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WC-10 wt.% Si3N4 composites toughened with ultrafine porous boron nitride nanofiber
(0, 0.01, 0.05, 0.1, and 0.15 wt.%) were prepared for the first time by spark plasma
sintering. Compared with the WC-Si3N4 composite sintered in the same condition, the
obtained WC-10 wt.% Si3N4 composites with ultrafine porous boron nitride were found
to possess better hardness and fracture toughness. In addition, the Si3N4 phase in
the UPBNNF toughened composites did not exhibit traditional catastrophic fracture as
indicated in most investigations. In this study, the phenomena are discussed, and a
probable mechanism is elucidated. It is deduced that the approach could be extended
to materials with a feature of internal liquid phase during the sintering process and could
improve hardness and fracture toughness.

Keywords: porous nanofiber, WC, Si3N4, Young’s modulus, fracture mode

INTRODUCTION

Tungsten carbide (WC) has numerous advantages, including high Young’s modulus, high hardness,
and excellent wear-resistance (Zhang et al., 2009; Kumar et al., 2011; Namini et al., 2019; Sakkaki
et al., 2019; Fattahi et al., 2020a,b). However, the shortcoming of WC is brittleness. Therefore,
most industrial WC-based materials are WC-Co composites, which are typically applied as cutting
tools and molds (Chang et al., 2015; Norgren et al., 2015). Co is beneficial for improving
fracture toughness because of its ductility and wettability to WC. In addition, binderless WC-
based materials continue to be investigated due to their merits of corrosion-resistance and red
hardness in comparison to binder-containing composites. In this manner, carbides are mostly used
(e.g., VC, Cr2C3, TaC, and TiC (Kim et al., 2008; Poetschke et al., 2012; Nino et al., 2019). The
toughening effects of oxides such as MgO, Al2O3, and ZrO2 are also investigated on the WC matrix
(El-Eskandarany, 2000, 2005; Basu et al., 2004; Zheng et al., 2012, 2013b).

Carbon (CNT) and boron nitride (BNNT) nanotubes have outstanding mechanical properties,
which have attracted attention in materials reinforcement (Wang et al., 2011; Yadhukkulakrishnan
et al., 2012; Tatarko et al., 2014; Vasudevan et al., 2016; Jin et al., 2017; Li et al., 2018). CNT
with exceptionally high Young’s modulus in the terapascal (TPa) range and tensile strength of
as much as 60 GPa has been investigated as a toughening phase for a long time (Han et al.,
2018). BNNT possesses high chemical stability in addition to previously mentioned advantages.
However, difficulties remain in BNNT synthesis with large quantities and low costs (Golberg et al.,
2007, 2010). As an alternative for environmental chemistry and hydrogen storage, Lin et al. (2016)
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prepared an ultrafine porous boron nitride nanofiber (UPBNNF)
with a high specific surface area of 515 m2/g and a total
pore volume of 0.566 cm3/g using freeze-drying and pyrolysis
processes. But studies on the toughening effect of the porous
fiber are rare yet.

WC-Si3N4 composites have been considered in detail
with respect to the sintering process, phase transformation,
microstructure, and mechanical properties using spark plasma
sintering (SPS) (Li et al., 2013; Zheng et al., 2013a, 2015). In
this study, the WC-10 wt.% Si3N4 composites with addition
of UPBNNF were prepared using SPS to investigate UPBNNF’s
effects on the overall mechanical properties. The mechanical
phenomena after testing were discussed on experimental data and
fracture theory.

EXPERIMENTAL PROCEDURE

For starting materials, we used WC (200 nm, purity > 99.9%,
Xuzhou Jiechuang New Material Technology Co., Ltd., China),
Si3N4 (∼1 µm, >95% α-phase, Xuzhou Jiechuang New Material
Technology Co., Ltd., China), Y2O3 (5–10 µm, purity > 99.9%,
Sinopharm Chemical Reagent Co., Ltd., China) and Al2O3
(∼1 µm, purity > 99.9%, Beijing Mountain Technological
Development Center, China), UPBNNF (diameter: 20–60 nm,
length: tens of micrometers; Boron Nitride Research Center,
Hebei University of Technology, China). The WC-10 wt.% Si3N4
(93Si3N4 + 6Y2O3 + 1Al2O3, wt.%) powder mixtures with
the addition of 0, 0.01, 0.05, 0.1, and 0.15 wt.% UPBNNF
ultrasonically dispersed in ethanol in advance were wet-mixed
on a planetary ball mill. Then they were dried, sieved, poured
into a cylindrical graphite die, and heated to 1750◦C (monitored
by infrared thermometer) without soaking time under applied
pressure of 30 MPa in ≤6 Pa vaccum. Other processing details
have been shown in Li et al. (2013) and Zheng et al. (2013a,
2015). Thereafter, the five obtained WC–UPBNNF specimens
were named 10S, 10S0.01B, 10S0.05B, 10S0.1B, and 10S0.15B,
respectively, in terms of their UPBNNF content. For necessary
supporting details, an over-sintering 10S0.1B specimen was
prepared with the sintering parameters of 1750◦C and 5-
min soaking time.

The density of the specimens (820 × 10 mm) was measured
using water before being calculated by the Archimedes principle.
The hardness (HV10) was evaluated on a Vickers hardness tester
(430SVA, Wilson Wolpert Co., Ltd., China) with a load of 10 kg.
An indentation with a load of 30 kg was produced to illustrate
crack details on the 10S0.05B specimen. The fracture toughness
(KIc) was calculated based on the radial crack produced by
Vickers indentation according to the Anstis formula (for half-
penny crack):

KIc = 0.016×
(
E
H

) 1
2
×

P
c3/2

,

where E is Young’s modulus, H is hardness, P is peak load,
and c is the characteristic dimension (Anstis et al., 1981).
The reported values were the averages of the data obtained

from five indentation tests. Using the pulse-echo overlap
ultrasonic technique (ultrasonic generator CTS-32, SIUI, China;
data collection system DPO5034, Tektronix, United States;
longitudinal wave detector K 10K-52832, GE, United States;
transverse wave detector MB2Y, KK, Germany), we determined
the elastic modulus of all samples. Sound velocity is measured to
inversely calculate Young’s modulus, which is based on influence
of intrinsic properties of materials like elastic properties on sound
propagation. As a reference, the Young’s modulus of specimens
shown in Table 1 was also calculated according to Voigt’s formula
(upper boundary):

E =
∑

EiVi,

where Ei and Vi represent the Young’s modulus and volume
fraction of every phase, respectively (Meyors and Chawla, 1999).

Phase identification was conducted using an X-ray
diffractometer (XRD, D8 Advance, Bruker Co., Germany)
with Cu Kα radiation. The wt. fraction of the β phase in
Si3N4 was calculated based on the α (200)/β (200) ratio of the
diffraction peak heights (PH) based on the method reported by
Pigeon and Varma (1992). The PH data were collected at a 0.02◦
step−1 between 25 and 29◦ of 2theta (time constant 2 s) with the
contribution subtracted due to background noise:

α/β phase ratio = 4.9381(PH)+ 0.1144(PH)2
+ 0.08106(PH)3,

wt. fraction = 1/(1 + α/β).

The microstructure as well as the Vickers indentations was
examined using high-resolution scanning electron microscopy
(HRSEM, Nova Nano 430, FEI, United States).

RESULTS AND DISCUSSION

The displacement of the lower punch, which reflects the
densification process of the sample, and the temperature
were automatically recorded during sintering. Figure 1 shows
shrinkage rate curves of the specimens heated to 1750◦C without
soaking time. As the shrinkage rate became positive, the powders
were densified until the shrinkage rate was again reduced to
zero. For the fine grain WC-10 wt.% Si3N4 and those specimens
with the addition of UPBNNF, the densification process started
at approximately 900◦C. Much faster densification rates were
observed for all specimens when the sintering temperature
rose to 1400◦C. Finally, the densification process ended at
approximately 1600◦C.

Figure 2 shows the XRD patterns of WC-10 wt.% Si3N4
with and without UPBNNF specimens. The wt. fraction of
the β phase calculated from the XRD data in Figure 3 are
listed in Table 1. The specimens containing UPBNNF had
a higher wt. fraction of the β phase than the specimens
without the fiber. The microstructures of composites containing
UPBNNF that can be seen in Figure 4 are not different
from the WC-10 wt.% Si3N4 reported in our previous works
(Li et al., 2013; Zheng et al., 2013a, 2015). In the microscopy
examination processes that we performed, UPBNNF was hardly
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TABLE 1 | Characteristics of WC-Si3N4-UPBNNF specimens.

Specimen Density (g/cm3) β-Si3N4 (100%) Hardness (GPa) Elasticity modulus
(GPa, calculated)

Elasticity modulus
(GPa, tested)

Fracture toughness
(MPa·m1/2)

10S 11.45 16.96 17.76 ± 0.25 572 521 7.70 ± 0.56

10S0.01B 11.39 20.44 18.32 ± 0.33 567 793 10.99 ± 0.41

10S0.05B 11.40 18.79 20.56 ± 0.87 556 779 10.57 ± 0.38

10S0.1B 11.41 27.51 19.04 ± 0.39 544 775 10.50 ± 0.68

10S0.15B 11.37 24.83 19.12 ± 0.56 532 755 10.09 ± 0.76

FIGURE 1 | Densification curves of the composite specimens.

FIGURE 2 | XRD patterns of the composite specimens.

to be observed, which could be attributed to the low contrast of
BN in the composites.

Values for the hardness and fracture toughness of WC-10 wt.%
Si3N4 with different ratios of UPBNNF composites are listed
in Table 1. All specimens containing UPBNNF were better in
terms of both hardness and fracture toughness as compared to
the WC-10 wt.% Si3N4. Table 1 also shows the tested Young’s

FIGURE 3 | XRD patterns for α-Si3N4 (100) and β-Si3N4 (200) crystal planes
of the composite specimens.

modulus values of specimens as well as the theoretical upper
boundary calculated from Voigt’s formula, and the UPBNNF-
containing specimens had abnormally high values (the highest
reached 793 GPa) that were superior to the value of pure WC
(700 GPa), with nearly changeless density. If the calculated values
are obtained based on tested value of 10S, the calculated values
along with growth of UPBNNF additive amount are 520, 519, 518,
and 517 GPa, respectively. The crack path details of all composites
are presented in Figure 5, where tearing and scratch patterns
on Si3N4 in the composites containing UPBNNF are visible.
The crack pattern of Si3N4 grains in composites is different
from the transgranular crack pattern of Si3N4 with clean edges.
When the crack passes the Si3N4 grains in the composites, it
appears healed, which is also unlike the traditional crack pattern
of ceramic matrices. Under a 10-kg load, UPBNNF is rarely
observed. Therefore, a 30-kg load is employed to produce a bigger
crack. In the crack images of Figure 6, UPBNNF can be observed
in the UPBNNF-containing specimens. In particular, single fibers
can be seen between the broken parts of Si3N4.

In the aforementioned results, the fracture mode identified
in the results can be noticeable. In general, Si3N4 ceramics are
known for catastrophic fracture, and thorough fracture of Si3N4
grains with clean edge is observed (a fine image of fracture
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FIGURE 4 | SEM micrographs of the indentation crack paths in (A) 10S0.01B, (B) 10S0.05B, (C) 10S0.1B, and (D) 10S0.15B.

of Si3N4 grains is provided in Riley (2000), Ii et al. (2004),
Klemm (2010), Zhou et al. (2014), and Hu et al. (2019). However,
different cases of tears and scratches emerge on the Si3N4 grains
in the composites with UPBNNF, as shown in Figure 5, which
means fractures of Si3N4 occur partly under a given load. The
phenomena has been barely observed in other Si3N4-containing
composites. It can be deduced that the whole fracture process
involves two steps at least during a given time interval under
a limited load. Therefore, these crack patterns are not the
traditional catastrophic fracture mode of Si3N4.

Theories on fracture and toughening can be simply divided
two theoretical categories: the microstructural and the atomic.
Fracture and toughening phenomena are usually elucidated by
microstructure theory with respect to interface energy that is
sufficient in most cases (Marshall and Evans, 1985; Becher et al.,
1988; Becher, 1991). Furthermore, analysis on fracture is based on
thermodynamics. According to second law of thermodynamics,
there must be extra work to block the crack propagation in
the traditional way. As reported, deformation work of UPBNNF
cannot lead the different fracture mode of WC (Li et al., 2020).
Combining mentioned analysis on UPBNNF, the probable reason
is extra elastic work in the process of crack propagation of
Si3N4 grains containing UPBNNF. The source of the elastic
work cannot be found in the microstructure scale. Therefore,
atomic theory is necessary when the fracture mode of materials is
concerned in this case. A simple theory is the cohesive strength
model. In this model, fracture is determined based on the
cohesive strength of atoms, which is proportional to Young’s

modulus (Lawn, 1993). The Si3N4 in a nanopore could possess
higher cohesive strength as a result of being restrained by the
nanopore based on the previously mentioned elevated Young’s
modulus of parts of Si3N4. Thus, the fracture mode of Si3N4 in
the composites with UPBNNF is consistent with an increase in
Young’s modulus. Young’s modulus and fracture at the atomic
scale are both the variations in force and distance between atoms
(Lawn, 1993; Hsieh and Tuan, 2005).

As shown in results, one unusual observation is that the
Young’s modulus of the composites was even higher than
the highest value, which is rarely present in other composites
regardless of whether the second phase exists as a particle or fiber.
Examples of these types of composites include Si3N4-SiC, Si3N4-
TiN, Si3N4-ZrO2, TaC-TaB2, and ZrB2-TiC (Akimune, 1990;
Pezzotti, 1993; Blugan et al., 2005; Zhang et al., 2008; Guicciardi
et al., 2010; Bódis et al., 2017). It is known that Young’s modulus
of materials as an intrinsic property is determined by the bonding
between the individual atoms, which means Young’s modulus is
a characterization of force and distance between atoms (Meyors
and Chawla, 1999). For materials containing pores, Young’s
modulus descends with higher porosity (Pabst and Gregorová,
2004). On evaluating Young’s modulus of composites, the
mixture rule is usually applied, and the value is located between
the high and low values regardless of the calculation methods
(Meyors and Chawla, 1999; Hsieh and Tuan, 2005). In addition,
different methods are also applied to obtain this value. However,
results derived from the examination methods or calculated by
the mixture rule show only minimal differences. Therefore, all
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FIGURE 5 | HRSEM images of the indentation crack paths in of (A) 10S, (B) 10S0.01B, (C) 10S0.05B, (D) 10S0.1B, (E) 10S0.15B, (F) A area in (A), (G) B area in
(C), and (H) C area in (D).

methods are adopted in materials investigations (Koopman et al.,
2002; Cha et al., 2003; Basu et al., 2004; Wang et al., 2012; Xia
et al., 2020). In brief, the addition of a phase with a low Young’s

modulus leads to decreasing value of composites. UPBNNF
possesses two features that result in negligible Young’s modulus
in WC-Si3N4 composites: high porosity and a turbostratic
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FIGURE 6 | Elongated Si3N4 grain pinned by UPBNNF in WC matrix.

structure that is related to a low Young’s modulus of high tensile
strength (HT) carbon fiber (Frank et al., 2012; Lin et al., 2016). In
fact, the value of a BN fiber with a normal structure is only tens
of GPa (Economy and Anderson, 1967). Therefore, the Young’s
modulus of UPBNNF itself has no effect on the composites. The
only probable explanation is based on the most fundamental
mechanism whereby the bonding of atoms is affected.

Meanwhile, there is no increase of Young’s modulus found in
WC-UPBNNF composites (Li et al., 2020). Young’s modulus of
some WC composites reported in published papers are listed in
Table 2, which were all tested by the pulse-echo overlap ultrasonic
technique. There are no abnormal phenomena, too. Thus, we
consider that in addition to the liquid phase in the Si3N4 sintering
process, the major point of influence is the nanosized pores of
UPBNNF. For nanocrystalline materials (grain size < 50 nm),
the properties could be modified at an atomic scale, but most
of the modification is employed on functional ceramics (Gleiter,
1989; Jin and Bao, 1996; Maglia et al., 2013). It is rarely observed
that Young’s modulus of ceramics can be modified to increase
thereafter, as no effective means are available to intervene at the
atomic scale. Restricting the sizes of grains to less than 50 nm
during the sintering process is difficult. However, it is possible
that the bonding of atoms of Si3N4 can be affected after sintering
by the presence of UPBNNF. As reported in the papers about
WC-Si3N4 materials (Li et al., 2013; Zheng et al., 2013a, 2015),
a liquid phase is generated during sintering, and then pores of

UPBNNF can be filled with the liquid phase. In fact, reordering
happened on groups of atoms in liquid phase sintering, and some
groups were trapped in nanopores of UPBNNF. The bonding of
atoms of Si3N4 in a pore is restrained after sintering, which means
that the force and distance between atoms are also restricted.
As a result, the Young’s modulus of parts of Si3N4 increases,
and in turn the values of whole Si3N4 and composites increase.
Because of agglomeration, excess fraction of the fiber results
in another decrease in Young’s modulus. By contrast, directly
observing the phenomenon is difficult. Regarding interaction
between nanopores and filler materials, numerical modeling is
mostly used. Even though accurate observation is employed on
nanopores, there are too many requirements on the specimen
itself (Lee et al., 2018; Gu et al., 2019; Hou et al., 2019; Nehra et al.,
2019). WC-Si3N4 bulks after ball milling and sintering are too
crude to meet the requirements. In addition, although some BN
phases like BN nanoplates observed were reported (Ahmadi et al.,
2017; Germi et al., 2018; Mahaseni et al., 2018), the turbostratic
structure and pore leading to bad contrast hindered the intention
of observation for UPBNNF in this case.

Eventually, synergic toughening is evident on the WC matrix,
which is based on toughened Si3N4 and UPBNNF, as shown in
Figure 6. By contrast, the synergic mechanism is not consistent
with traditional ceramic-ceramic toughening theory. According
to the traditional toughening model, weak interfacial bonding
between non-binder second phases and the matrix is beneficial
due to the fragile second phases without toughening effects in
complex stress environments (Mahaseni et al., 2018). Energy
is consumed by debonding, interfacial friction, and so on. In
brief, energy must be consumed by generating new interfaces,
but must not be alongside main cracks. Why the synergetic
toughening is possible in this study? It was observed that Si3N4
is strongly bonded to the matrix by UPBNNF, so do UPBNNF
itself. As a result, debonding between WC matrix and Si3N4
was more difficult, and the energy had to be consumed in
other approaches like Si3N4 fracture. Usually, fracture in the
ceramic second phase does not have considerable attribution
to the toughening matrix due to the transitory nature of
the fracture (Germi et al., 2018). However, as observed and
elucidated, the ultimate fracture of Si3N4 grain in the composites
can occur during a certain time interval. The aforementioned
effects may consume more energy than traditional methods that
lead to toughening.

The following is a brief summary of the previous discussion.
First, it is possible that Young’s modulus of ceramics is elevated
using nanopores. High specific stiffness, which is a ratio of

TABLE 2 | Young’s modulus of some WC composites reported in published papers.

Specimen 0a 6Cob 1CNTc 6ZrO2
b 8ZrO2

d 1Si3N4
e 3Si3N4

e 6Si3N4
e 8Si3N4

e

Young’s modulus 704 649 658 575 559 650 596 542 522

Specimen 10Si3N4
e 12Si3N4

e 15Si3N4
e 0.05UPBNNFa 0.075UPBNNFa 0.1UPBNNFa 0.125UPBNNFa

Young’s modulus 517 486 470 684 666 642 630

The specimens’ names are in terms of second phases with weight fraction in WC matrix.
Data sources: a, Li et al., 2020; b, Basu et al., 2004; c, Cao et al., 2018; d, Cao et al., 2021; e, Zheng et al., 2015.
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Young’s modulus to density, is often desired in mechanical
design. However, the rule of mixture is a theoretical limitation,
and no elevation exists beyond the intrinsic properties of
materials that are simply affected at the atomic scale. Materials
with high Young’s modulus usually have a high density and result
in increasing density after the addition into the matrix of a low
Young’s modulus. Second, ceramics with an internal liquid phase
during sintering such as Si3N4 can employ a different fracture
mode at the micrometer scale. Although no ductility can occur
on the ceramics, serial and multiple fractures during a certain
time interval may be closed to ductility in analogy with series
approximation to a smooth function in calculus. Finally, a fiber
with a deformation ability and modified ceramic phase such as
those of the aforementioned Si3N4 enables the toughening of
other ceramics jointly.

CONCLUSION

In this study, WC-10 wt.% Si3N4-x (x = 0, 0.01, 0.05, 0.1, and 0.15)
wt.% UPBNNF composites were prepared by SPS. The following
conclusions were drawn and thus present a means of improving
the mechanical properties of ceramics.

(1) The addition of UPBNNF to WC-10 wt.% Si3N4 could
be effective at enhancing hardness and maintaining
fracture toughness.

(2) Tears and scratches patterns appear on Si3N4 grains in
indentation crack paths of WC-Si3N4 composites with the
addition of UPBNNF, an observation that is different from

that of the traditional fracture mode of Si3N4 in which a
catastrophic fracture occurs with clean edges.

(3) A collaborative toughening effect of UPBNNF and Si3N4
in WC-Si3N4 composites works under strong interfacial
bonding.
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