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The development of scaffolds with bone-mimicking compositions, hierarchical structure,
and bone-matchable mechanical properties may offer a novel route for the achievement of
effective bone regeneration. Although bioactive glasses have been widely utilized for bone
regeneration at the clinical level, their brittleness and uncontrolled pore structure limit
further applications. Herein, this study aims to develop a kind of bioactive scaffold with a
macroporous/microporous/mesoporous structure via impregnating a sponge template
with mesoporous bioactive glass (MBG) sol, followed by sponge template removal. In
order to improve the mechanical properties and stability of the MBG scaffolds,
desaminotyrosyl ethyl tyrosine polycarbonates (PDTEC), a biodegradable polymer
which does not induce acid side-effects caused by conventional polylactide, was
selected to decorate the resulting hierarchical scaffolds through a surface coating
approach. The PDTEC functionalization endowed the scaffolds with improved
mechanical strength matching the bearable range of trabecular bone (2–12MPa).
Meanwhile, the relative neutral pH value was maintained during their degradation
process. In vitro studies demonstrated that the PDTEC accelerated the
biomineralization of the scaffolds, and promoted the attachment and proliferation,
holding high promise for bone regeneration.

Keywords: bioactive glass, polymer coating, sol–gel method, bone mimicking hierarchical scaffolds,
biomineralization, bone regeneration

INTRODUCTION

Designing novel biomaterials represents an essential strategy in bone tissue engineering. Bone
fractures, bone tumors, osteoporosis, and other orthopedic diseases caused by natural disasters,
industrial pollution, and the aging population pose a serious threat to human health (Bosetti and
Cannas, 2005; Zhou et al., 2017). The treatment of orthopedic diseases includes the introduction of
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autologous bone, allogeneic bone, and the employment of
synthetic implants with specific structures and properties
(Yang et al., 2015). These offer the insight that the
development of synthetic scaffolds with compositional and
structural features mimicking natural bone tissues may enable
the production of artificial bone implants with both high bio-
safety and bioactivity.

It is known that bone is a kind of multi-level structured
tissue, which owns cancellous and cortical bone parts at the
macrostructure level, trabeculae parts at the microstructure
level, lamellae units at the sub-microstructure level, and
fibrillar collagen and embedded minerals at the sub-
nanostructure level (Baino et al., 2016; Tang et al., 2016;
Schumacher et al., 2017). The hierarchical architecture of
natural bone provides the proper microenvironment for the
maintenance of their metabolically activity, such as promoting
nutrient exchange and waste removal processes, offering
sufficient space for cell movements, proliferation,
differentiation, promoting bone formation, and improving
the functional activities of the tissue (García et al., 2011;
Baino et al., 2016; Xie et al., 2019). Generally, the nanosized
structures (2–50 nm) afford high surface area and specific
surfaces/interfaces for the administration of bioactive growth
factors to improve bone regeneration by upregulating the FAK/
MAPK and ILK/β-catenin signaling pathways as shown in our
previous studies (Tang et al., 2014; Vallet-Reg, 2016; Duan
et al., 2017). Microsized porous structures (∼10 μm) are
conducive to protein adsorption, cell adhesion
biomineralization, the osteogenic differentiation of stem
cells, and the integration of materials and bones (Lin et al.,
2015; Tang et al., 2016). The macropores (100–500 μm) allow
for the promotion of vascularization, and the ingrowth of new
bone and tissue (Baino et al., 2016; Zhou et al., 2016; Du et al.,
2018).

Among inorganic materials, the special composition and
structure of bioactive glasses make them widely applicable for
bone regeneration (Aamer et al., 2009; Wu et al., 2010). A
mesoporous bioactive glass scaffold (MBG, CaO–SiO2–P2O5

system) is a kind of mesoporous biodegradable bone repair
scaffold with a rich pore structure, due to its huge specific
surface area, an ordered pore structure, narrow pore size
distribution, and size adjustable, etc. MBG can release
certain amounts of ions through the degradation process,
which activate the adhesion, proliferation, and
differentiation of cells with specific functions such as
increasing the ligand binding affinity of a certain protein,
and the effect of promoting apatite mineralization (Wu
et al., 2011; Tang et al., 2016; Zeng et al., 2017). In order to
improve the osteogenic activity of the material, different types of cells
and growth factors have been loaded onto the biodegradable scaffold
and transplanted to the bone defect site to stimulate bone regeneration
and vascular regeneration (Wu et al., 2013; Cai et al., 2018). With the
above advantages, mesoporous bioactive glass is widely used as a bone
repair material. Therefore, researchers used different manufacturing
methods to obtainmesoporous bioactive glass scaffolds. Xie et al. firstly
prepared bioactive glass rods of different sizes, and then used the sol-gel

method to obtain porous MBG scaffolds (Xie et al., 2019). Duan et al.
successfully prepared 3D layered macro/nanoporous scaffolds through
the sol-gel and multi-template methods (Duan et al., 2017). However,
these scaffolds when prepared based on bioactive glass have low
mechanical strength and are therefore difficult to use consistently in
the bone regeneration field. In order to improve the mechanical
strength of the scaffolds, there are strategies that combine tricalcium
silicate and other silicate particles with bioactive glass through 3D
printing and solidification (Pei et al., 2016), as well as through polymer
coating methods (e.g., poly (glycerol sebacate) coating) to improve the
mechanical strength of the base scaffold (Lin et al., 2015). These
scaffoldsmay have some uncontrollable external degradation factors in
the complex environment of the human body. Herein, we chose a
degradable coating with the clinical application to enhance the porous
bioactive glass scaffold.

Poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) is a
biodegradable tyrosine-derived polymer with good
biocompatibility used in biomedical devices at the clinical level.
It has been reported that conventional polylactide-based materials
would not result in acid-induced inflammatory side-effects and
thereby benefit tissue regeneration. Moreover, PDTEC can release
small molecules of tyrosine to aid in metabolism, growth, and the
development of cells; meanwhile, the surface exposed carboxylate
groups and carboxylic groups could attract calcium ions, exhibiting
bone apposition when in contact with bone tissue in vivo (Chauvel-
Lebret, 1999; Tangpasuthadol et al., 2000a; Tangpasuthadol et al.,
2000b; Kim et al., 2010; Fukushima, 2016).

Herein, we propose to develop a bioactive scaffold with a
macroporous/microporous/mesoporous structure by
impregnating the sponge template with mesoporous
bioactive glass (MBG) sol and then removing the organic
template to get a hierarchically-structured MBG scaffold
(Scheme 1). Meanwhile, to improve the mechanical
properties of the scaffold, we chose to add a biodegradable
layer of Poly(desaminotyrosyl-tyrosine carbonate) (PDTEC)
onto the scaffold (Kaushik et al., 2012; Goyal et al., 2017). The
PDTEC-decorated scaffolds showed not only a mechanical
matchable quality with trabecular bone (2–12 MPa), but also
benefit the biomineralization process for promoting cell
attachment and proliferation, promising a high potential in
bone regeneration application.

MATERIALS AND METHODS

Chemical Reagents
Poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) was kindly
donated by Joachim Kohn (Rutgers, The State University of New
Jersey, the New Jersey Center for Biomaterials). Anhydrous
ethanol, tetraethyl orthosilicate, triethyl phosphate, dimethyl
sulfoxide, hydrochloric acid, dichloromethane, and calcium
dinitrate tetrahydrate were acquired from the Shanghai
Macklin Biochemical Technology Co., Ltd (Shanghai, China).
Pluronic F-127, methylcellulose, and 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) were acquired from
Sigma-Aldrich (CA, United States).
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Fabrication of Triple Structure Mesoporous
Bioactive Glass (TMBG) and TMBG-PDTEC
Composite Scaffolds
TMBG and TMBG-PDTEC scaffolds were fabricated by a
modified sol-gel and a polyurethane (PU) sponge template
process was prepared according to a previously reported work
with a minor modification (Xie et al., 2019). As in the typical
fabrication procedure of TMBG, 4.0 g of F127 and 1 ml of HCl
(1 M) were dissolved in 50 g of anhydrous ethanol and stirred at
40°C for 6 h, then 5.2 g of tetraethyl orthosilicate, 0.76 g of
Ca(NO3)2 ·4H2O, 0.23 g of triethyl phosphate, and 1.0 ml of
HCl (1 M) were dissolved in solution at 40°C for 1 day,
followed by rotary evaporation for 30 min at 60°C to obtain an
MBG sol with a viscosity of 5 × 104 Pa s. Then, the calculated
MBG particles and methylcellulose (MC) were uniformly mixed
with the sol, after the mixture was impregnated into the
polyurethane (PU) sponge with the desired shape. The
samples were placed in a dry oven at 60°C for 72 h and
calcinated at 600°C for 6 h to remove all templates. After that
we dissolved the PDTEC in dichloromethane to get the PDTEC
solution. We chose a 16 wt% PDTEC solution and selected an
8 wt% PDTEC solution as a comparison, the prepared TMBG
scaffolds were respectively soaked in the above-mentioned

PDTEC solution for 1 min, then the composite scaffolds were
dried in a vacuum for 2 days at 60°C (Zhu et al., 2018). The
TMBG-PDTEC composite containing 8 wt% and 16 wt% PDTEC
polymer were denoted as TMBG-PDTEC8 and TMBG-
PDTEC16, respectively.

Characterization of the TMBG and
TMBG-PDTEC Composite Scaffolds
The hierarchical porous morphology of TMBG and TMBG-
PDTEC composite scaffolds were analyzed by scanning
electron microscopy (SEM, S-3400, Hitachi, Japan) and
transmission electron microscopy (HRTEM, JEM-2110F, JEOL,
Ltd., Japan). The crystalline structures of TMBG and TMBG-
PDTEC were characterized by an x-ray diffractometer (XRD,
MAX2550VB, Japan). The scanning angle was from 10° to 80°

with a scanning speed of 10°/min. The Fourier Transform
Infrared spectra of TMBG and TMBG-PDTEC were
performed on a Thermo FTIR instrument (FTIR; Nicolet
5700, United States). The scanned wavenumber range was
from 4,000 to 500 cm−1. A scaffold with a complete shape of
Φ10 × 15 mm was chosen and placed in a vacuum drying oven at
60°C for 48 h to completely dry, and the porosity of the scaffold
was tested according to Archimedes’ principle:

SCHEME1 | Schematic illustration for the formation of a PDTEC-decoratedMBG scaffold with a bone-mimickingmacro/micro/meso-porous hierarchical structure
and bone-matchable mechanical properties.

Frontiers in Materials | www.frontiersin.org February 2021 | Volume 7 | Article 6226693

Lian et al. Innovative Bioactive Scaffold Material

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles


P � (Ws −Wg)/(Ws −Wf ) × 100%

whereWs is the weight of the scaffold saturated with water,Wg is
the dry weight of the scaffold, andWf is the weight of the scaffold
immersed in water.

Each group of scaffolds was divided into five groups in parallel.
The analysis of the compressive strength of the TMBG and
TMBG-PDTEC scaffolds (Φ10 mm × 15 mm) was performed
using a precision universal tester (universal testing machine, AG-
2000A, Shimadzu, Japan) at ambient temperature with a
crosshead speed of 1.0 mm/min.

In-vitro Degradation and Mineralization
The TMBG and TMBG-PDTEC scaffolds were immersed in the
Tris–HCl buffer solution at a 1:200 proportion of scaffold weight
(g) to solution volume (ml), and then placed in a constant
temperature incubator shaker (37°C, 80 rpm). At each time
point, the scaffolds were vacuum-dried and weighed, and the
pH of the Tris-HCl solution was recorded. The in vitro
biomineralization process of the scaffolds was examined
through soaking them in simulated body fluid (SBF, pH 7.4)
at a 1:200 proportion of scaffold weight (g) to solution volume
(ml) in a constant temperature incubator shaker (37°C, 80 rpm).
After this treatment process, the morphological condition of the
mineralization was characterized by SEM, TEM, and x-ray
diffraction (XRD) analysis.

Cell Viability, Proliferation, and Attachment
Rat bone marrow stromal cells (rBMSCs) were purchased from
the Shanghai Institutes for Biological Sciences (SIBS, Shanghai,
China). Primary rBMSCs expanded to passage 3 in growth
media consisting of α-MEM with 10% (v/v) FBS and 1% (v/v)
penicillin–streptomycin at 37°C in a humidified atmosphere of
5% CO2 were used in all experiments. The cell morphology and
spreading were visualized. The Φ10 mm × 2 mm TMBG and
TMBG-PDTEC scaffolds were placed in a 48-well plate,
inoculated with 4 × 103 rat bone marrow stromal cells per
well and co-cultured for 24 h. After that, the cells were fixed on
the scaffolds with glutaraldehyde solution (2.5% glutaraldehyde
in PBS) for 15 min. Then, the samples were dehydrated in
gradient alcohol for 5 min during each procedure, followed by
immersion in isoamyl acetate for 20 min and vacuum-dried at
37°C for 4 h. The cell morphology was observed by SEM. The
cell proliferation of the TMBG and TMBG-PDTEC scaffolds
was examined by a Cell Counting Kit-8 assay (CCK-8, Dojindo,
Kumamoto, Japan). rBMSCs were seeded on the Φ10 mm ×
2 mm TMBG and TMBG-PDTEC scaffolds in a new 48-well
plate at a density of 1 × 103 cells/well. After 1 day/4 days/7 days
of co-cultivation, the cell culture medium was updated at the
specified time point at the same time, 100 μL of cell culture
medium from each well (in the 48-well plate) was transferred
into a 96-well plate, with the addition of 10 μL of CCK-8
solution, then incubated at 37°C for 2 h. The absorbance at
450 nm was measured with a microplate reader (SPECTRAmax
384, Molecular Devices, United States). All measures were done
in triplicate.

Statistics
Results were presented as mean ± standard deviation. All data
were generated from at least three independent experiments (n ≥
3). A one-way ANOVA and Student–Newman–Keuls post hoc
test were used to determine the level of significance, and a value of
p < 0.05 was considered statistically significant.

RESULTS

SurfaceMorphology and Structural Analysis
of TMBG and TMBG-PDTEC Scaffolds
The morphologies of the TMBG and TMBG-PDTEC scaffolds
were investigated by SEM. As shown in Figures 1A–C9, the
TMBG scaffolds consisted of a completely interconnected
network structure with macropores (about 200–400 μm) and
micro-sized pores (1–10 μm) uniformly distributed on their
surface, which can facilitate cell migration, bone ingrowth, and
the transport of nutrients and oxygen (Duan et al., 2017). The
images of the scaffolds after being coated with two different
loading contents of PDTEC are presented in Figures 1B–C9,
indicating that the surface coating partially changed the
microstructure of the scaffolds. The obtained scaffold was
calculated to show a decreasing trend of porosity, which
corresponded to the SEM image. The porosity of the TMBG
scaffold was 87 ± 1.35%, while the porosity of the TMBG-
PDTEC8 and TMBG-PDTEC16 scaffolds were 75 ± 1.56% and
61.5 ± 1.79%, respectively. This result showed that high-
concentration surface coating may block some of the scaffold
surface microporous structure. Interestingly, with a further
increase of the PDTEC concentration (TMBG-PDTEC16), the
coating network appeared on the scaffold surface, which may
benefit bone ingrowth, the transport of nutrients and oxygen, and
cell migration (Goyal et al., 2017). The changes in the thickness of
the PDTEC coating can be observed from the cross-sectional
images of the composite scaffolds with different amounts of
PDTEC coating (Figure 2). The thickness of the TMBG-
PDTEC8 scaffold coating was about 30 μm, and the thickness
of the TMBG-PDTEC16 scaffold coating was about 50 µm. TEM
observation indicated that mesopores existed among the scaffolds
(Supplementary Figure 1). Therefore, scaffolds with a macro/
micro/meso-porous hierarchical structure mimicking the
architecture of natural bone have been successfully developed,
which are potentially applicable for bone regeneration.

The compressive strength of the pristine TMBG and TMBG-
PDTEC scaffolds were measured by compression testing. As
shown in Figure 3A, the data clearly demonstrate that the
compressive modulus of the TMBG scaffolds was 0.26 MPa.
Although it was largely increased compared with traditional
MBG scaffolds, it could not reach the minimum mechanical
strength of trabecular bone (about 2 MPa). However, the
compressive strength was significantly enhanced by increasing
the PDTEC surface coating amount. The increase of PDTEC
content from 8 to 16 wt% improved the compressive strength of
the TMBG-PDTEC scaffolds from 0.26 to 2.76 MPa, which is
similar to the matchable mechanical strength of trabecular bone
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and would be more suitable for the application of bone
regeneration.

The FTIR analysis was performed to confirm the successful
incorporation of PDTEC into the TMBG scaffolds, and the results
are displayed in Figure 3B. The FTIR spectrum of PDTEC

showed typical absorption bands at 1512 and 1729 cm−1 which
are characteristic of phenyl C�C stretching and carbonate C�O
stretching, respectively. TMBG showed a spectra of peaks at 460
and 1079 cm−1 which could be assigned to the orthophosphate
(PO4

3−) group of TMBG (Yu and Kohn, 1999). The appearance of

FIGURE 1 | SEM images of TMBG scaffolds before and after being coated with PDTEC: (A, A9) TMBG, (B, B9) TMBG-PDTEC8, and (C, C9) TMBG-PDTEC16
scaffolds.

FIGURE 2 | Cross-sectional SEM images of composite scaffolds with different amounts of PDTEC coating: (A, A9) TMBG-PDTEC8 and (B, B9) TMBG-PDTEC16
scaffolds.
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the bands for TMBG-PDTEC8 and TMBG-PDTEC16 revealed
obvious PDTEC characteristic peaks of phenyl C�C stretching
and carbonate C�O stretching, indicating the successful
formation of PDTEC coating on the surface of the TMBG
scaffolds (Kaushik et al., 2012; Yang et al., 2015).

In vitro Biomineralization and
Biodegradability
The biomineralization properties of the TMBG and TMBG-
PDTEC scaffolds upon immersion in simulated body fluid
(SBF) were investigated. As shown in Figure 4, although all
the scaffold surfaces presented mineralized depositions, the
deposition amount significantly increased with polymer
decoration. Furthermore, with the increasing amount of
PDTEC, more and more apatite deposits were formed on the

surface of the scaffolds, suggesting that adding the PDTEC
significantly accelerated the biomineralization process (Marelli
et al., 2011; Gu et al., 2017). To further analyze the phase
composition of mineralization, the samples were tested by
x-ray diffraction analysis (Figure 5). The main component of
the scaffolds was disordered silica, and after SBF soaking, the
diffraction peaks (2θ � 31° and 45°) of hydroxyapatite in the XRD
spectra of the TMBG-PDTEC scaffolds indicated that the PEDTC
could promote biological mineralization upon soaking in SBF.
This is probably because the hydrolysis of the pendent chains and
the carbonate bonds of the PDTEC may be beneficial to the
formation of the carboxyl groups, which have strong chelation to
dissolved Ca ions to accelerate hydroxyapatite formation
(Kaushik et al., 2012; Zhou et al., 2016; Souza et al., 2017).

Figure 6A shows the pH variation of the medium during
degradation of the TMBG and TMBG-PDTEC scaffolds. The

FIGURE 3 |Mechanical property and FTIR spectra of the scaffolds: (A) the compressive strength and (B) Fourier transform infrared (FTIR) spectroscopy patterns of
prepared TMBG, TMBG-PDTEC8, and TMBG-PDTEC16 scaffolds. (*p < 0.05 compared to TMBG) (n � 5).

FIGURE 4 | SEM images of the TMBG (A, A9), TMBG-PDTEC8 (B, B9), and TMBG-PDTEC16 (C, C9) scaffolds after soaking in SBF for 3 days.
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pH value of the Tris-HCl buffer solution gradually increased to 8.57
for TMBGafter 28 days, and at an earlier stage, the rise in the pH value
of the buffer solutionwas relatively faster. The increase in the pH value
trend could be well balanced by introducing the PDTEC polymer into
the scaffolds. Figure 6B indicates the weight loss profiles of the
scaffolds over time. All the TMBG-PDTEC scaffolds presented a
slower degradation rate than the pure TMBG, which may be
associated with the formation of the coating layer, which
hampered the degradation of the TMBG scaffolds. The pH auto-
regulation via the combined decomposition of TMBG and PDTEC
will be efficient to reduce the inflammation of cells/tissues surrounding
the scaffold on an in vivo implantation (Kaushik et al., 2012).

Cell Attachment and Proliferation
In order to evaluate their biological properties, the attachment
and proliferation of bone marrow stromal cells on the TMBG and

TMBG-PDTEC scaffolds were assessed for culture of 1, 4, and
7 days Figure 7 demonstrates the cell growth during the culture
time for all tested conditions. The cell viability of TMBG-
PDTEC16 was 1.39 times higher than TMBG after a 7-days
culture, indicating that PDTEC decoration improved cell
proliferation. The proliferation levels of the remaining groups
were similar at all time points. Cells morphologies were further
investigated by SEM observation. As shown in Figure 8,
compared to TMBG scaffolds, bone marrow stromal cells
showed better spreading on the TMBG-PDTEC scaffolds,
suggesting that the TMBG-PDTEC scaffolds can enhance cell
adhesion, spreading, and proliferation. The improved cyto-
biocompatibility could be associated with their macro/micro/
meso hierarchical bone-mimicking architecture (Li et al., 2013;
Zhu et al., 2017; Li et al., 2018) as well as the facilitated
biomineralization capacity (Tang et al., 2016).

FIGURE 5 | X-ray diffraction (XRD) spectra of the scaffolds (TMBG,
TMBG-PDTEC8, and TMBG-PDTEC16) after soaking in SBF buffer solution
for 3°days at 37°C.

FIGURE 6 | Degradation behaviors of TMBG scaffolds: (A) the pH value change of Tris-HCl buffer solution incubated with scaffolds at different soaking periods; (B)
the degradation curves of scaffolds as a function of soaking time. (n � 3).

FIGURE 7 | Cell proliferation of rat bone marrow stromal cells (rBMSCs)
incubated with TMBG, TMBG-PDTEC8, and TMBG-PDTEC16 scaffolds as a
function of the culture period (1, 4, and 7 days). (*p < 0.05 compared to
TMBG).
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DISCUSSION

To obtain the hierarchical architecture, our group recently developed
a kind of mesoporous bioactive glass (MBG) scaffold with trimodal
macro/micro/mesoporous via a “sol-gel and polyurethane sponge
templating process”, where MBG sol was firstly infiltrated into the
sponge, followed by sinter treatment, to produce the final TMBG
scaffolds. It was found that the interconnected macroporous
structure (100–500 μm) was beneficial for the promotion of
nutrient exchange and waste removal processes, offer sufficient
space for cell movements, proliferation, differentiation, promote
bone formation and vascularization, and the ingrowth of new
bone and tissue (Li et al., 2008; Zhao et al., 2015; Marıa Vallet-
Reg, 2016; Dashnyam et al., 2017; Gu et al., 2017; Zhu et al., 2017). It
can be observed from the SEM images that we have successfully
developed a scaffold with a macro/micro/mesoporous layered
structure mimicking the structure of natural bone. This scaffold
is beneficial to cell migration, nutrient and oxygen transport, and
bone inward growth, therefore is a potential scaffold material to
support bone regeneration (Yan et al., 2019).

Many studies have shown that if the scaffold degrades too
quickly, it cannot create enough time for bone growth in order to
complete bone repair. If the degradation is too slow and cannot
provide enough space for new bone growth, materials such as
calcium phosphate will cause inhibitory effects for bone
regeneration (Ma et al., 2016), which is a major drawback.
Subsequent researchers studied MBG coatings such as
PEGylated polyglyceryl sebacate, which enhanced the strength
of MBG scaffolds and could load BMP-2 factors for osteogenesis
research, but the coating had some drawbacks such as
uncontrollable degradation in vivo and other factors that need
further verification in clinical practice (Chai et al., 2017; Niu et al.,
2019). Our synthesized TMBG scaffolds and polymer-coated
composite scaffolds show combinative priorities in mechanical

robustness, and adjustable degradation rate (Scheme 2).
Furthermore, all the components used for the construction of the
scaffolds have been approved by the FDA (Tangpasuthadol et al.,
2000a; Tangpasuthadol et al., 2000b). At the same time, the coating
results in the slow release of material ions. Polymers at different
concentrations which produce coatings with different thicknesses,
result in a slower release of matrix material ions which reflect the
degradation of the scaffolds. However, the degradation rate of all the
current TMBG-PDTEC scaffolds was almost the same, suggesting
that the thickness of the coating should be similar. The cell activity
and proliferation of the subsequent materials may indirectly prove
that the small molecules of the degradation products of the coating
polymer are conducive to cell survival and regulation on local
microenvironment adjustment, thereby facilitating certain cells to
achieve in-situ tissue regeneration (Li et al., 2017). There are other
limitations in this study including that we simply used rat-derived
cells rather than used human-derived cells for cell attachment and
proliferation research, which is not sufficient to prove the versatility
of the scaffold in bone tissue engineering. More detailed and
comprehensive studies will be performed in vitro and in vivo
specifically for osteogenesis, including gene expression, protein
analysis in osteogenic media, and histological studies to further
demonstrate the potential for clinical applications.

Nowadays, orthopedic diseases, especially the healing of large bone
defects, remain as a challenge for surgeons. The drawbacks of
traditional treatments using auto-/allografting bone tissues, such as
unavoidable injury, infection, disease transmission, and immune
rejection, necessitate the need for artificial bone substitutes (Lin
et al., 2019). MBG has been demonstrated as a potential candidate
for bone replacement, which could efficiently facilitate osteogenic
differentiation via its released ions (Ge et al., 2019). However, the
translational application of MBG is limited by its unregular inner
structure and insufficient mechanical strength (Zhang et al., 2016). In
the current study, a TMBG scaffoldwith controllablemulti-structures

FIGURE 8 | SEM images of rat bonemarrow stromal cells (rBMSCs) cultured on the TMBG (A, A9), TMBG-PDTEC8 (B, B9), and TMBG-PDTEC16 (C, C9) scaffolds for 1 day.
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was prepared through our innovative strategy, which was expected
to facilitate cell attachment/proliferation, the ingrowth of
vascularized bone, and nutrient/waste exchange. More
importantly, as shown in Scheme 2, the lack of mechanical
strength was largely resolved by PDTEC adhesion, matching the
load-bearing range of trabecular bone (2–12 MPa), thus
ensuring that the strength of the TMBG scaffold would be
sufficient as a bone substitute. Meanwhile, this polymer
coating increased biomineralization, cell proliferation, and
attachment/spreading, which should be beneficial for bone
regeneration. Thereby, the current study provides an
improved new approach to fabricate biomimicking scaffolds
for the regeneration of bone.

CONCLUSION

In this study, we have demonstrated that biological active
scaffolds with a macroporous/microporous/mesoporous
hierarchical architecture were successfully prepared by a sol-gel
and sponge-templated approach, followed by coating with
tyrosine-derived polycarbonate on the scaffold surface. The
resulting scaffolds not only improved the mechanical properties
of the scaffolds to match the bearing range of trabecular bone
(2–12MPa), but also promoted the adhesion, spread, and
proliferation of stromal cells, and significantly accelerated their
biomineralization ability, thereby offering high potential for bone
regeneration applications.
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