate how circuit
parameters can be utilized to adjust mode shapes corresponding to topological edge
states. A further evaluation provides insight into how increased electromechanical coupling
and lattice reconfiguration can be exploited to enhance the frequency range for topological
wave propagation, increase achievable mode localization, and attain additional edge
states. Topological guided wave propagation that is subwavelength in nature and
adaptive in path, localization, and frequency is illustrated in numerical simulations of
thin plate structures. Outcomes from the presented work indicate that the easily integrable
and comprehensively tunable proposed metamaterial could be employed in applications
requiring a multitude of functions over a broad frequency bandwidth.
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INTRODUCTION

In recent years, it has been recognized that wave control utilizing
elastic metamaterials can enhance performance and expand
functionalities in many applications, such as energy harvesting,
noise isolation, sensing, communications, filtering, and cloaking
(Hussein et al., 2014; Fang et al., 2018; Wang et al., 2020). One
objective of elastic metamaterials that has received significant
attention is the confinement of elastic waves to a specified path or
location through the formation of a waveguide. Conventional
elastic waveguides obtain wave confinement by creating an
inclusion where the wave can localize within a periodic lattice
(Kafesaki et al., 2000; Khelif et al., 2004; Benchabane et al., 2005;
Oudich et al., 2010; Casadei et al., 2012; Liu et al., 2020). These
conventional waveguides can suffer from performance
degradation when disorder (e.g., a sharp turn in the
waveguide) or defects (e.g., a manufacturing imperfection)
exist within the periodic lattice (Sun and Wu, 2006; Pal and
Ruzzene, 2017). To avoid this performance degradation and
expand the functionalities of elastic waveguides, the concepts
that underly topologically protected conducting states in
electronic materials (Hasan and Kane, 2010) have been
employed in elastic metamaterials (Huber, 2016; Ma et al.,
2019). Topological metamaterials are immune to various
classes of disorder and defects that are oftentimes found in
practical engineering applications, thus enabling lossless
transmission along any desired wave path. To achieve
topologically protected wave propagation that is localized to
waveguides in two-dimensional systems, the elastic analogs of
the quantum Hall effect (QHE), quantum spin Hall effect
(QSHE), and quantum valley Hall effect (QVHE) have been
extensively investigated.

Protected wave propagation that is confined to a waveguide is
obtained through the activation of localized topological edge
states that arise from the QHE, QSHE, and QVHE. Due to the
active/moving components that are generally required to break
time-reversal symmetry (TRS) for the QHE (von Klitzing, 1986;
Nash et al., 2015;Wang P. et al., 2015;Wang Y. T. et al., 2015) and
the complex geometries necessary to achieve a double Dirac cone
(a degeneracy where four cones meet) in the dispersion relation
for the QSHE (Kane and Mele, 2005; Mousavi et al., 2015;
Süsstrunk and Huber, 2015; Wu and Hu, 2015; Chaunsali
et al., 2018; Miniaci et al., 2018), the relatively simpler QVHE
has garnered significant attention. The QVHE requires the
formation of a single Dirac cone (a degeneracy where two
cones meet) in the dispersion relation of the unit cell. This
single Dirac cone is opened with a lattice perturbation that
breaks space inversion symmetry (SIS), which produces a
bandgap that can support topological edge states due to valley-
dependent topological properties (Nakada et al., 1996; Rycerz
et al., 2007; Xiao et al., 2007; Peres, 2010). Topologically protected
wave transmission according to the elastic analog of the QVHE
has been obtained in reticular structures (Vila et al., 2017; Liu and
Semperlotti, 2019; Miniaci et al., 2019) and continuous thin plates
with periodically placed masses (Chen et al., 2017; Yu et al., 2018;
Zhu et al., 2018) or inclusions (Du et al., 2020). These structures
emulate the elastic QVHE by exploiting a periodic impedance

mismatch (Bragg scattering mechanism), and thus the resulting
topological edge states exist at frequencies corresponding to
wavelengths that are dependent on the lattice constant. The
addition of local mass resonators (Torrent et al., 2013; Pal
and Ruzzene, 2017; Lera et al., 2019; Wang et al., 2019; Zhang
et al., 2020) and acoustic black holes (Ganti et al., 2020) to
continuous plates has facilitated the achievement of
topological edge states at frequencies that are determined by
the characteristics of the local element (mass resonator or
acoustic black hole). Topological wave propagation at low
frequencies corresponding to wavelengths that are larger
than the lattice constant has been demonstrated by carefully
selecting the properties of these local elements (Pal and
Ruzzene, 2017; Chaunsali et al., 2018; Wang et al., 2019;
Zhang et al., 2020). Subwavelength topological
metamaterials such as these could be highly valuable for
engineering applications that require wave control at low
frequencies in a size-constrained environment.

To extend beyond the functionalities available in fixed
structures and enable adaptivity to varying operating
requirements and external conditions, many recent
investigations have focused on introducing tunability to
topological metamaterials. The spatial path of topological wave
propagation has been demonstrated to be adjustable by applying
an external magnetic field (Zhang et al., 2019), modifying
mechanical boundary conditions (Darabi and Leamy, 2019;
Tang et al., 2019), adding an elastic foundation (Al Ba’ba’a
et al., 2020), connecting negative capacitance piezoelectric
circuitry (Riva et al., 2018; Darabi et al., 2020), or switching
stable states in bistable elements (Wu et al., 2018). The shape and
localization of topological edge states have been tuned by
exploiting an applied strain field (Liu and Semperlotti, 2018).
Initial studies involving real-time frequency tuning of topological
edge states have shown that an applied temperature (Liu et al.,
2019), strain field (Nguyen et al., 2019), or electrical field (Zhou
et al., 2020) can increase the frequency range over a limited region
that is related to the Bragg mechanism or the magnitude of lattice
perturbation.

The tunable topological metamaterials that have been
investigated thus far have each concentrated on tailoring an
individual characteristic of the topological wave to unlock
novel functions and enhance performance in devices
exhibiting elastic wave control. However, to fully realize the
potential of topological metamaterials in wave control
platforms and enable robust performance over a broad set of
functionalities, an elastic metamaterial with multiple tunable
topological characteristics must be developed. To date,
concurrent tunability of the frequency and spatial
characteristics of topological edge states has yet to be fully
explored in a singular elastic metamaterial. Such a
metamaterial would be of great benefit for devices such as
wave filters, multiplexers, and energy harvesters that must
route energy over a large frequency bandwidth. Besides
primarily focusing on one adaptive characteristic, the currently
established tunable topological metamaterials generally rely on
the Bragg mechanism to generate a Dirac cone. Due to the
interaction of platform-specific tuning parameters with the
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underlying physics of the Bragg mechanism, these metamaterials
are either incapable of on-line frequency tuning (e.g., they are
path tunable only) or can only practically do so over a limited
range. Moreover, structures fabricated from these
metamaterials would need to be large to control energy at
low frequencies that correspond with fundamental system
modes, which can be critical in structural applications. As a
result, an easily integrable topological metamaterial that is
capable of subwavelength elastic wave control and
programmable over a broad frequency bandwidth has yet to
be developed.

To advance the state of the art, the presented research
proposes a piezoelectric topological metamaterial harnessing
integrated resonant circuitry for comprehensively tunable
subwavelength wave control. The goal of this investigation
is to uncover insights into critical adaptive parameters and
synthesize a framework for the attainment of programmable
topological wave propagation using resonant
electromechanical metamaterials. In contrast to previous
works, the proposed methodology and approach has
achieved clear advancements: (a) the rich tailorable
characteristics of the piezoelectric metamaterial enable the
concurrent adaptation of the frequency range, path, and
mode shape of topological edge states and (b) this on-
demand tunability of topological properties is achieved for
the first time in a subwavelength (i.e., compact) and load-
bearing thin plate structure.

To accomplish the research objective, this manuscript
presents the evaluation of the dispersion relation for the
unit cell from the plane wave expansion (PWE) method.
The PWE method is selected because of its concise nature
and computational efficiency when compared to the often-
used finite element (FE) method, since there can be a low (e.g.,
50–100) number of degrees of freedom required to achieve an
accurate result from PWE calculations for thin plate
structures (Xiao et al., 2012; Pal and Ruzzene, 2017). This
method is utilized to establish the working principle for the
achievement of topological edge states from the QVHE.
Beyond establishing a working principle for the attainment
of topological edge states for fixed system parameters, the
advantages of the PWE method facilitate a comprehensive
parameter study through rapid calculations of the
metamaterial dispersion relation. A parametric analysis is
performed to identify and explore an achievable operating
region for tunable topological wave propagation. Numerical
computations of the dispersion relation for a finite strip of
connected unit cells uncover how circuit parameters can
enable the adjustment of topological edge states. Further
analysis is conducted to investigate how topological edge
state adaptivity can be augmented by the connection of
negative capacitance to enhance electromechanical coupling
and lattice reconfiguration via shorting circuits to obtain an
additional Dirac cone. Finally, the activation of topological
edge states for the achievement of guided topological wave
propagation at lattice interfaces and boundaries is revealed by
numerical simulations of a thin plate structure.

CONCEPT AND THEORETICAL MODEL

System Description
As shown in Figure 1, the proposed piezoelectric metamaterial is
comprised of a bimorph thin plate with substrate (gray) and
piezoelectric (yellow) layers. The substrate layer has thickness hs,
density ρs, elastic modulus Es, and Poisson’s ratio ]s while the
piezoelectric layers have thickness hp and density ρp. The
piezoelectric elements are connected to external circuitry through
conductive circular electrodes (red and blue in Figure 1) with radius
rp and a thickness that is assumed to be negligible (Zheng et al.,
2019). The electrodes are arranged in a honeycomb lattice formation
that contains the symmetries required to achieve the elastic analog of
the QVHE. The metamaterial unit cell is defined by the basis vectors
a
.

1 � âi and a
.

2 � a(cos π
3 î + sin π

3 ĵ), where a is the lattice constant,
and the resulting unit cell area is Ac �

�
3

√
2 a

2 (Figure 1C). This unit
cell contains two electrode pairs that form capacitors (capacitor 1

and capacitor 2) that are centered at R
.

1 � a
2
�
3

√ (cos π

6 î + sin π

6 ĵ) and

R
.

2 � −a
2
�
3

√ (cos π

6 î + sin π

6 ĵ). Each capacitor (Cp,1 and Cp,2) is
connected to an inductor (L1 and L2) to form a resonant LC
circuit with a natural frequency of ωt,j �

����
1

LjCp,j

√
for the jth circuit.

A negative capacitor with capacitance CN ,j (i.e., for a capacitor with
capacitance C � −1 F, CN � 1 F) is connected in parallel to the jth
resonant circuit. Ohmic losses are not considered in the derivation
for the dispersion analysis, as all circuit elements are assumed to be
ideal. In addition, damping is neglected, and perfect adhesion is
assumed to exist between layers.

FIGURE 1 | (A) Isometric view of piezoelectric metamaterial, with unit cell
enclosed in dashed lines. (B) Cross-section and (C) top view of metamaterial
unit cell. Blue indicates electrode geometry connected to circuit 1, red
indicates electrode geometry connected to circuit 2.
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Governing Equations
In the derivation of the theoretical model for the metamaterial,
small deflections and a thin structure (in the z direction) are
assumed. The classical theory of thin plates (Graff, 1991) and the
linear theory of piezoelectricity (Inman and Erturk, 2011;
Tiersten, 2013) are applied. Assuming a transversely isotropic
material and plane stress, the elastic, piezoelectric, and
permittivity constants for the piezoelectric elements of the
bimorph plate are obtained from the reduced (from the full
three-dimensional form) piezoelectric constitutive relations for
a thin plate (Inman and Erturk, 2011) as:

cE11 �
sE11(sE11 + sE12)(sE11 − sE12)

cE12 �
−sE12(sE11 + sE12)(sE11 − sE12)

cE66 �
1
sE66

� 1
2
(cE11 − cE12)

e31 � d31
sE11 + sE12

εS33 � εT33 −
2d231

sE11 + sE12

(1)

where cE11, c
E
12, and cE66 are the reduced elastic constants evaluated

at a constant electric field, e31 is the reduced piezoelectric
constant, εS33 is the reduced permittivity constant evaluated at
a constant strain, sE11 and sE12 are elastic compliance constants, d31
is a piezoelectric coefficient, and εT33 is permittivity calculated
under constant stress. A uniform electric field is assumed across
each electrode. The governing equations for the flexural
displacement and voltage response of the metamaterial are
derived using the extended Hamilton’s principle (Meirovitch,
1967), the integral form of Gauss’s law (Inman and Erturk, 2011),
and Kirchoff’s laws, and are given as:

DT∇
4
w(r, t) +m

z2w(r, t)
zt2

− θ∑Ne

j�1
∇ 2

vj(t)χj(r) � 0 (2)

Lj(Cp,j − CN ,j) z2vj(t)
zt2

+ vj(t) + θ∫∫
Dj

Lj
z2

zt2
∇ 2

w(r, t)d2r � 0,

j � 1 . . . .Ne electrode pairs (3)

where r � (x, y), w(r, t) is the flexural displacement of the plate,
m is the effective mass per unit area of the plate,DT is the effective
flexural rigidity of the plate at short circuit, θ is an
electromechanical coupling coefficient, vj(t) is the output
voltage across the jth electrode pair, Cp,j, Lj, and CN ,j are the
capacitance, connected inductance, and connected negative
capacitance corresponding to the jth electrode pair, Ne is the
total number of electrode pairs, ∇ 2

and ∇ 4
are the Laplacian and

biharmonic operators, respectively, and t is time. Furthermore,

χj(r) � { 1, r ∈ Dj

0, otherwise
, where the value of the step-function χj(r)

depends on Dj, which represents the subdomain in x − y space
containing the jth electrode pair. The definitions form, DT , θ, and
Cp,j are given by:

m � ρshs + 2ρphp

DT � Ds + Dp � Esh3s
12(1 − ]2s ) + cE11⎛⎝2h3p

3
+ h2phs +

hph2s
2

⎞⎠
θ � e31(hp + hs)

Cp,j � 2εS33
hp

Ae,j � ~CpAe,j

(4)

where Ds and Dp are the flexural rigidities of the substrate and the
piezoelectric layers, respectively, Ae,j is the area within the unit cell
that contains the jth electrode pair, and ~Cp is the capacitance per
unit area. A harmonic response is assumed at frequency ω, such that:

w(r, t) � W(r)eiωt vj(t) � Vjeiωt (5)

To generalize the results, a nondimensionalization scheme is
adopted and the resulting equations are:

(∇4 − ω2ma4

DT
)w(r) −∑Ne

j�1

θ2a2(Cp,j − CN ,j)DT

∇2vjχj(r) � 0 (6)

(1 − Lj(Cp,j − CN ,j)ω2)vj − ω2Lj(Cp,j − CN,j)∫∫
Dj

∇2w(r)d2r � 0;

j � 1 . . . .Ne electrode pairs (7)

where the non-dimensional flexural displacement, voltage, time,
and length scales are defined as: w � W

a ,

vj � 1
a
Cp,j−CN ,j

θ
Vj, τ �

��������
1

Lj(Cp,j−CN ,j)
√

t, x � x
a
, y � y

a, and z � z
a,

respectively, r � (x, y), ∇2 and ∇4 are the nondimensional
Laplacian and biharmonic operators, respectively, and

χj(r) � { 1, r ∈ Dj

0, otherwise
, where Dj is the subdomain in x − y

space containing the jth electrode pair.

Dispersion Relation
To attain the dispersion diagram (i.e., band structure) of the
metamaterial, the dispersion relation of the unit cell is analyzed
using the PWE method. For this study, the number of electrode
pairs (capacitors) in the unit cell is set to Ne � 2, as is shown in
Figure 1. The inductors L1 and L2 are defined as L1 � L(1 + β)
and L2 � L(1 − β), where β is a circuit inductance perturbation
parameter. The PWE method is applied following the steps
outlined in previous investigations utilizing mechanical
resonators (Xiao et al., 2012; Pal and Ruzzene, 2017;
Chaunsali et al., 2018), where the nondimensional flexural
displacement w(r) of the plate is expressed as a superposition
of plane waves:

w(r) � ∑
G

W(G)e−ia(k+G)·r , G � m b
→

1 + n b
→

2

m, n ∈ [−M,M], k � (kx, ky) (8)

where b
→

1 � π

a (2̂i,− 2�
3

√ ĵ) and b
→

2 � π

a (0̂i, 4�
3

√ ĵ) are the reciprocal
lattice basis vectors (a diagram of the reciprocal lattice is
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contained in the inset of Figure 2), G is the reciprocal lattice
vector, m and n are the plane wave indices, k is the Bloch
wavevector, and M is an integer chosen such that N2 �
(2M + 1)2 is the number of plane waves that are included in
the calculation. Eq. 8 is substituted into Eq. 6, the result is
multiplied by the complex conjugate eia(K+G’) · r , and integrated

over the dimensionless unit cell ∫∫
Ac−ND

dr, where Ac−ND � �
3

√
/2

represents the dimensionless area of the unit cell, defined as

Ac−ND � AC/a2. Using the property of orthogonality:

∫∫
Ac−ND

e−ia(G−G’) ·rd2r � {Ac−ND forG � G’

0 otherwise (9)

Eq. 10 is obtained. Similarly, by substituting Eq. 8 into Eq. 7,
Eq. 11 is obtained. The following equations define the dispersion
relation of the metamaterial unit cell:

(a4|k + G|4 −Ω2)W(G) +∑Ne

j�1

ϑ

1 − ξ j

a2

Ac

a2

Ae,j
a2|k + G|2∫∫

Dj

vje
ia(k+G) ·rd2r � 0 (10)

⎛⎝ Ω2
t,j(1 − (− 1)jβ)(1 − ξj) − Ω2⎞⎠vj +Ω2a2∑

G

W(G)|k + G|2∫∫
Dj

e−ia(k+G) ·rd2r � 0

j � 1 . . . .Ne electrode pairs (11)

where Ω is nondimensional frequency, ϑ is the nondimensional
electromechanical coupling factor, Ωt,j is the nondimensional

circuit tuning frequency, and ξj is the negative capacitance
ratio for the jth circuit. The derived model is general and
allows for unit cells with different electrode shapes and
capacitance definitions. However, in this study, these features
are selected to be uniform across both electrode pairs, as
CN ,j � CN , Cp,j � Cp, and Ae,j � Ae, such that Ωt,j � Ωt and
ξj � ξ. The equations for Ω, ϑ, Ωt , and ξ are given as:

Ω � ωa2
���
m
DT

√

ϑ � θ2

~CpDT

Ωt �
����
1

LCp

√
a2

���
m
DT

√
ξ � CN

Cp

(12)

To evaluate the dispersion relation for the system, Eqs 10, 11
are arranged in the form of the classical eigenvalue problem:

([K] − λ[M])[u] � 0 (13)

where the eigenvalues λ (defined as λ � Ω2) and eigenvectors [u]
(defined as [u] � [ {Wm,n} v1 v2 ]T ) can be computed by
specifying the Bloch wavevector k. The matrices [K] and [M]
of the eigenvalue problem are explicitly defined in
Supplementary Material Section 1. For the given eigenvalue
problem with a specified wavevector k, there areN2 + 2 calculated
eigenvalues λ that are used to obtain the band structure in the
Ω(k) format, since the band frequencies Ω can be computed from
the eigenvalues as Ω � �

λ
√

. This is referred to as the Ω(k)method,
since the band frequency Ω is calculated for a prescribed
wavevector k. The Ω(k) method is selected for the band
structure calculations because it has been previously
demonstrated to effectively identify the bandgaps and Dirac
points that are required to achieve topological waves in elastic
metamaterials (Xiao et al., 2012; Pal and Ruzzene, 2017;
Chaunsali et al., 2018).

Negative Capacitance Circuitry
Per Eq. 12, Ωt and ξ are parameters that are directly controllable
with circuit elements (e.g., synthetic inductor or negative
capacitor), while the electromechanical coupling factor ϑ is
dependent on material and geometric properties, and thus
cannot be altered after metamaterial fabrication. While ϑ
cannot be controlled directly by external circuitry, the addition
of a negative capacitor in parallel to resonant circuitry has been
shown to effectively (i.e., “synthetically”) enhance the
electromechanical coupling of a piezoelectric system. Previous
studies have exploited an enhanced electromechanical coupling
through negative capacitance circuitry to achieve vibration
attenuation over a broad frequency bandwidth (Hagood and
von Flotow, 1991; Tang and Wang, 2001; Wang and Tang,

FIGURE 2 | Ω(k) Dispersion diagram for unit cell with β � 0 and Ωt−eff �
16.0. The red lines represent results from PWE method, and the open black
circles represent results from FE simulations. Band structure for bare bimorph
plate is shown as gray dashed lines. For all results in this figure, the three
bands with the lowest frequency (i.e., the first three bands) are displayed. The
Dirac point is enclosed in the black box. Inset contains schematic of reciprocal
lattice and IBZ (blue triangle).
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2008; Berardengo et al., 2016; Sugino et al., 2017). In this
investigation, negative capacitance circuitry is also used to
tailor the electromechanical coupling of the system, as can be
seen by defining an effective electromechanical coupling factor
ϑeff as:

ϑeff � ϑ

1 − ξ
(14)

This term, which is present in Eq. 10, measures the level of
effective electromechanical coupling when accounting for the
connected negative capacitor. Thus, by careful selection of the
negative capacitance ratio (e.g., ξ ≈ 1), the effective
electromechanical coupling ϑeff can be significantly enhanced.

Since CN is an active component, a stability analysis is
necessary. The stability requirement is obtained from the
dispersion relation for the metamaterial by evaluating the
eigenvalues of Eq. 13, per the technique outlined in (Hu et al.,
2020). For positive eigenvalues (λ � Ω2 > 0), the oscillation
frequencies ( ± ω) are purely real, and there is a bounded
oscillatory response (see Eq. 5). On the other hand, for
negative eigenvalues (λ � Ω2 < 0), the result is frequencies with
a nonzero imaginary part ( ± iω) and an unbounded response
(Eq. 5). For the proposed metamaterial, when ξ < 1, all
eigenvalues are positive, and the system response is bounded.
In contrast, when ξ > 1, negative eigenvalues appear, and the
system response is unbounded. Therefore, to maintain stability:

CN <Cp↔ξ < 1 (15)

There is a physical explanation for the derived stability
criterion. The parallel-connected negative capacitor reduces
the effect of the inherent capacitance of an electrode pair,
causing a reduction in the total capacitance present in the
corresponding circuit (CT � Cp − CN , see Eq. 3). CT must
remain positive to maintain stability, since negative total
capacitance in a circuit is analogous to negative compliance
(stiffness) in a mechanical system, and no additional balancing
terms exist in the circuit governing equation (Eq. 3).

In addition to changing the effective electromechanical
coupling, the inclusion of negative capacitance influences the
effective nondimensional tuning frequency of the resonant
circuits. Through observation of Eq. 11, this influence can be
measured as:

Ω2
t−eff �

Ω2
t

1 − ξ
(16)

where Ωt−eff is the effective nondimensional tuning frequency.
Therefore, as the negative capacitance ratio ξ is increased towards
unity and effective coupling is enhanced, the effective tuning
frequency is shifted to a higher value. The result indicates that, if ξ
is specified to be close to unity, a large inductance would be
required to achieve a low-frequency value for Ωt−eff because Ωt

would need to be set to a very low value. If the inductance
required to achieve a desired low tuning frequency is too large to
be achieved with a standard inductor, a synthetic inductor created
from active circuit components (Kumar and Shukla, 1989) or a

specially designed large passive inductor (Lossouarn et al., 2017)
could be utilized. If these alternative inductor solutions are
deemed impractical due to power or size requirements, an
alternative for enhancing the effective electromechanical
coupling is to connect the negative capacitor to the resonant
circuit in a series configuration (Tang andWang, 2001;Wang and
Tang, 2008), instead of parallel (see Supplementary Material
Section 2).

WORKING PRINCIPLE– OBTAINMENT OF
TUNABLE TOPOLOGICAL WAVE
PROPAGATION
In this section, the working principle is outlined for the attainment of
subwavelength topological wave propagation using the proposed
metamaterial. A unit cell dispersion analysis is conducted to
identify lattices with nontrivial topological characteristics and
define metrics that are indicators of waveguide performance. A
finite strip analysis is undertaken to investigate how localized
topological edge states can be obtained through the connection of
topologically distinct lattices. Numerical simulations are performed to
illustrate how these edge states can be exploited to achieve guided
topological wave propagation that is tunable in both the frequency and
spatial domains.

Unit Cell Dispersion Analysis
The band structure of the proposed metamaterial is obtained
through a unit cell dispersion analysis. For this study, PZT-5H
(a commonly utilized piezoceramic) is selected as the material for
the piezoelectric layers and aluminum is selected as the material for
the substrate layer. The material properties associated with PZT-5H
and aluminum that are used in dispersion calculations are listed in
Table 1. The geometric dimensions specified for the analysis are
also included inTable 1. The layer thicknesses hs and hp are selected
such that the nondimensional electromechanical coupling factor is
maximized for the selected materials (ϑ � 0.42, see Eq. 12). The
negative capacitance ratio is set to ξ � 0.79, such that the effective
electromechanical coupling factor ϑeff is equal to 2. The tuning
frequency of the circuit (Ωt) is selected as 7.3, resulting in an

TABLE 1 | Definition of geometric and material properties.

Parameter Value

Geometric dimensions
a 40 mm
hs 1 mm
hp 1 mm
rp 10.6 mm

Substrate layer material properties
ρs 2700 kg/m3

Es 70 GPa
]s 0.3

Piezoelectric layer material properties
ρp 7500 kg/m3

cE11 66.2 GPa
e31 −23.4 C/m2

εS33 17.3 nF/m
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effective tuning frequency (Ωt−eff ) of 16.0. The dispersion analysis of
the unit cell is performed by solving the eigenvalue problem derived
from the PWE method (Eq. 13). M � 3 is chosen, such that N2 �
(2M + 1)2 � 49 plane waves are considered in the calculation and
N2 + 2 � 51 eigenvalues λ are obtained for each selected k. The band
(i.e., dispersion curve) frequencies Ω are calculated by specifying the
Bloch wavevector k to follow the edges of the irreducible Brillouin
zone (IBZ - shown as the blue triangle in the inset of Figure 2),
solving for the eigenvalues λ, and converting to frequency (Ω � �

λ
√

),
such that the resulting band structure is in the Ω(k) form. The band
structure for the unit cell with both inductance parameters set as
identical values (i.e., β � 0) is displayed as the solid red lines in
Figure 2. The band structure is also generated using the commercial
FE software COMSOL Multiphysics to validate the results derived
from the PWE method (see Supplementary Material Section 3.1
for more information on the FE model). Comparison of the results
(in Figure 2) generated from the PWEmethod (solid red lines) and
FE simulations (open black circles) indicates a close match, despite
the solution from the PWE method requiring multiple orders of
magnitude fewer degrees of freedom (13348 for FE vs. 51 for PWE).
As seen in Figure 2, there are FE results located near the Γ point in
reciprocal space that do not directly match the PWE predictions.
This discrepancy is observed because the additional FE results are
modes that are dominated by in-plane (refers to the x-y plane,
perpendicular to the thickness of the plate) displacement, which is
not accounted for in the governing equations for flexural (i.e., out-
of-plane, z direction) plate response (Eqs 2, 3) that are used in the
derivation of the PWE solution (Eq. 13). As presented in
Supplementary Material Section 3.2, these in-plane modes do
not hybridize with the specific out-of-plane modes that are of
interest in this study, and thus do not inhibit the achievement of
topologically-protected flexural waves (as will be shown in later
sections).

Due to the presence of C3 lattice symmetry, SIS, and TRS (Ma
et al., 2019), a Dirac point (which is the vertex of a Dirac cone in
kx- ky space) is formed in the band structure between the first and
second bands at the K point in reciprocal space (see black box in
Figure 2). The Dirac point exists at the Dirac frequency ΩDirac �
8.9. Per the QVHE, topological wave propagation can be obtained
at frequencies near this Dirac point. To determine whether
subwavelength topological wave propagation could be obtained
at this frequency, the band structure for a bare bimorph plate
(defined to be the bimorph plate consisting of the substrate layer,
piezoelectric layers, and electrodes, with all of the connected
circuits shorted) is calculated using the PWE method (dashed
gray curves in Figure 2). At the Dirac frequency, the wavelength
of propagating waves in the bare plate is 97 mm (marked by a
black star in Figure 2), which is 2.4 times larger than the lattice
constant (a � 40 mm). Thus, by connecting resonant circuitry in
the proposed metamaterial, the Dirac point is attainable in a
subwavelength frequency regime. This subwavelength
characteristic could be leveraged in applications that require
low frequency (corresponding to large wavelengths)
topological wave control in a small package.

To obtain topological edge states per the QVHE, different
inductance values are selected for each of the two circuits in
the unit cell (β ≠ 0), which breaks SIS. The band structure for

β � ± 0.04 is shown as the dotted lines in Figure 3A (the band
structure for β � 0 is also included as solid lines for reference). Due
to the broken SIS when β ≠ 0, a bandgap (i.e., topological
bandgap) is opened from the Dirac point, which is indicated
by the shaded region (Ωbandgap). To provide a measure of bandgap
size that is not skewed toward higher frequencies, a relative
bandgap (Ωbandgap−relative) is defined as:

Ωbandgap−relative � Ω2−min − Ω1−max

Ω2−min + Ω1−max

2

� 2
∣∣∣∣Ωbandgap

∣∣∣∣
Ω2−min +Ω1−max

(17)

Where
∣∣∣∣Ωbandgap

∣∣∣∣ is the magnitude of Ωbandgap (shown in
Figure 3A), and Ωp−min and Ωp−max represent the minima and
maxima of the pth band, respectively. A lattice with the
inductance perturbation parameter specified as β > 0 is
defined as a Type A lattice, whereas β < 0 for a Type B
lattice (see schematics in Figure 3B). While the dispersion
diagrams for Type A (β � 0.04) and Type B (β � -0.04)
lattices are identical (Figure 3A), a band inversion exists
between the two lattice types. The mode shapes for the first
two bands evaluated at the K point are shown in Figure 3C for
Type A and Type B lattices. These mode shapes illustrate the
band inversion, as the eigenvectors up(k) for the pth band
(where p � 1 is marked by a triangle and p � 2 is marked by
a square) are interchanged for Type A and Type B lattices. This
band inversion contributes to different topological characteristics
for each lattice type. These topological characteristics are quantified
by evaluating the topological invariant for the QVHE, the valley
Chern number Cv−p, which is defined as (Berry, 1984; Xiao et al.,
2007; Zhu et al., 2018):

Cv−p � 1
2π

∫∫
v

Bp(k)d2k

Bp(k) � −∇k × 〈up(k)|i∇k[M]|up(k)〉
(18)

where Cv−p is the topological charge (called the valley Chern
number) for the pth band, which is calculated by integration of
the Berry curvature (Bp(k)) near the K point in reciprocal space.
The theoretical values for CType A

v−1 , CType A
v−2 , CType B

v−1 , and CType B
v−2 are

-0.5, 0.5, 0.5, and -0.5, respectively (Yao et al., 2009; Zhu et al.,
2018). The opposite signs of the Cv−p values for Type A and Type
B lattices indicate that they are topologically distinct. A
method that is commonly utilized to obtain topological
edge states is the connection of two topologically distinct
lattices (e.g., Type A and Type B lattices) at an interface.
The result is a topological transition and Ninterface−states
(where Ninterface−states �

∣∣∣∣∣CType A
v−p − CType B

v−p
∣∣∣∣∣) protected edge

states with displacement localized at the interface, otherwise
referred to as topological interface states (Yao et al., 2009; Ma
et al., 2019). Therefore, a topological interface state can be
obtained by connecting the Type A and Type B lattices
outlined in this analysis (Ninterface−states � 1).

The topological interface state must be excited in a way that
does not activate the bulk modes of a given structure to obtain
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localized topological wave propagation. To achieve this goal, the
interface state is excited at a frequency within the common
topological bandgap that is found in the dispersion diagrams of
the Type A and Type B lattices (Ωbandgap, Figure 3A). Therefore, the
potential operating bandwidth of the topological interface state for a
fixed selection of system parameters spans the topological bandgap
(Ωbandgap). A nontrivial topological bandgap is required for an easily
activated interface state to exist, and the larger the bandgap is, the
greater the potential operating bandwidth of the topological
waveguide. In addition to a nontrivial operating bandwidth,
topological protection from defects and disorder is a required
characteristic of the topological interface state. According to the
elastic analog of the QVHE, the robustness to defects and disorder is
related to the localization of the Berry curvature Bp(k) at the K , K ’
points in reciprocal space (Qian et al., 2018; Du et al., 2020). The
magnitude of the valley Chern number

∣∣∣∣Cv−p
∣∣∣∣ provides a measure of

this localization and thus describes the level of topological
protection inherent to the interface state. The closer the
value of

∣∣∣∣Cv−p
∣∣∣∣ is to the theoretical value of 0.5, the greater

the amount of topological protection. The value of 0.5 is an
idealized value for

∣∣∣∣Cv−p
∣∣∣∣, as the lattice perturbation that breaks

SIS and opens the topological bandgap reduces its magnitude
(Qian et al., 2018; Nguyen et al., 2019). Previous investigations
into the elastic analog of the QVHE have shown that

∣∣∣∣Cv−p
∣∣∣∣ ≥

0.25 can provide a sufficient amount of topological protection
from disorder and defects in mechanical lattices (Zhu et al.,
2018; Nguyen et al., 2019).

Based on this discussion, the performance criteria defined for
this investigation that are obtainable from the unit cell dispersion
analysis are 1) Ωbandgap−relative > 0, such that a nontrivial potential
operating bandwidth exists, and 2)

∣∣∣∣Cv−p
∣∣∣∣ ≥ 0.3 for p � 1,2, such that

there is a minimum acceptable level of topological protection. The
values of Ωbandgap−relative and

∣∣∣∣Cv−p
∣∣∣∣ are 0.02 and 0.3, respectively, for

the parameters specified in this analysis (where Ωt−eff � 16.0 and β �
± 0.04). These results indicate that a topologically protected edge
state would emerge in a structure containing an interface between
the Type A (β � 0.04) and Type B (β � −0.04) lattices.

Topological Interface States
A dispersion analysis is conducted for a finite strip of unit cells
containing an interface between Type A and Type B lattices to
demonstrate the emergence of topologically protected interface
states. For this finite strip analysis, all parameters are defined
identically to the unit cell analysis discussed in the previous
section (β � ± 0.04, Ωt−eff � 16.0, ϑeff � 2, and all parameters from
Table 1). The finite strip is comprised of 18 unit cells, with nine
Type A unit cells connected to nine Type B unit cells at an
interface (see Figure 4 for a schematic). A periodic boundary
condition is applied in the k// direction, while the remaining
boundaries at the ends of the finite strip are fixed. An interface
composed of adjacent smaller inductance values (LI , marked in
red on the schematic) is designated as a Type I interface
(Figure 4A), while an interface composed of adjacent larger
inductance (LII , marked in blue on the schematic) values is
designated as a Type II interface (Figure 4B). The dispersion
diagrams for Type I (Figure 4A) and Type II (Figure 4B)
interfaces are generated using COMSOL Multiphysics. For
each band, a localization parameter Λ is defined to measure
the amount of flexural displacement that is localized at the
interface as:

Λ � ∭Vinterface|w|2dV
∭VS|w|2dV

(19)

where Vinterface is the total volume of the two adjacent unit cells at
the interface (enclosed in the dashed black boxes in Figure 4) and
VS is the volume of the entire finite strip. This localization
parameter is calculated for each band and is represented in
the dispersion diagrams as a colormap. For a mode shape with
flexural displacement that is highly localized to the interface
(i.e., an interface state), the band is a dark red shade. Lighter
shaded bands indicate bulk modes (Λ≪ 1). The rectangular gray
shaded region in both Figures 4 A,B separates an acoustic (low
frequency) set of bulk modes from an optical (higher frequency)
set of bulk modes and closely aligns with the topological bandgap

FIGURE 3 | (A) Dispersion curves (specifically, the first and second bands) for β � 0 (solid lines) and β � ± 0.04 (dotted lines) with Ωt−eff � 16.0. The bandgap
Ωbandgap opened from the Dirac point when β � ± 0.04 is indicated by the shaded region. (B) Schematic of unit cells for Type A (β > 0) and Type B (β < 0) lattices. The
smaller inductance (LI) is connected to the red electrode and the larger inductance (LII) is connected to the blue electrode. (C)Mode shapes evaluated at the K point for
the first band (blue triangle) and second band (blue square), revealing a band inversion between Type A (β � 0.04) and Type B (β � −0.04) unit cells.
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(Ωbandgap) calculated in the unit cell dispersion analysis. For the
Type I interface (Figure 4A), an interface state with highly
localized displacement emerges from the optical set of bulk
bands and crosses the topological bandgap to the acoustic set
of bulk bands. A mode shape corresponding to this interface state
at Ω � 8.5 is shown in Figure 4A, where symmetric localized
displacement exists at the interface. This mode shape contains the
maximum localization of flexural displacement at the interface
(as measured by Λm � 0.92) when compared to all other interface
state modes that reside within the topological bandgap. The
mathematical expression for Λm is given as:

Λm � max
Ω ∈ Ωbandgap

Λ(Ω) (20)

An additional localized state exists near Ω � 9.4. However, this
interface state is difficult to utilize without activating the bulk
modes since it is not in the topological bandgap. In contrast to the
Type I interface, for a Type II interface, the primary interface state
emerges from the acoustic bulk bands and crosses the topological
bandgap to approach the optical bulk bands (Figure 4B). A mode
shape corresponding to this interface state at Ω � 8.7 is shown in
Figure 4B, where the flexural displacement field is now
antisymmetric about the interface, and the resulting maximum
displacement localization is somewhat less (Λm � 0.72 compared
to Λm � 0.92 for the Type I interface state).

Two observations are gained from the finite strip analysis.
First, the proposed metamaterial enables the obtainment of
symmetric and antisymmetric topological interface states,
which aligns with previous investigations into the QVHE (Zhu
et al., 2018). Due to the tunability of the circuit parameters in the
proposed metamaterial, switching between these interface state
types (symmetric and antisymmetric) could easily be achieved in

practice. Second, the finite strip dispersion analysis supports the
performance requirement for a nontrivial topological bandgap
(Ωbandgap−relative > 0) derived from the unit cell dispersion analysis.
In the finite strip analysis, the potential frequency bandwidth for
both interface state types aligns with the topological bandgap, as
unwanted hybridization of the interface state with bulk states may
occur for frequencies outside of the targeted bandgap range (the
rectangular gray shaded regions in Figure 4).

Path Tunable Topological Wave
Propagation
The ability to achieve topological wave propagation from the
interface states is investigated with FE simulations of a plate
constructed from the proposed metamaterial. The proposed
metamaterial enables concurrent tunability of the topological
wave path, mode shape, and frequency, which advances upon
previously developed platforms that are generally narrowband in
nature and only focus on one tailorable characteristic. Each of the
proposed metamaterial’s tailorable properties are investigated
separately in this manuscript to simplify the analysis. The path
tunability of the topologically protected waveguide is examined in
this section, while comprehensive analyses on frequency and
mode shape tailoring are contained in section Parametric
Study– Frequency and Mode Shape Tunability.

The plate used for FE simulations consists of a 16 by 20 lattice
of unit cells, with low reflection conditions applied along all outer
boundaries to suppress reflections (see left column of Figure 5 for
plate schematics). The lattice contains an interface between Type
A and Type B unit cells, which is enclosed by the black lines in
Figures 5A–D. A resistance (R) of 10 Ω is applied to each
individual circuit to account for minor circuit losses that may
arise in practical implementation. The plate is excited
harmonically at a frequency that is within the topological

FIGURE 4 | (A) Band structure for a finite strip (|β| � 0.04,Ωt−eff � 16.0, ϑeff � 2, and all parameters from Table 1) with a Type I interface. The colormap indicates the
localization of the flexural displacement at the interface through the localization parameter Λ, with darker red shading indicating localized interface states (Λ ≈ 1). The
rectangular gray shaded region represents a frequency range where no bulk modes exist and corresponds to the topological bandgap. The diagram of the finite strip is
shown below the band structure, with the interface used for Λ calculations enclosed in a dashed black box. A symmetric mode shape that is calculated from the
interface state atΩ � 8.5 with a localized displacement (Λm � 0.92) is also shown. (B) Band structure and schematic for a finite strip with a Type II interface. At the bottom,
an antisymmetric mode shape that is calculated from the interface state at Ω � 8.7 (with Λm � 0.72).
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bandgap (Ωe � 8.7), thus corresponding to a subwavelength
regime (since the Dirac point at ΩDirac � 8.9 contains the
subwavelength characteristic). The excitation is applied as an
out-of-plane point excitation at the location indicated by the
arrow. FE simulations using COMSOL Multiphysics are
conducted to obtain the steady-state displacement field.
Figure 5A shows a displacement field with flexural response
that is guided along a Type I interface, which supports a
symmetric interface state. This specific case shows a straight
line of wave propagation that is localized at the interface and is
guided to a receiver indicated in Figure 5A as “R1”. In Figures
5B,C, the interface is changed using circuit parameters such that
flexural response under the same excitation is guided to receivers
“R2” or “R3”. In Figure 5B, guided transmission is demonstrated

along a Type I interface with a sharp (120°) corner, indicating that
the nontrivial topological property of the interface state provides
protection from disorder. In Figure 5C Type I interface and a
Type II interface are concatenated to achieve topological wave
propagation around a shallow (60°) corner. It can be seen that the
flexural displacement is symmetric along the Type I interface
segment and antisymmetric along the Type II segment, revealing
that the two edge state types are compatible and can be used in
series to achieve a variety of interface paths. The results in Figures
5A–C illustrate the path tunability of the proposed topological
metamaterial. As shown in the presented example, an input can
be guided to three different receivers by using circuit elements
(e.g., a synthetic inductor that can tune β) to vary the interface
properties and location. For each of these cases, the wave

FIGURE5 | Schematics (left column) and steady-state response (right column) for guided wave propagation along (A) straight, (B) sharp corner, (C) shallow corner,
and (D) “Z-shape with defect” interfaces. In the schematics, R1, R2, and R3 represent output signal receivers and black lines enclose the interface between Type A and
Type B lattices. Circuit parameters are defined as: β � ± 0.04, Ωt−eff � 16.0, and ξ � 0.79, resulting in ΩDirac � 8.9 and ϑeff � 2. A harmonic out-of-plane point
excitation (Ωe � 8.7) is applied where indicated by the black arrow. For steady-state response, the out-of-plane displacement amplitude is indicated by the
color intensity. The steady-state displacement fields illustrate the path tunability and topological protection of the proposed metamaterial.
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amplitude (as indicated by the color intensity) is nearly identical
from the input location to the designated output receiver, while
the energy present at the other output receivers is negligible (e.g.,
in Figure 5A, there is a trivial amount of flexural displacement
present near R2 and R3). This realization of nearly lossless
transmission to the desired location(s) is obtainable due to the
robustness of the topological interface state and the presence of
the topological bandgap, whichminimizes energy leakage into the
bulk. Finally, to demonstrate the robustness of the topological
interface state in the presence of both disorder and defects, a lattice is
constructed with two sharp corners and a defect (one unit cell with
both circuits shorted) in the interface path (Figure 5D). The steady-
state response of the plate reveals flexural displacement that is guided
along the Z-shaped interface path without undesirable localization or
amplitude reduction at defects or sharp corners. This result indicates
that guided transmission through more complicated wave paths
(e.g., having multiple corners) can be obtainable from the proposed
metamaterial, even in the presence of imperfections (e.g.,
malfunctioning/shorted circuits) that are commonly found in
practical applications.

PARAMETRIC STUDY– FREQUENCY AND
MODE SHAPE TUNABILITY

In this section, a parametric study is undertaken to extensively
explore the adaptive characteristics of the proposedmetamaterial and
develop a detailed understanding of system parameters that govern
performance. A framework is developed to assess the frequency and
interface mode shape tunability of the metamaterial and uncover

insights into the impact of electromechanical coupling on topological
elastic wave control.

Frequency Tunability of the Dirac Point
Since topological wave propagation occurs at a frequency near
the Dirac frequency (ΩDirac), the tunability of the Dirac point is
investigated. The eigenvalue problem derived from the PWE
method (Eq. 13) is utilized to calculate ΩDirac as a function of the
effective circuit tuning frequency Ωt−eff . Calculations are
conducted with β � 0 for three different effective
electromechanical coupling values that are representative of
cases where: PZT-5H is used without negative capacitance
circuitry (ξ � 0, ϑeff � 0.42), an advanced piezoceramic
(PNN-PZT developed by Gao et al., 2018) with higher
material coupling is utilized (ξ � 0, ϑeff � 0.56), and negative
capacitance is implemented with PZT-5H (ξ � 0.79, ϑeff � 2).
Figure 6A illustrates how ΩDirac can be continuously tuned
through a large frequency range (ΩDirac exists between 0 and
17.55) by tailoring the effective tuning frequency Ωt−eff of the
resonant circuits. Alterations to the lattice constant a, which can
be difficult or impractical to achieve in mechanical structures
after they have been fabricated, are not required to tune the
Dirac frequency, since the proposed metamaterial relies on
locally resonant circuits instead of a Bragg scattering
mechanism. Further observation of Figure 6A indicates that
the Dirac frequency ΩDirac is always less than the effective tuning
frequency Ωt−eff of the resonant circuits (regardless of ϑeff ),
which can facilitate the achievement of Dirac points in a
deep subwavelength regime (ΩDirac → 0 for Ωt−eff → 0) and
aligns with results that have been previously reported for

FIGURE 6 | (A) Dirac frequency ΩDirac as a function of circuit tuning frequency Ωt−eff for various ϑeff . The upper limiting frequency (Ωlimit ) of 17.55 is indicated by a
dotted black line. (B) Evolution of the first and second bands (all bands are shown as black lines) with increasingΩt−eff (indicated by arrow) forΩt−eff specified between 2
and 150 (β � 0 and ϑeff � 2). Ωlimit is indicated by dashed red lines. (C) Evolution of third band for same set of parameters. (D) Band structure comparison for proposed
metamaterial with high tuning frequency (Ωt−eff � 131, indicated by solid red lines) and bare bimorph plate (indicated by dashed black line).
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thin plate metamaterials with spring-mass resonators (Torrent
et al., 2013; Zhang et al., 2020). In contrast to previous studies
that have used mechanical resonators, the frequency of the
Dirac point (ΩDirac) in the proposed metamaterial can easily
be adjusted on-line by using tunable circuit parameters (Ωt−eff ).
Therefore, the tunability of the proposed metamaterial could be
exploited to achieve topological phenomena that are adaptive to
variable frequency requirements derived from operating
conditions or external stimuli.

According to Figure 6A, the achievable frequency range for
ΩDirac begins at ΩDirac ≈ 0 and asymptotically approaches ΩDirac �
17.55 as Ωt−eff is made very large. This frequency range is unaltered
by variation of the effective electromechanical coupling (ϑeff ), as
can be seen in Figure 6A and Supplementary Material Section 4,
where a parametric analysis is conducted with extreme ϑeff values.
Thus, 17.55 is designated as the limiting frequency (Ωlimit) for the
Dirac point (see dotted black line in Figure 6A). Insight into why
this limit exists is gained by studying the evolution of the band
structure with increasing Ωt−eff (Figures 6B–D). In Figure 6B, the
first and second dispersion curves are plotted for Ωt−eff values that
are between 2 and 150, with the arrow indicating how the bands
evolve with increasing Ωt−eff . As can be seen in this figure, the Dirac
point (the degeneracy between the first and second bands at K)
converges to Ωlimit � 17.55 (indicated with dashed red lines) for
large Ωt−eff values. Figure 6C contains the variation of the third
dispersion curve for the same Ωt−eff range. The band evolution
illustrated in Figure 6C illuminates how the frequency value of the
third band at the K point remains constant at Ωlimit � 17.55 for all
Ωt−eff , and thus cannot be adjusted by circuit parameters. This
phenomenon causes the third band to effectively act as a
“constraint” that limits the maximum frequency of the Dirac
point. A physical explanation for this observation is obtainable
by analysis of Figure 6D, where the band structure for the
proposed metamaterial with Ωt−eff � 131 (solid red lines) is
compared to the band structure for the bare bimorph plate
(dashed black lines). The two band structures are effectively
identical because the tuning frequency has been set to such a
large value that the effects of the resonant circuits are no longer
present in this frequency region. Thus, for large Ωt−eff , the
dispersion properties of the proposed metamaterial will
converge to those of the bare bimorph plate within the targeted
frequency range (the range containing the first and second bands),
resulting in an “upper bound” for the Dirac frequency. Although it
has yet to be reported in previous investigations, this phenomenon
is also observable for a thin plate with attached spring-mass
resonators. The discovery of the limiting frequency ΩDirac

presented in this work and the awareness of the underlying
phenomena that define it could be utilized as part of a design
framework in future studies that leverage local (electrical or
mechanical) resonators to achieve Dirac dispersions.

Achievable Operating Region for
Topological Interface States
A lattice perturbation must be applied to open a topological
bandgap from the Dirac point and achieve topological edge
states per the QVHE. While the previously presented analysis

(see section Working Principle– Obtainment of Tunable
Topological Wave Propagation) demonstrates this working
principle under a fixed set of parameters, further exploration is
required to fully evaluate the tunability of the proposed
metamaterial. Thus, a parametric study involving the inductance
perturbation parameter β and the circuit tuning frequency Ωt−eff is
conducted to define an achievable operating region where adaptive
topological wave propagation could exist. The classical eigenvalue
problem for the unit cell (Eq. 13) is solved for a wide range of β and
Ωt−eff values, and the achievable operating region is defined by
evaluating the previously specified performance criteria of (1) a
nontrivial potential operating bandwidth, as suggested by
Ωbandgap−relative > 0, and (2) a sufficient level of topological
protection, as indicated by the valley Chern number (

∣∣∣∣Cv−p
∣∣∣∣ ≥

0.3 for p � 1,2). For this parametric study, all geometric and
material parameters are selected as indicated in Table 1, and no
negative capacitance is connected (ξ � 0), such that ϑeff � 0.42. The
magnitude of the valley Chern number (

∣∣∣∣Cv−p
∣∣∣∣) and the relative

bandgap size (Ωbandgap−relative) are calculated and shown in Figures
7A,B as a function of the lattice perturbationmagnitude |β| and the
Dirac frequency ΩDirac (which is determined by Ωt−eff , as shown in
the preceding section). The magnitude of the valley Chern number
is listed more generally as |Cv| in Figure 7A, because calculations

indicate that: CType A
v−1 � CType B

v−2 ≈ −CType A
v−2 � −CType B

v−1 ∴
∣∣∣∣∣CType A

v−p
∣∣∣∣∣ ≈∣∣∣∣∣CType B

v−p
∣∣∣∣∣ � |Cv| for p � 1,2. In Figure 7A, it is shown that the

localization of the Berry curvature |Cv| decreases as the inductance
perturbation |β| is increased for a fixed ΩDirac. On the other hand,
results in Figure 7B illustrate how Ωbandgap−relative increases as |β| is
made larger for a particular ΩDirac. This tradeoff between
topological protection and potential operating bandwidth is a
common feature of elastic metamaterials mimicking the QVHE,
and previous works have investigated how to overcome the
limitations associated with balancing these performance criteria
(Nguyen et al., 2019; Du et al., 2020). Due to the adaptivity of the
proposed metamaterial, the frequency range where topological
wave propagation is achievable is not restricted to the potential
operating bandwidth under fixed parameters. The frequency range
where topological interface states that satisfy performance criteria
1) and 2) are attainable is indicated by the black dashed lines in
Figure 7B. This enclosed region is referred to as the “achievable
operating region,” which is dependent on the predefined
performance criteria. For this study, the achievable operating
region spans ΩDirac � 4.2 to ΩDirac � 11, and examples of
topological interface states derived from Dirac points at ΩDirac �
5.9, 8.9, and 10.4 are shown in Figure 7C (corresponding |β|, ΩDirac

are marked with orange circle, square, triangle, star, and pentagon
in Figure 7B). These topological interface states are obtained by
creating a Type I interface in a finite strip of 18 unit cells (see
schematic in Figure 7C) and selecting the most localized interface
mode (Λm, see Eq. 20) present in the topological bandgap of the
dispersion diagram. The results illuminate how the frequency
tunability of the proposed metamaterial could be utilized to
achieve topological interface states over a broadband set of
frequencies. In addition, the evaluation of the achievable
operating region reveals that while Dirac points can be obtained
with a ΩDirac between 0 and 17.55, topological interface states are
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attainable over a narrower frequency range (for the performance
criteria specified in this case: ΩDirac � 4.2 to ΩDirac � 11).

Aside from enabling an adjustable frequency range for
topological interface states, the proposed metamaterial also
facilitates the tailoring of interface mode shape and
localization. The ability to adjust interface mode localization
is investigated by varying the inductance perturbation
parameter |β| for a fixed ΩDirac within the achievable
operating region. For each |β|, the interface mode shapes that
contain maximum displacement localization (Λm) within the
topological bandgap are selected. For ΩDirac � 8.9, |β| is set to
0.005, 0.010, and 0.015, and the corresponding interface modes
are shown in Figure 7C (marked by orange square, triangle, and
star, respectively). Analysis of the mode shapes indicates that
the displacement localization at the interface increases
substantially as |β| is made larger, from Λm � 0.34 for |β| �
0.005 (orange square in Figure 7C) to Λm � 0.69 for |β| � 0.015
(orange star in Figure 7C). This increased mode localization is
due to a progressively enhanced band inversion between the
Type A and Type B unit cells that make up the interface. In
addition to tailoring the displacement localization of the
interface state, the mode shape could be switched from
symmetric to antisymmetric by changing to the appropriate
interface type (Type I or Type II, see Figure 4). This capability to
manipulate the interface mode could be leveraged in
applications requiring adjustable displacement fields.

Influence of Electromechanical Coupling on
Topological Wave Tunability
The effect of electromechanical coupling on the vibration
attenuation performance of piezoelectric metamaterials is

well documented (Hagood and von Flotow, 1991; Tang and
Wang, 2001; Sugino et al., 2017). In this investigation, the
influence of the effective electromechanical coupling factor ϑeff
on the tunability of topological edge states in piezoelectric
metamaterials is investigated for the first time. In the
preceding section, a framework for the evaluation of
topological edge state tunability was synthesized and applied
to a baseline example case (piezoelectric layers made of PZT-
5H, ξ � 0, ϑeff � 0.42). In this section, two additional cases
with identical geometric parameters are analyzed to assess
the effect of enhanced electromechanical coupling: PNN-
PZT piezoelectric layers with no negative capacitance
circuitry (ξ � 0, ϑeff � 0.56) and PZT-5H piezoelectric layers
with a parallel-connected negative capacitor (ξ � 0.79, ϑeff � 2).
In Figures 8A,B, the relative bandgap Ωbandgap−relative is shown
as a function of the inductance perturbation parameter (|β|)
and the Dirac frequency (ΩDirac) for cases where ϑeff � 0.56 and
ϑeff � 2, respectively. Dashed black lines enclose the achievable
operating regions where the performance criteria
(Ωbandgap−relative > 0 and |Cv−p

∣∣∣∣ ≥ 0.3) are satisfied. By
comparison of Figure 7B with Figures 8A,B, it is apparent
that the achievable operating region is augmented by
enhancing the electromechanical coupling. This expansion
occurs because the band structure is “shaped” in a manner
that is beneficial from the perspective of the QVHE when the
electromechanical coupling is increased (see Supplementary
Material Section 5 for further information).

The expansion of the achievable operating region signifies
an increased level of tunability. In terms of frequency range,
the achievable operating region is extended to lower
frequencies (while maintaining an upper bound of
approximately ΩDirac � 11), as the lower boundary extends

FIGURE 7 | (A) Valley Chern magnitude |Cv | calculated as a function of Dirac frequencyΩDirac and inductance perturbationmagnitude |β| with ϑeff � 0.42. Increasing
|Cv | indicated by increasing brightness. (B) Relative bandgapΩbandgap−relative as a function of Dirac frequencyΩDirac and inductance perturbation magnitude |β| with ϑeff �
0.42. Increasing Ωbandgap−relative indicated by increasing brightness. The achievable operating region is enclosed by the dashed black lines. (C) Schematic for finite strip
with Type I interface that is used to generate interface modes. Interface mode shapes for finite strip with unit cell parameters indicated by orange circle, square,
triangle, star, and pentagon markings in (B).
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to ΩDirac � 3.8 for ϑeff � 0.56 and ΩDirac � 3.2 for ϑeff � 2,
resulting in 6% and 15% increases in operating region
frequency range, respectively (when compared to ΩDirac �
4.2 to 11 for ϑeff � 0.42). In addition, for any selected ΩDirac,
a greater |β| can be attained (i.e., the right edge of the
achievable operating region is extended to larger |β| values).
As demonstrated in the previous section, a larger |β|
corresponds to a wider potential operating bandwidth under
fixed parameters (Ωbandgap−relative) and an amplified band
inversion at the interface. Due to this increased band
inversion, the topological interface mode shapes for the ϑeff �
0.56 and ϑeff � 2 cases (shown in Figures 8C,D) contain greater
localization at the interface than the interface modes for ϑeff � 0.42
(Figure 7C). Regardless of the specified ΩDirac (examples shown in
Figures 7, 8 are ΩDirac � 5.9, 8.9, and 10.4), the greatest achievable
mode localization, which is quantified by Λm, increases with the
effective coupling (e.g., forΩDirac � 8.9, Λm � 0.69, 0.74, 0.92 when ϑeff
� 0.42, 0.56, 2, respectively, see orange star in the Figures 7C, 8C,D).

These findings indicate that electromechanical coupling
plays a crucial role in determining the extent of the tunability of
the topological interface state. Thus, care must be taken to maximize
the effective electromechanical coupling through material selection
and geometric design. In addition, negative capacitance circuitry
could be utilized to artificially enhance the coupling and achieve
topological interface states with a broader frequency range and
increased displacement localization.

Finite Element Evaluation of Frequency and
Mode Shape Tunable Topological Waves
FE simulations of plates constructed from the proposed
metamaterial are conducted to verify that tunable topological
wave propagation can be realized by activation of the topological
interface states contained within the achievable operating region.
Plates with straight line and Z-shaped Type I interfaces are
harmonically excited at the locations indicated by the arrows
in Figure 9A. Geometric, material, and negative capacitance (ξ �
0.79) parameters are selected to match the analysis presented in
section Working Principle–Obtainment of Tunable Topological
Wave Propagation, where wave propagation for |β| � 0.04, ΩDirac �
8.9 (orange star in Figures 8B,D), and Ωe � 8.7 was displayed (see
Figure 5). To complement the results shown for ΩDirac � 8.9,
topological wave propagation is investigated for high frequency
(ΩDirac � 10.4) and low frequency (ΩDirac � 5.9) Dirac points that
are near the upper and lower boundaries of the achievable
operating region defined in Figure 8B. Figure 9B contains the
steady-state displacement fields for a plate with circuit parameters
specified as |β| � 0.050 and ΩDirac � 10.4 (orange circle in Figures
8B,D) that is harmonically excited at Ωe � 10.2. The flexural
displacement is successfully guided along the interfaces.
However, displacement localization at the interface is
noticeably reduced from what is observed in Figure 5 due
to a less localized interface mode (Λm � 0.75 for orange circle
and Λm � 0.92 for orange star in Figure 8D). The steady-state

FIGURE 8 | (A)Relative bandgapΩbandgap−relative as a function of Dirac frequencyΩDirac and inductance perturbation magnitude |β| for PNN-PZT piezoelectric layers
(ϑeff � 0.56). IncreasingΩbandgap−relative indicated by increasing brightness. The achievable operating region is enclosed by the dashed black lines. (C) Schematic for finite
strip with Type I interface that is used to generate interface modes. Interface mode shapes for finite strip with unit cell parameters indicated by orange circle, star, and
pentagon markings in (A). (B,D) report the same results as (A, C), respectively, for PZT-5H with negative capacitance circuitry (ϑeff � 2). Findings illustrate how the
size of the achievable operating region, and thus tunability of the topological interface state, increases with larger ϑeff .
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displacements for |β| � 0.032, ΩDirac � 5.9 (orange hexagon in
Figures 8B,D), and Ωe � 5.9 are shown in Figure 9C. The flexural
displacement is highly localized to the interface for both the straight
line and Z-shaped cases. These high- and low-frequency results,
paired with the results for ΩDirac � 8.9, illustrate how guided
topological wave propagation in the proposed metamaterial can
be tuned across a broad frequency range. The adjustment of the
displacement field (i.e., localization) at the interface is also displayed.

Notably, for the low-frequency case (ΩDirac � 5.9), the
inductance perturbation (|β| � 0.032) is outside of the
achievable operating region (orange hexagon in Figures 8B,D).
For the maximum |β| contained within the achievable operating
region (|β| � 0.014, orange pentagon in Figures 8B,D), the flexural
response does not successfully maintain localization along the
sharp corners in the lattice with the Z-shaped interface (see
Supplementary Material Section 6). Thus, despite the resulting
reduction in valley Chernmagnitude (|Cv| � 0.015 for |β| �0.032), a
larger |β| (and corresponding augmented band inversion and
topological bandgap) is required to successfully guide a wave

along multiple sharp corners within this deep subwavelength
frequency regime. This result, paired with a similar observation
reported in (Nguyen et al., 2019), indicates that under certain
conditions (e.g., multiple sharp corners at very low frequencies),
the performance criteria that define the achievable operating region
may need to be modified (e.g., reducing the minimum |Cv|
requirement). Due to the comprehensive tunability of the
proposed metamaterial, circuit adjustments could be made on-
line to achieve the desired performance (as is shown in
Figure 9C) when scenarios such as these arise (see
Supplementary Material Section 6 for further discussion).

LATTICE RECONFIGURATION

The architecture of the proposed metamaterial can also be
exploited to enhance adaptivity through lattice reconfiguration,
which has been used in previous investigations to achieve
tailorable bandgaps and waveguides in topologically trivial
structures (Thota et al., 2017; Thota and Wang, 2018). In this
section, lattice reconfiguration is explored as a mechanism to
enhance the frequency range of topological waves and obtain
additional topological edge states.

Formation of Additional Dirac Point Through
Lattice Reconfiguration
Figure 10A contains schematics for three different lattice
configurations that are attainable with the proposed metamaterial.
Figure 10B contains the corresponding dispersion diagrams for each
lattice configuration with circuit conditions specified such that

FIGURE 9 | (A) Schematics for thin plate metastructures with straight
and Z-shaped Type I lattice interfaces (enclosed in black lines). A
harmonic out-of-plane point excitation is applied where indicated by the
arrow. Negative capacitance circuity is connected such that ϑeff � 2 in all
cases. (B) Steady-state displacement fields for

∣∣∣∣β∣∣∣∣ � 0.050, ΩDirac � 10.4, and
Ωe � 10.2. (C) Steady-state displacement fields for

∣∣∣∣β| � 0.032, ΩDirac � 5.9,
and Ωe � 5.9. For steady-state response, the out-of-plane displacement
amplitude is indicated by the color intensity. The results illuminate how tunable
topological interface states can be harnessed to achieve topological wave
propagation with adjustable levels of displacement localization over a large
frequency range.

FIGURE 10 | (A) Schematics for three lattice configurations attainable
through circuit tailoring in the proposed metamaterial. Circuits are connected
to electrodes that are represented by blue and red circles. For Configuration 3,
electrodes pertaining to shorted circuits are omitted for clarity. Unit cell
(enclosed in black dashed lines) circuit parameter details and lattice
symmetries are listed below each schematic. (B) Dispersion diagrams
corresponding to lattice Configurations 1-3 calculated using the PWEmethod
withΩt−eff � 28 and ϑeff � 2. Dirac 1, topological bandgaps, and Dirac 2 are all
highlighted for Configuration 1, Configuration 2, and Configuration 3,
respectively.
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Ωt−eff � 28 and ϑeff � 2. Configuration 1 is a honeycomb lattice that
contains identical resonant circuits (β � 0) and the symmetries (C3,
SIS, TRS) required to achieve a Dirac point between the first and
second bands (labeled as “Dirac 1” in Figure 10B). Configuration 3
is a triangular lattice that is realized by shorting one of the two
circuits in the unit cell (β � 1, see Figure 10A). This triangular lattice
also contains C3, SIS, and TRS symmetries, resulting in the
formation of a Dirac point between the second and third bands
at ΩDirac � 17.55 (labeled as “Dirac 2” in Figure 10B). Previous works
concerning triangular lattices in photonic crystals have also
uncovered a Dirac point between the second and third bands
(Plihal and Maradudin, 1991; Zhang, 2008; Kim et al., 2013),
supporting this result. As shown in previous sections, Dirac 1 can
be tuned from ΩDirac � 0 to ΩDirac � 17.55 due to the resonant
characteristic of the connected circuitry. In addition, topological
interface states derived from Dirac 1 are attainable for a
narrower frequency range that covers ΩDirac � 3.2 to ΩDirac �
11. Unlike Dirac 1, the formation of Dirac 2 is the result of a
Bragg scattering mechanism, and it is not frequency tunable
with resonant circuit parameters. However, it exists at a high
frequency (ΩDirac � 17.55) that is outside of the operating range
for topological interface states derived from Dirac 1, and thus
could be exploited to further broaden the frequency range of
interface states in the proposed metamaterial. Furthermore, this
additional Dirac point could be employed to achieve other
capabilities derived from the rich physics associated with
Dirac cones, such as boundary states.

High-Frequency Interface State From
Dirac 2
The same process described in previous sections for Dirac 1 is
followed to construct interface states from Dirac 2. Figure 10A
includes the schematic for a lattice (defined as Configuration 2:

Perturbed Lattice) with the inductance perturbation parameter β

specified to be between 0 and 1 (|β| � 0.7), which breaks SIS.
Figure 10B contains the dispersion diagram for Configuration 2,
where it is shown that bandgaps exist in place of Dirac 1 and
Dirac 2. For Dirac 2, the bandgap extends from a fixed upper
boundary of Ω � 17.55 to lower frequencies (Ωbandgap spans Ω �
15.13 to Ω � 17.55 for |β| � 0.7). To investigate whether an
interface state can be obtained within this bandgap, Type A (β �
0.7) and Type B (β � -0.7) lattices are connected at a Type I
interface, and a dispersion analysis is conducted for a finite strip
of 18 unit cells (see schematic in Figure 11A). For this analysis,
periodic boundary conditions are applied in the k// direction, and
the ends are specified as free. The dispersion diagram for the finite
strip is shown in Figure 11A, where it is apparent that a localized
interface state exists within the bandgap (the interface state is the
red band present in the gray shaded bandgap). A symmetric and
highly localized (Λm � 0.96) interface mode shape evaluated at Ω �
16.3 is shown in Figure 11B. In addition to the interface state,
multiple localized edge states exist at the left and right boundaries
of the finite strip, as indicated by the white circles in the band
diagram (for Λ ≈ 0, dispersion curves are white, Figure 11A).
Mode shapes for two degenerate “boundary states” with flexural
displacement localized at the left and right boundaries are shown
for Ω � 17.2 in Figure 11B. Similar results for a Type II interface
and the corresponding antisymmetric interface state are reported
within Supplementary Material Section 7.

To demonstrate guided wave propagation, plates are
constructed with straight and Z-shaped Type I interfaces and
excited harmonically (Ωe � 16.8) with a point source at the
locations indicated by “Src” in Figure 11C (see schematics in
top row of Figure 11C). The resulting steady-state displacement
fields show that flexural displacement can be localized along the
interfaces for these high-frequency interface states (see steady-
state displacement fields in bottom row of Figure 11C).

FIGURE 11 | (A) Band structure for a finite strip (|β| � 0.70,Ωt−eff � 28.0, ϑeff � 2) with a Type I interface. Dark red shading indicates localized interface states (Λ ≈ 1)
and white shading indicates boundary states (Λ ≈ 0). The rectangular gray shaded region represents a frequency range where no bulk modes exist. (B) A symmetric
mode shape that is calculated from the interface state at Ω � 16.3 with a localized displacement (Λm � 0.96) is shown. Two boundary mode shapes that are calculated
from the degenerate boundary states at Ω � 17.2 (Λ � 0) are also shown. (C) (top row) Schematics for thin plate metastructures with straight and Z-shaped Type I
lattice interfaces (enclosed in black lines). A harmonic (Ωe � 16.8) out-of-plane point excitation is applied where indicated by “Src”. (bottom row) Steady-state
displacement fields illustrating guided wave propagation for the high-frequency interface states.
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However, coupling between the interface states and boundary
states does occur. Therefore, to selectively activate an interface
state, care must be taken to specify an excitation (eg., location
at the center of the plate) that will not localize displacement at
the boundaries.

Boundary States From Dirac 2
Results from the finite strip dispersion analysis for a Type I
interface (Figure 11) suggest that boundary states are readily
achievable from Dirac 2. To further investigate the formation
of boundary states from Dirac 2, a dispersion analysis is
conducted for a finite strip with 18 Type B unit cells (no
interface is present, see schematic in Figure 12A). The left
boundary is specified as fixed, the right boundary is specified
as free, and periodic boundary conditions are applied in the
k// direction. The left boundary is fixed because a fixed
condition enforces dynamic behavior at the boundary that
closely approximates the interface behavior for the
antisymmetric interface state. As shown in
Supplementary Material Section 7, the antisymmetric
interface state is obtainable by creating a Type II
interface. Since the Type B unit cell at the left boundary
comprises the right half of a Type II interface, the fixed
condition effectively approximates the left half, and a
boundary state that resembles half of the antisymmetric
interface state is expected to occur (Liu and Semperlotti,
2018). Similarly, a boundary state closely approximating half
of the symmetric interface state is expected to appear at the
right boundary, which is designated as free. For each band in
the calculated dispersion diagram, a boundary localization
parameter ψ is defined to measure the amount of flexural
displacement that is localized at the left and right boundaries
as:

ψ � ∭Vboundaries|w|2dV
∭VS|w|2dV

(21)

where Vboundaries is the total volume of the two unit cells at the
boundaries (enclosed in the dashed black boxes in Figure 12A)
and VS is the volume of the entire finite strip. This boundary
localization parameter is evaluated for each band and is
represented in the dispersion diagram by color intensity.
Boundary states are indicated in the dispersion diagram
(Figure 12A) as dark red bands (ψ ≈ 1). One boundary state
emerges from a lower frequency set of bulk modes and crosses
into the bandgap (gray shaded region) towards a higher frequency
set of bulk modes. The mode shape for this band with the
maximum level of displacement localization at the boundary is
shown in Figure 12A (ψm � 0.92 for Ω � 16.5), indicating that this
band corresponds to a left boundary state that approximates half
of the antisymmetric interface state derived from Dirac 2.
Another boundary state emerges from the higher frequency set
of bulk modes and crosses towards the lower frequency set of bulk
modes. This boundary state is localized to the right boundary, as
illustrated by the mode shape calculated for Ω � 15.3 (ψm � 0.98),
and approximates half of the symmetric interface state.

A plate is constructed with boundary conditions (free and
fixed) specified such that the outlined boundary states are
supported at all four boundaries. The plate is excited
harmonically (Ωe� 16.5) with a point source located as
indicated by “Src” in Figure 12B. Results show that both
boundary states are activated and compatible with each other,
resulting in flexural wave propagation around multiple sharp and
shallow corners that is localized to all four boundaries of the plate.
This capability to achieve adaptive wave propagation along
structural boundaries could be beneficial in applications

FIGURE 12 | (A) Band structure for a finite strip (|β| � 0.70, Ωt−eff � 28.0, ϑeff � 2) comprised of Type B unit cells (no interface, see schematic). Dark red shading
indicates localized boundary states (ψ ≈ 1). The rectangular gray shaded region indicates a frequency range where no bulk modes exist. Left and right boundary mode
shapes are shown. (B) (top) Schematic for thin plate metastructure with fixed and free boundaries selected to attain boundary states. A harmonic (Ωe � 16.5) out-of-
plane point excitation is applied where indicated by “Src”. (bottom) Steady-state displacement field illustrating flexural displacement confinement along plate
boundaries.
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requiring confinement of energy along the edges of structures,
such as vibration isolators.

CONCLUSION

This research proposes and develops a topological metamaterial that
harnesses resonant piezoelectric circuitry to enable comprehensively
tunable elastic wave control. Overall, this investigation advances the
state of the art by enabling and exploring the adaptation of
topological wave path, frequency, and edge mode shape in a
single mechanical platform for the first time. The proposed
metamaterial operates over a broad frequency bandwidth and can
be integrated in a compact fashion for applications that require
control of large-wavelength (i.e., low-frequency) waves due to its
subwavelength characteristic, which constitutes a breakthrough in
the field of tunable topological elastic waves.

In this manuscript, the tunability of wave path, frequency
range, and edge states is explored through a systematic analysis of
the dispersion properties and dynamic response characteristics of
the proposed metamaterial. A subwavelength and frequency
tunable Dirac point (Dirac 1) is uncovered, and it is revealed
that symmetric and antisymmetric topological interface states can
be obtained from it. FE simulations illuminate how these interface
states can be activated to achieve guided elastic wave transmission
that is robust to disorder and defects and can be manipulated on-
demand into a myriad of desired directions. A deeper
understanding of the adaptive characteristics of the
metamaterial is formed through parametric studies. A finite
tunable frequency range and its underlying physical basis are
discovered for Dirac 1. An achievable operating region is defined
for topological interface states derived from Dirac 1, where it is
learned that interface states that meet specified performance
metrics are achievable over a wide frequency bandwidth that
comprises a subset of the Dirac 1 frequencies. These findings offer
new insights into frequency tunability that may be leveraged in
future studies concerning Dirac dispersions and the QVHE in
locally resonant elastic metamaterials. Further exploration of the
achievable operating region illuminates how circuit parameters
can be utilized to tune the displacement field of a waveguide by
tailoring the localization and shape of the interface state. The
operating region is used as a framework to study the role of
electromechanical coupling in topological wave propagation for
the first time. Results indicate that increased electromechanical
coupling enhances the frequency range and achievable interface
mode localization of the interface states. Lattice reconfiguration is
also investigated as a method to tailor the topological properties of
the proposedmetamaterial. Analysis of a triangular lattice obtained
through shorting circuits reveals that a second Dirac point (Dirac
2) can be achieved in a high-frequency range that extends beyond
the operating region for Dirac 1 interface states. Boundary states
and additional interface states are shown to be obtainable from
Dirac 2, and numerical simulations illustrate how these states can
be exploited to achieve exceptional guided wave phenomena.

The outcomes from this investigation provide fundamental
insights into the influence of locally resonant elements,
electromechanical coupling, and lattice reconfiguration in
adaptive topological metamaterials exhibiting the QVHE,
presenting a basis for further exploration. The proposed
topological metamaterial may be employed to achieve
subwavelength elastic wave control that is robust to
practical considerations (eg., sharp corners or lattice
imperfections) and adaptive in real-time to shifting
operating requirements and external conditions. These
beneficial features could be harnessed to improve
performance and expand functionalities in a range of
applications requiring adaptive and robust elastic wave
control, such as vibration isolators, wave filters/
multiplexers, and energy harvesters.
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