
Geopolymer Concrete Compressive
Strength via Artificial Neural Network,
Adaptive Neuro Fuzzy Interface
System, and Gene Expression
Programming With K-Fold Cross
Validation
Mohsin Ali Khan1*, Adeel Zafar1, Furqan Farooq2, Muhammad Faisal Javed2*,
Rayed Alyousef3, Hisham Alabduljabbar3 and M. Ijaz Khan4

1Military College of Engineering (MCE), National University of Science and Technology (NUST), Islamabad, Pakistan, 2Department
of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan, 3College of Engineering in Al-
Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia, 4Department of Mathematics and Statistics, Riphah
International University, Islamabad, Pakistan

The ultrafine fly ash (FA) is a hazardousmaterial collected from coal productions, which has
been proficiently employed for the manufacturing of geopolymer concrete (GPC). In this
study, the three artificial intelligence (AI) techniques, namely, artificial neural network (ANN),
adaptive neuro-fuzzy interface (ANFIS), and gene expression programming (GEP) are used
to establish a reliable and accurate model to estimate the compressive strength (f ′c) of fly
ash–based geopolymer concrete (FGPC). A database of 298 instances is developed from
the peer-reviewed published work. The database consists of the ten most prominent
explanatory variables and f ′c of FGPC as a response parameter. The statistical error
checks and criteria suggested in the literature are considered for the verification of the
predictive strength of the models. The statistical measures considered in this study are
MAE, RSE, RMSE, RRMSE, R, and performance index (ρ). These checks verify that the
ANFIS predictive model gives an outstanding performance followed by GEP and ANN
predictive models. In the validation stage, the coefficient of correlation (R) for ANFIS, GEP,
and ANNmodel is 0.9783, 0.9643, and 0.9314, respectively. All three models also fulfill the
external verification criterion suggested in the literature. Generally, the GEP predictive
model is ideal as it delivers a simplistic and easy mathematical equation for future use. The
k-fold cross-validation (CV) of the GEP model is also conducted, which verifies the
robustness of the GEP predictive model. Furthermore, the parametric study is carried
via proposed GEP expression. This confirms that the GEP model accurately covers the
influence of all the explanatory variables used for the prediction of f ′c of FGPC. Thus, the
proposed GEP equation can be used in the preliminary design of FGPC.
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INTRODUCTION

Fly ash is the unburned residual obtained from coal production
and is taken out by the gases expelled from the boiler, which is
then accumulated by means of mechanical or electrostatic
precipitator (Rafieizonooz et al., 2016; Aprianti S, 2017; Akbar
et al., 2021). Every year, about 375 million tons of FA is generated
with a retention cost of $20–$40 per ton (Dwivedi and Jain, 2014).
FA contains hazardous minerals like alumina, ferric oxide, and
silica; putting to dump fill sites without sufficient treatment
creates a destructive and harmful effect on the ecology
(Carlson and Adriano, 1993; Kumar Tiwari et al., 2016;
Nadesan and Dinakar, 2017; Ghazali et al., 2019). Virtuous
waste management is needed for the sustainability of a healthy
environment. Also, the ultrafine particles of FA, when reached to
the respiratory system, cause different health issues like cancer,
anemia, physiological disorder, dermatitis, and diarrhea. It also
pollutes the ground water and alarms the aquatic life (Carlson
and Adriano, 1993; Kumar Tiwari et al., 2016; Ghazali et al.,
2019).

In the world, mostly, concrete is used for construction
purposes and is the utmost desirable substance after water
(Farooq et al., 2020a; Liew and Akbar, 2020). Around 3 tons
of concrete is manufactured per person, which accumulates 25
billion tons of concrete production per year (Watts, 2019), which
requires 2.6 billion tons of cement production every year and
would be increased by 25 percent in the latter decade (Wongsa
et al., 2020). However, the processing of cement has a detrimental
role in polluting the environment. In manufacturing, 1 ton of
cement and 1 ton of carbon dioxide are emitted into the
atmosphere (Akbar and Liew, 2020). The cement utilizes
limestone, and a serious deficiency of limestone may arise
after 25–50 years (Farooq et al., 2020c; Sumanth Kumar et al.,
2020). Thus, the production of green concrete is needed which
leads to sustainable development and a healthy environment. FA
acts as a supplementary cementitious material in the concrete mix
and has been effectively used by researchers in the production of
green concrete (Wang et al., 2017, Wang et al., 2019a; Chen et al.,
2019). The consumption of FA in the construction is a better
choice as it will not only reduce the malicious impact of its
dumping into landfills but will also decrease the use of cement.

From the last 20 years, in the construction industry, the use of
fly ash–dependent geopolymer concrete is increasing rapidly
because it lessens the depletion of cement in geopolymer
concrete (GPC) (Gülşan et al., 2019; Kondepudi and
Subramaniam, 2019; Xie et al., 2019; Zhang et al., 2020a;
Bajpai et al., 2020; Meesala et al., 2020; Noushini et al., 2020;
Nuaklong et al., 2020). Because of the anomalous behavior of FA,
its application in the construction industry is still limited (Jena
et al., 2019; Nguyen et al., 2020; Sandanayake et al., 2020). FGPC
is significantly used in the construction industry, but yet no
method is available for the prediction of its compressive strength
(f ′c) based on the mix design parameters with maximal variables.
The f ′c of FGPC fluctuates by numerous parameters such as
temperature required for curing of the sample (T), the time
required for curing of the sample (t), age of the sample (A), the
molarity (M) of the sodium hydroxide (NaOH) solution used, the

percentage of silicon dioxide (SiO2) to the water ratio (%S/W) for
preparing solution of sodium silicate (Na2SiO3), ratio between
sodium silicate (Na2SiO3) solution to NaOH (NsNs/NoNo),
percentage by volume of total aggregates (% AG), ratio
between fine aggregate to total aggregates (F/AG), ratio
between alkali to fly ash (AL/FA), percentage of plasticizer
(% P), and percentage of extra addition of water (% EW)
(Luhar et al., 2019; Tran et al., 2019; Van Dao et al., 2019;
Wang et al., 2019b; Zhang et al., 2019, Zhang et al., 2020b;
Prachasaree et al., 2020; Farooq et al., 2021). This raises
uncertainty in the prediction of f ′c FGPC. Moreover, the rise
in the use of supervised machine learning techniques for the
development of an empirical model has been observed in recent
times (Javed et al., 2020a).

Throughout the globe, AI techniques are being used to estimate
concrete properties (Farooq et al., 2021). Various AI techniques are
used by researchers such as fuzzy interface system (FIS), response
surface methodology (RSM), adaptive neuro-fuzzy interface system
(ANFIS), extrememachine learning (EML), artificial neural network
(ANN), support vectormachine (SVM), random forest (RF), particle
swarm optimization algorithm (PSOA), backpropagation neural
network (BPNN), genetic algorithm (GA), genetic programming
(GP), and gene expression programming (GEP). Table 1 covers the
recent research conducted for the prediction of concrete properties
via AI techniques. The ANN and ANFIS techniques can detect and
generalize the complicated patterns. Therefore, they can be
effectively used to solve engineering complexities (Noori et al.,
2010; Chou and Pham, 2013). The existence of enormous hidden
neurons sometimes makes it difficult to develop the relationship
between input and output variables. These models show a strong
correlation between input and outputs but do not provide an
empirical equation that can be further used in the field. This is
due to the complex structure of ANN and ANFIS models, which
limits the wide-scale adoption of these models (Noori et al., 2010;
Sebaaly et al., 2018).

Genetic programming (GP) is a worthy soft computing method
as it ignores the prior developed relationship in the establishment
of the model (Gandomi et al., 2012; Gandomi et al., 2013).
Recently, in civil engineering, gene expression programming
(GEP) is introduced which is an extension of GP. GEP uses a
fixed-length linear chromosome and encodes a small program
(Ferreira, 2006). It is advantageous as it provides a simple empirical
equation for predicting the response, which can be used practically
(Behnia et al., 2013; Beheshti Aval et al., 2017; Gholampour et al.,
2017; Sadrossadat et al., 2018; Iqbal et al., 2020).

In the design and analysis of concrete, compressive strength
(f ′c) is the key factor (Akbar et al., 2020). Vast experimental
research is carried to find the f ′c of FGPC. To avoid costly
experimental procedures, to save time and to support the
usage of FA in the building industry, the establishment of
reliable, precise, and accurate mathematical equation is
desirable, which can relate the maximum mix proportion
variables and f ′c of FGPC. Alkaroosh et al. (Alkroosh and
Sarker, 2019) established a GEP-based empirical relationship
for the prediction of f ′c of FGPC, based on 56 instances saved
from previous study (Hardjito and Rangan, 2005). The
application of this model is limited to a confined database,
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that is, to the accompanying experimental results. Also, no
variable was considered for the preparation of the Na2SiO3

solution. Furthermore, their model displays a strong increasing
linear relation between the molarity of NaOH and f ′c of FGPC,
which is contradictory to other studies, which confirms the
decrease in the (f ′c) of FGPC by increasing the molarity of
the NaOH solution (Joseph and Mathew, 2012).

In this research, a comprehensive database of 298 instances
has been established from the previous peer-reviewed published
work which contains 101 cylindrical samples with a size of
(200 × 100)mm; height × diameter, 31 cube samples with a
size of 100mm, and 166 cube samples with a size of 150mm.
The comprehensive database ensure the consistency of the AI
models. As AI techniques involve complex programming and
require excessive care and optimization. Therefore, three AI
methods, that is, ANN, ANFIS, and GEP are employed to
predict the f ′c of FGPC. The performance of these models is
verified by k-fold cross-validation, statistical checks, and
sensitivity and parametric study. Also, the performance of all
these models is compared with each other to counter the
complexity of programming.

MACHINE LEARNING MODELING
TECHNIQUES

This study considers three different artificial intelligence (AI)
algorithms, to establish a model for estimating the compressive
strength of FGPC. The execution of these models does not need
any prior knowledge of the experimental procedure. This section
briefly describes the overview of the AI modeling techniques used
in this research.

Gene Expression Programming
Koza suggested an artificial intelligence method, that is, genetic
programming (GP), as a substitute for GA which works on fixed-
size strings (Koza and Poli, 2005). GP is a flexible and adjustable
programming method as it uses the nonlinear parse tree

TABLE 1 | Application of artificial intelligence (AI) techniques in civil engineering materials.

Type of concrete Number of
instances

Predicted concrete property Artificial intelligence
technique

used

References

Palm oil fuel ash concrete 20 Compressive strength ANN Safiuddin et al. (2016)
High strength concrete 159 Elastic modulus, and compressive strength ANFIS, RF, and GEP Ahmadi-Nedushan (2012); Farooq

et al. (2020b)
Foamed concrete 91 Compressive strength ELM Yaseen et al. (2018)
Sugar cane bagasse ash (SCBA)
concrete

65 Compressive strength GEP Javed et al. (2020a)

Rice husk ash concrete 66 Compressive strength ANN Getahun et al. (2018)
Fiber-reinforced concrete 9 Split tensile strength, compressive strength,

toughness, and flexural strength
ANN and PSOA Mashhadban et al. (2016)

Asphalt 444 Asphalt mix design parameters ANN and GA Sebaaly et al. (2018)
Rubberized concrete 112 Compressive strength ANN Bachir et al. (2018)
Waste foundry sand concrete 234 Compressive strength, split tensile strength, and

elastic modulus
GEP Iqbal et al. (2020)

Normal concrete 425 Compressive strength SVM and ANN Akande et al. (2014)
Recycled aggregates concrete 17 Compressive strength ANN and RSM Hammoudi et al. (2019)
Cement mortar comprising of
micro and nano-silica

32 Compressive strength and flexural strength ANN and GEP Emamian and Eskandari-Naddaf,
2019)

Manufactured sand concrete 289 Compressive strength ANFIS Ly et al. (2019)
Expanded polystyrene (EPS)
lightweight concrete

12 Compressive strength ANN and ANFIS Sadrmomtazi et al. (2013)

Silica fume concrete 150 Compressive strength ANN Paulson et al. (2019)

FIGURE 1 | Architectural flowchart of GEP algorithm.
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structure. It accepts the initial nonlinearity within the data. Such
nonlinearity has been executed earlier (Koza and Poli, 2005;
Alkroosh and Sarker, 2019). GP fails in considering the
independent genome. GP deals with the nonlinear structure as
both phenotype and genotype. This marks GP questionable in
assembling the rudimentary and simple equation. To resolve the
discrepancies in GP, Ferreira introduced a novel methodology
called GEP (Koza and Poli, 2005). The noteworthy change in GEP
is that it transfers the genome toward another generation. One
more unique function is the formation of objects via
chromosomes made up of genes, which are further expanded
as tail and head (Saridemir, 2010). In GEP, every single gene is
comprised of fitted length parameters, arithmetic operation as a
set of functions, and terminal set of constants. In the operation of
genetic code, there exists a one-to-one interaction between
subsequent functions and the symbols of chromosomes. The
essential figures and information needed for the establishment
of an empirical equation are stored in the chromosomes. A novel
language Karva is developed to deduce this information.

Figure 1 shows the flow diagram of the GEP technique. The
first step is the fairly random distribution of fixed-size
chromosomes for every instance. The same chromosomes are
then represented as the expression trees (ET), and the fitness is
calculated for every single individual. The mutation cycle keeps
on with the addition of different individuals for several
generations till the best model is achieved. To renovate the
population, genetic operations like reproduction, mutations,
and crossovers are carried out.

Artificial Neural Network
ANN analyzes the data by the artificial intelligence (AI) method.
It uses the learning ability of the human brain. The extensively
used form of ANN is the feed-forward backpropagation (FFBP)
algorithm. Figure 2 illustrates that FFBP comprises of minimum
three layers, that is, the input, the output, and the hidden layers.
These layers are linked through nodes in an appropriate order
along with approximated weights. The purpose of the input layer
is to obtain the data from outside. Their nodes do not operate a
single function on input data. The data become biased, weighted,
and summed up in the hidden layer. The executed data are then

transferred to the output layer (Alavi and Gandomi, 2011;
Gandomi and Roke, 2015).

Two types of FFBP are generally used, that is, single-layer
perceptron (SLP) and multiple layer perceptron (MLP). The SLP
is easy and simple but cannot catch the nonlinear relationship,
while the complex nature of MLP effectively handles the
nonlinear relation between output and input variables. The
steps involved in the mathematical operation of MLP are as
following:

Step 1: In the first step, the input data is weighted and summed
given as:

Sj � ∑n
i�1

ωijIi + bj; j � 1, 2, 3, . . . . . . , h, (1)

where n, Ii, and ωij represent the total number of inputs, current
input number, and the weight between the prior layer and the jth

neuron, respectively, while “b” represents the process of
termination.

Step 2: It involves an activation function. Different activation
functions are used like a ramp, Gaussian, and sigmoid functions.
However, the sigmoid function is utilized in this study which is
stated as:

Sj � 1
1 + e−sj

; j � 1, 2, 3, . . . . . . , h. (2)

Step 3: In this step, the final output is determined, which is
dependent on the estimated outputs by hidden neurons. The
ultimate output can be expressed as:

Ok � ∑h
j�1
(ωjk . Sj) + b′k; k � 1, 2, 3, . . . . . . , m, (3)

Ok � sigmoid(Ok) � 1
1 + e−Ok

; k � 1, 2, 3, . . . . . . , m, (4)

where ωjk and bk′ represent the weighted link between jth hidden
node and kth output node, while bk′ defines the biased outcome of
the kth output node.

Artificial Neuro-Fuzzy Interface
ANFIS is another AI technique that combines the effect of fuzzy
logic and ANN (Çaydaş et al., 2009). ANN is generally employed
to lessen the probability of error in the outcome. Whereas the
fuzzy logic is utilized to prove and demonstrate the practiced
knowledge and is applied while mathematical modeling of the
anticipated input and output data set (Jaafari et al., 2019).
Generally, the ANFIS works on five layers. The description of
these layers is as follows:

1st layer: It is the fuzzification layer that encompasses the
functional members of the input parameters, which use the
Gaussian function for the prediction of the outcome. The
mathematical equation is given as:

μui(x) � exp[− (x − ai)
2ε2i

], (5)

where εi and ai are the parameters used for the functional
membership.

FIGURE 2 | Architecture of the ANN model.
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2nd layer: In this layer, nodes are utilized to send the output
through the multiplication of the input with a particular
weightage. This layer is worked on the fuzzy and logic via
expression given below;

ωi � μui(x) × μvi(y). (6)

3rd layer: The aim of this layer is to normalize the functions of
membership. The below-listed equation is used to estimate the
ratio between various firing strengths.

ω � ωi∑iωi
. (7)

4th layer: It is the defuzzification layer that utilizes the square
nodes to conclude the rules of the fuzzy logic. The following
expression shows the defuzzification process:

ωifi � ωi × (mix + niy + ri), (8)

where ri, mi, and ni are all the linear parameters.
5th layer: This layer has the function to aggregate and sum up

the previous layers and later on conclude the final output.

ACQUISITION OF DATA

For estimating the compressive strength (f ′c) of FGPC, a
comprehensive database file with 298 instances was compiled from
the peer-reviewed published articles (Galvin et al., 1978; Hardjito and
Rangan, 2005; Sumajouw and Rangan, 2006; Nuruddin et al., 2011a;
Nuruddin et al., 2011b; Fareed Ahmed et al., 2011; Kusbiantoro et al.,
2012; Olivia and Nikraz, 2012; Sujatha et al., 2012; Deb et al., 2013a;
Deb et al., 2013b; Long et al., 2013; Patankar et al., 2013; Sarker et al.,
2013; Vora and Dave, 2013; Albitar et al., 2015; Lavanya and Jegan,
2015; Okoye et al., 2015; Patankar et al., 2015; Shaikh and Vimonsatit,
2015; Thesis et al., 2015; Ganesan et al., 2015; Aliabdo et al., 2016;
Nuaklong et al., 2016; Assi et al., 2016; Satpute et al., 2016; Shaikh,
2016; Shehab et al., 2016; Wongsa et al., 2016; Mehta and Siddique,
2017; Nath and Sarker, 2017; Ramujee and Potharaju, 2017;
Sathanandam et al., 2017; Wardhono et al., 2017; Lokuge et al.,
2018; Ishak et al., 2019). To carry out the more generalized study,
both cylindrical shape samples and cubic samples with different sizes
were considered in the dataset. It consists of 101 cylindrical samples
(200 × 100)mm; height × diameter, 31 cubic samples (100 mm),
and 166 cubic samples (150 mm). The f ′c of concrete is size- and
shape-dependent and varies with ratio between length and diameter
(L/D) (del Viso et al., 2008; Hamad, 2017). The f ′c of 100mm cubic is
5% more than 150mm cubic samples. Also, the f ′c of 150mm cubic
samples is 20% greater than cylindrical samples of size
(200 × 100)mm; height × diameter. Therefore, the compressive
strength of both size of cubes is being normalized to cylinder
compressive strength of size (200 × 100)mm; height × diameter.

The comprised dataset has f ′c as a response variable and has an
explanatory variable such as temperature required for curing of the
sample (T), age of the sample (A), the molarity (M) of the sodium
hydroxide (NaOH) solution used, the percentage of silicon dioxide
(SiO2) to the water ratio (% S/W) for preparing sodium silicate
(Na2SiO3) solution, the ratio between sodium silicate (Na2SiO3)

solution to NaOH (Ns/No), the percentage by volume of total
aggregates (% AG), the ratio between fine aggregate to total
aggregates (F/AG), the ratio between alkali to fly ash (AL/FA),
percentage of plasticizer (% P), and percentage of extra addition of
water (% EW). For all the collected samples, the time (t) required
for the initial curing of the sample is 24 h. It is true that f ′c rises
with curing time (t), but the rate of increment in f ′c of FGPC is
quick till 24 h (Hardjito and Rangan, 2005). Moreover, some
researchers stated that, due to quick geopolymerization, f ′c is
not improved after 24 h (Van Jaarsveld et al., 2002). Therefore,
limited study is conducted for prolonged curing time. The
performance of every model relies on the distribution of input
variables (Gandomi and Roke, 2015).

Figure 3 shows the cumulative percentage and frequency
distribution for all the 10-input parameter used in the
modeling of f ′c of FGPC. The data points of every input
parameter are distributed over its range. Table 2 illustrates the
range, variance, maximum, minimum, and mean values of the
response and explanatory variables. To get accurate and precise
results, it is suggested to utilize the projected models for the
prediction f ′c of FGPC within the prescribed range.

It must be noted that for the validation, consistency, and
reliability of the dataset, many trials have been executed. The
instances that deviate about 20% from the global norm were not
counted in the development of the models. 298 data points were
used to develop ANN, ANFIS, and GEPmodels for the prediction
of f ′c of FGPC. The overall dataset is randomly subdivided into 2
statistically consistent subsets, that is, train subset (70%, 208
instances) and validation subset (30%, 90 instances) (Javed et al.,
2020b). The train set has been utilized for training of the model,
and the validation set was used to evaluate and verify the
generalization capacity of models (Gholampour et al., 2017).

DEVELOPMENT AND EVALUATION OF
MACHINE LEARNING MODELS

The first and foremost step in the establishment of the model using a
machine learning algorithm is the selection of such input variables.
To develop the generalized AI models, those input parameters are
chosen, which greatly influence the properties of FGPC. To develop
AImodels for the compressive strength of FGPC, themost influential
input variables considered in this study are shown in Eq. 9.

f ′c � f (T,A,M,AG,%P,%EW ,%(S/W), (NO/NO), (AL/FA), ( F/AG)).
(9)

Development of Artificial Neural Network
Model
The first step in the establishment of the ANN model is the
adjustment of fitting parameters, which includes the numbers of
the hidden layer, the hidden number of neurons in every layer, the
function used for training of the neural network, the epochs, and
the maximum number of repetitions. Table 3 displays the details
of these parameters. MATLAB software is utilized for the
execution of the ANN algorithm.
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Development of Artificial Neuro-Fuzzy
Interface Model
Likewise, before the execution of the ANFIS algorithm, the fitting
parameters were provided, which include the function used for
the activation of the ANFIS algorithm, the number of epochs, and
the maximum number of repetitions. Table 3 displays the
detailed description of these parameters. Similarly, for the
execution of the ANFIS algorithm, MATLAB software is utilized.

Development of Gene Expression
Programming Model
The three groups of fitting parameters are used in the
development of the GEP model. These are the ordinary model
parameters, the numerical constants, and the genetic operators.
The ordinary parameters include the population size, that is, the
number of chromosomes, the number of genes, the connecting
function, the head size, and the set of functions. The numerical

FIGURE 3 | Occurrence frequency and cumulative percentage of explanatory variables.
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constants cover the number of constants used per each gene, the
type of data, and its lower and upper bound. The genetic
operators involve the mutation rate, transposition function for
root insertion sequence (RIS) and insertion sequence (IS), and
rate of recombination for combining and splitting two
chromosomes. To achieve a generous algorithm, the setting
parameter setting suggested in the previous study has been
utilized (Iqbal et al., 2020). Table 4 shows the detailed
description of GEP setting parameters. GeneXproTool has
been utilized to run the GEP-based algorithm.

Model Performance Evaluation Criteria
Generally, the coefficient of correlation (R) is utilized to study the
performance and operation of the models. Because of the insensitivity
of R in relation to division and multiplication of response to the
constants, it cannot be exclusively chosen to judge the accuracy and
precision of the model (Babanajad et al., 2017). Thus, this research
study also considers the evaluation of the models via various statistical
error parameters, that is, the relative squared error (RSE), root mean
squared error (RMSE), mean absolute error (MSE), relative rootmean
squared error (RRMSE), and the performance index (ρ). The
performance index (ρ) evaluates the model using the function of
both RRMSE and R (Gandomi and Roke, 2015). Equations 10–15
show the mathematical expressions of these statical error parameters.

MAE � ∑n
i�1
∣∣∣∣xi − yi

∣∣∣∣
n

, (10)

RSE � ∑n
i�1(yi − xi)2∑n
i�1(x − xi)2 , (11)

RMSE �
�����������∑n

i�1(xi − yi)2
n

√
, (12)

TABLE 2 | Mean value, standard deviation, and range of input and targeted parameters.

Parameter Mean value Standard deviation Minimum value Maximum value Range

Input variables
A (days) 20.9 45.7 1 540 539
T (°C) 71.6 24.6 23 120 97
NS/NO 2.28 0.517 0.4 4 3.6
A/F 0.455 0.119 0.3 1.0 0.7
AG (%) 72 4.75 60 80 20
M 11.7 2.64 8 20 12
P (%) 2.0 2.33 0 11.3 11.3
F/AG 0.357 0.050 0.2 0.5 0.3
EW (%) 3.89 6.34 0 35 35
S/W (%) 61.7 10.17 43.4 81.4 38
Targeted response
fc′ (MPa) 37 11.2 8.2 63 54.8

TABLE 3 | Setting of fitted parameters for ANN and ANFIS models.

Type of model Adjusted parameters Parameter description

ANN Number of hidden layers 10
Maximum hidden neurons for each layer 10
The function used for training Trainlm
Epochs 100

ANFIS The function used for training Gaussmf
Epochs 4
Completion of training at epoch 4

TABLE 4 | Setting of fitted parameters for the GEP model.

Adjusted fitting parameter Parameter description

Ordinary
Chromosome’s number 150
Gene’s number 4
Head size 10
Function for linkage of genes Multiplication function (×)
Different set of arithmetic functions +, /,−,×, �

3
√

Numerical constants
Total number of constant per each gene 10
The type of data Floating data
Lower bound: upper bound -10: 10
Genetic operatives
Mutation rate 0.001380
Inversion rate 0.005460
Transportation rate of IS 0.005460
Transportation rate of RIS 0.005460
1-point recombination’s rate 0.002770
2-point recombination’s rate 0.002770
Recombination rate for gene 0.007550
Transportation rate for gene 0.002770
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R � ∑n
i�1(xi − xi)(yi − yi)����������������������∑n

i�1(xi − xi)2∑n
i�1(yi − yi)2√ , (13)

RRMSE � 1

|x|

�����������∑n
i�1(xi − yi)2

n

√
, (14)

ρ � RRMSE
1 + R

. (15)

In the above expressions, here, yi, xi, yi, and xi are the i
th model

output, experimental output, average model outcome, and
average experimental output, respectively. While n shows the
number of instances in the dataset. The best calibrated model is
the one that yields lower error statistics and a higher value of R.
The researchers reported that for a strongly correlated model, the
value of R must be greater than 0.8, and for an ideal model, it
should be 1 (Gandomi et al., 2011). The value of the performance
index (ρ) generally ranges from zero to positive infinity.
Moreover, for the better model performance, (ρ) should be
approximately equal to zero.

K-Fold Cross-Validation Model
Cross-validation (CV) is the technique generally considered for
the judgment of the performance and flexibility of the machine
learning model, while statistical analysis generalizes to an
independent dataset. There are various types of CV
techniques, for example, bootstrapping, Jack Knife test,
disjoint sets test, three-way split test, and Monte Carlo test.
(Saud et al., 2020). The k-fold cross-validation (CV) is carried
out to minimize the sampling bias and overfitting issue.

In this research k-fold, CV algorithm is used which is Jack
Knife’s test part. The k-fold CV is the technique used to judge the
working of the model, which splits the whole dataset into “k”
equal subsets. In which, k-1 subsets are used for data training and
one subset is hold out which is used for validation or testing with
other datasets (Saud et al., 2020). In the k-fold CV technique, the
entire procedure is recurring k-times through varying the testing
and training data samples. Furthermore, the finest model is
chosen via finding minimal error based on different error
approximation statistics. The effectiveness of CV is that the
entire instances are utilized for training and validation of the
model, and every instance is once utilized for the validation
purpose. The steps involved in the k-fold CV are as follows:

• Splitting the whole dataset into “k” number of equal parts,
known as folds.

• Among “k” folds, one-fold is chosen for testing purposes and
“k-1” folds are saved for training purposes.

• The model is fitted upon train folds and predicted upon test
fold. This recurs for all the folds.

• For the prediction of the best model, the error is estimated via
statistical checks like correlation coefficient (R) and root mean
squared error (RMSE). Further, the best coefficient value that
corresponds to lesser error is selected.

Kohavi (Kohavi, 1995) reported that the ten-fold CV
algorithm provides reliable variance with reduced
computational complexity. The whole dataset comprises of 298

instances that are divided into ten-folds. Nine-folds are utilized
for training various models. One-fold is held to test against the
best coefficient value provided by nine-folds. The entire process is
recurred 10 times as the validation is to be executed the number of
generations the data are divided. Among the 10 coefficient values,
the best coefficient which displays minimal RMSE value is
chosen. The flow diagram of the whole k-fold CV is shown in
Figure 4.

RESULTS AND DISCUSSION

Performance Assessment of Artificial
Neural Network Model
The ANN has its importance in resolving a complex engineering
problem. It is initially developed for predicting the models for
complicated procedures that are nonlinear in nature. The
simulation of the process requires input parameters (garbage
in) to predict the output (garbage out). The ultimate results of
the ANN predictive model are presented in Figure 5, which
shows the slope of the regression lines for training and
validation data points, that is, 0.9715 and 0.9762,
respectively, (see Figures 5A,B) displays the dispersion of
absolute error for the whole dataset utilized in ANN
modeling. The percentage of average error and maximum
percentage of error come out to be 9.83 and 14.67%,
respectively. Nearly 80% of the data points have error values
less than 10%. The hidden layers of ANN are like a black box,
and it is very hard to find a proposed equation.

Performance Assessment of Artificial
Neuro-Fuzzy Interface Model
In fuzzy system works on fuzzy reasoning and IF–THEN rules,
ANFIS is a more powerful tool which is a combination of fuzzy
logic and neural network. Figure 6A depicts that the slope of the
regression line in the training and validation stage is 0.9949 and
1.000, respectively, which defines a strong correlation between
ANFIS predicted outcome values and experimental outputs of f ′c
of FGPC. Figure 6B displays the outburst performance of the
ANFIS predictive model. The average and maximum percent
deviation between predictive ANFIS values and experimental
values is quite lesser, that is, 2.58 and 6.09%. 95% data points
show lesser error than 5%, which proves the superiority of the
ANFIS model over the ANN model. Furthermore, the frequency
of maximum absolute error is very less.

Gene Expression Programming–Based
Empirical Equation
As presented in Figure 7, GEP provides an expression tree (ET)
with four sub-ETs, which is translated to have empirical relation
for the prediction of compressive strength (f ′c) of FGPC. Table 5
shows the description of indicators used in the expression tree of
the GEP model. Eq. 16 is the final form of GEP’s empirical
equation that can be used for the prediction of f ′c of FGPC in
MPa. The variables A, B, C, and D are shown as Eqs 17–20 are the
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FIGURE 4 | Flow diagram of K-fold cross-validation.

FIGURE 5 | ANN model predictive results. (A) Regression line slope of the ANN model. (B) Dispersion of absolute error values of the ANN model.
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four variables that have been derived from sub-ET-1, sub-ET-2,
sub-ET-3, and sub-ET-4, respectively.

Compressive strength of FGPC � f ′c(MPa) � A × B × C × D,

(16)

A �
�������
%(S/W)3

√
−%P + (M × (F/AG) × (AL/FA) × 6.61) +%EW

−%AG,

(17)

B � −
��������������������������

A + 80
0.083(T − 17.9) +M + (NS/NO)3

√
, (18)

C � F
AG

− (%EW ×M − 0.0003

(NS/NO) −%EW
) − 0.0003, (19)

D �
������������������
(%P −%(S/W)1.160

T

3

√
+

�������
0.170

(F/AG)
3

√
+ 0.770. (20)

Performance Assessment of Gene
Expression Programming Model
Figure 8A presents a strong correlation via the slope of the
regression line between the predicted results of the GEP model
and experimental values. From the training instances and
validation instances, the regression line slope is calculated as
1.000 and 0.9892, respectively. The distribution of absolute error
values between experimental and targeted outcomes is shown in
Figure 8B. The maximum error percentage and the average
percentage of absolute error are quite closer, that is, 8.32 and
6.47%, respectively. In comparison with ANN, the occurrence of
maximum absolute error values is quite lesser. In the validation
stage, 90% of data points of GEP predicted values have an error
lower than 10%, with an average percent error lesser than 5.560%.

ANFIS gives an outstanding performance as compared to GEP,
but it fails in providing a flexible and simplistic empirical
equation for future use.

Statistics and External Verification of
Artificial Neural Network, Artificial
Neuro-Fuzzy Interface, and Gene
Expression Programming Models
The statistics considered in this study for the error analysis of
training and validation sets of ANN, ANFIS, and GEP models
are shown in Table 6. The results indicate that all three models
performed effectively, giving lesser error values. This shows the
robust correlation between models predicted outcomes and
experimental values. Among all the three models, ANFIS
gives an outstanding performance followed by GEP and
ANN models. In ANFIS, for the training instances, the MAE,
RMSE, RSE, and R equal 3.286, 4.086, 0.294, and 0.9256,
respectively, and measured as 2.084, 2.593, 0.0493, and
0.9783 for the validation instances. While for GEP, these
values come out to be 5.823, 5.971, 0.325, and 0.8586 for the
training instances, respectively, and 2.057, 2.643, 0.0675, and
0.9643 for the validation instances. The consistency of the GEP
model is dependent on the number of data points in the dataset.
The literature reveals that for the development of a reliable and
consistent GEP model, the minimum value of the ratio between
total number of instances and the total input variable must 3
(Gandomi and Roke, 2015). This study uses a higher value equal
to 30 which comes from 298 data points and 10 input variables.
Thus, as compared to ANN, an accurate and reliable GEP
predictive model has been accomplished. In general, GEP
modeling is preferred over ANFIS and ANN as it provides
an empirical relation between the input variables and the
response. However, ANN and ANFIS fail in providing an

FIGURE 6 | ANFIS model predictive results. (A) Regression line slope of the ANFIS model. (B) Dispersion of absolute error values of the ANFIS model.
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empirical relationship due to its complex architecture. As
presented in Table 6, the performance index (ρ) for all the
predictive models is nearly equal to zero. Thus, the developed

GEP equation is reliable and accurate and can be utilized for the
prediction of fresh data lying within the range provided in
Table 2.

FIGURE 7 | Expression trees (ETs) of the GEP model.
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The predicted results of all three models are also verified through
the statistical checks suggested in the literature. The inclination
(slope) of the regression line, that is, m′ or m (crossing through an
origin) must be near to 1 (Aslam et al., 2020). The authors also
endorsed that the squared coefficient of correlation (crossing an
origin) between the experimental outputs and predictive model
results, that is, R2

o or between the model predictive results and
experimental outputs, that is,R2

o must be near to 1 (Alavi et al., 2011).
These external verification checks are summarized in Table 7. This
replicates that all the predictive models are correct and accurate and
not just work as a correlation but have a predicting capability.

Comparison Between Artificial Neural
Network, Artificial Neuro-Fuzzy Interface,
and Gene Expression Programming Models
Figure 9 illustrates the comparison of the output proposed via
ANN, ANFIS, and GEP models, for both the training and
validation phases. It shows that all the models can capture the
output precisely within an acceptable range of error. The
performance index (ρ) and RMSE for the ANFIS model are
lesser than ANN and GEP model in both training and validation
phases. However, GEP performed better than the ANN model.

TABLE 5 | Description of indicators used in expression tree of the GEP model.

Expression tree
indicators

Description Expression tree
indicators

Description

d0 Temperature required for curing of samples, T (°C) d5 Percentage by volume of total
aggregates (%AG)

d1 Age of the sample (A) d6 Ratio between fine aggregate to total
aggregate (F/AG)

d2 Ratio between alkali and fly ash (AL/FA) d7 Percentage of plasticizer (%P)
d3 Ratio between sodium silicate (Na2SiO3) solution to NaOH

solution (Ns/No)
d8 Ratio between percent silica and water (%S/W)

d4 Molarity (M) of NaOH solution d9 Percentage of extra addition of water (%EW )

FIGURE 8 | GEP model predictive results. (A) Regression line slope of the GEP model. (B) Dispersion of absolute error values of the GEP model.

TABLE 6 | Statistics of ANN, ANFIS, and GEP models.

Predictive
models

MAE RMSE %RRMSE RSE R ρ

TRG
a VLD

b TRG VLD TRG VLD TRG VLD TRG VLD TRG VLD

ANN 5.925 4.127 6.029 4.986 17.69 8.346 0.417 0.163 0.8498 0.9314 0.0956 0.0432
ANFIS 3.286 2.084 4.086 2.593 9.025 3.864 0.294 0.0493 0.9256 0.9783 0.0468 0.01953
GEP 5.823 2.057 5.971 2.643 16.949 4.949 0.325 0.0675 0.8586 0.9643 0.0911 0.02519

aTRG is a symbol used for training data points
bVLD is a symbol used for validation data points
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The ρtraining and RMSEtraining for the ANFIS model are 49% and
32% better than the GEP model, respectively; and 51% and
32% better than the ANN model. While in the validation stage,
ρvalidation and RMSEvalidation are 22% and 2% better than GEP,
respectively; and 55% and 48% better than the ANN model.
ANFIS is a combination of ANN and fuzzy logic and thus gives
an outburst performance in both the validation and training
phase. Generally, the GEP predictive model is ideal as it
delivers a simplistic and easy mathematical equation for
future use.

K-Fold Cross-Validation of the Gene
Expression Programming Model
Validation of themodel is of great importance inmachine learning,
to test the performance and generalization ability of the model and
to assure the optimal accuracy of the model. CV is conducted via
k-fold CV algorithm, to improve the robustness, reliability, and
effectiveness of the developed GEP model. The fluctuation in the
selected statistical performance, that is, R and RMSE are shown in
Figure 10. The maximum,minimum, andmean values of R for the
predictive model are 0.9723, 0.8706, and 0.9239, respectively, and

9.5031, 4.4537, and 6.9605 for RMSE, respectively. While the
standard deviations of R and RMSE are 0.0328 and 1.5173,
respectively. Based on the mentioned statistical indicators, the
results of k-fold cross-validation confirm the generalization
capacity and accurateness of the predictive model.

Sensitivity and Parametric Analysis
In this study, sensitivity analysis (SA) is conducted using
GEP model outputs. The purpose is to assess the
comparative contribution of all the ten explanatory
variables utilized for the estimation of compressive
strength (f ′c) of FGPC (Iqbal et al., 2020). The SA
explains the dependence of the model outputs upon the
explanatory parameters via Eqs 21, 22.

Nk � fmax(xk) − fmin(xk), (21)

SA � Nk∑i�1
n Ni

. (22)

Here, xk is the kth input dominion. While fmin(xk) and fmax(xk)
display the minimum and maximum output values, respectively,
subjected to kth input dominion keeping the other explanatory

TABLE 7 | Verification of ANN, ANFIS, and GEP models via criteria suggested in the literature.

Suggested equation Verification criteria ANN ANFIS GEP

m � ∑n

i�1(xi×yi )∑n

i�1(x2i )
0.85<m<1.15 0.973 1.000 1.001

m′ � ∑n

i�1(xi×yi )∑n

i�1(xi×yi )(y2i )

0.85<m’ <1.15 1.007 0.999 0.995

R2
o � 1.0 − ∑n

i�1(yi−xoi )
2∑n

i�1(yi− yoi )2
, xoi � m × yi

R2
o � 1.0 0.9806 0.9817 0.9998

R′2o � 1.0 − ∑n

i�1(xi−yoi )
2∑n

i�1(xi− xoi )2
, yoi � m′ × xi

R′2o � 1.0 0.9899 0.999 0.9849

FIGURE 9 | Comparison between the predicted compressive strength via ANN, ANFIS, and GEP models.
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variables at their mean values. The Nk represents the range of the
kth dominion, which is calculated by taking the difference
between fmax(xk) and fmin(xk). Both, the SA as well as the
parametric study were performed only via train instances
because both the validation and training set data are
consistent. (Gandomi et al., 2011; Iqbal et al., 2020). Figure 11
displays the results of SA for the f ′c of FGPC (Iqbal et al., 2020).

In this research, a parametric study is also conducted via GEP
model outcomes (using Equation 16), to assess the trend of
predicted f ′c of FGPC with the single explanatory variables. The

fluctuation in f ′c is determined just by varying only one
explanatory variable from maximum to minimum, and the
rest all are kept constant at their mean values. The ultimate
results of the parametric study of f ′c of the GEPmodel is shown in
Figure 12.

In working with GPC, the initial temperature (T) for curing of
samples is the utmost problematic parameter. Figure 11 depicts
similar results and shows that T relatively contributes 25.30% in
the f ′c of FGPC. Figure 12 illustrates the trend between the
explanatory variables and the response. It shows a linearly

FIGURE 10 | K-fold cross-validation results for the GEP model. (A) Coefficient of correlation (R). (B) Root mean square error (RMSE).

FIGURE 11 | Percentage of the comparative contribution of input variables.
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decreasing trend between f ′c and (%S/W), % EW , M, and
(AL/FA). While the trend of f ′c with T , (Ns/No), % AG,
(F/AG), and A is increasing with a different rate.

In the production of FGPC, alkaline solution releases
hydroxides and silicates, which creates polymers of alumina
silicates. Extra heat is required to expedite its reaction with the
source substance and to enhance the f ′c of FGPC. Figure 12
depicts a rise in f ′c till curing temperature rises to 100°C. The
authors reported that curing of FGPC at higher temperatures
results in the loss of moisture content, even if it is sealed properly

(Joseph and Mathew, 2012). The f ′c reduces after 240 days
because the gel fills up the voids, resulting in the development
of compressed and semi-homogenous structure (Wardhono et al.,
2017). Figure 12 displays that f ′c improves with increase in the
volume of total aggregates; however, the volume of total
aggregates is directly interlinked with the ration between fine
aggregates to total aggregates.

The effect of molarity (M) of NaOH solution, the AL/FA ratio,
and Ns/No ratio on the f ′c of FGPC is linked with each other.
However, the amount of Na2SiO3 alters the microstructure and

FIGURE 12 | Change in compressive strength by changing input variables.
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significantly affects f ′c of FGPC. So, in the formulation of
Na2SiO3 solution, the ratio between the percentage of silica
(%S/W) ratio needs to be greater, to achieve greater f ′c. The
lesser AL/FA the ratio in connection with the lesser molar solution
of NaOH and greater Ns/No ratio ensure the high f ′c of FGPC.
However, NaOH solution must be an adequate amount for the
completion of dissolution of geopolymers. The same results have
also been studied in the previous study (Lokuge et al., 2018).

To accomplish a high workable FGPC mix and to prevent
cracking, the addition of extra water and plasticizer is required
(Nuruddin et al., 2011a). Figure 11 displays that the inclusion of
plasticizers or extra addition of water (EW) affects f ′c 6.71 and
18.85% separately as compared to other input variables. As
evident from Figure 12 that f ′c rises with the inclusion of
plasticizers and reduces by adding EW . Because the EW may
cause segregation and bleeding in green concrete, if exceed a
certain limit.

The parametric and sensitivity analysis accurately capture the
effect of all input parameters considered in the establishment of
machine learning models for the prediction of f ′c of FGPC.
Furthermore, results similar to Figure 12 have also been
reported by different authors (Nuruddin et al., 2011a; Lokuge
et al., 2018).

CONCLUSION

In this study, the three AI techniques, namely, ANN, ANFIS, and
GEP are used for estimating the compressive strength (f ′c) of
FGPC. Ten influential and prominent parameters are used as
explanatory variables for the accurate prediction of f ′c of FGPC.
The k-fold CV, statistical error checks, and criterion suggested in
the literature are considered for the verification of the predictive
tendency of the models. The statistical measure considered in this
study isMAE, RSE, RMSE, RRMSE, R, and performance index (ρ).
These checks verify that the ANFIS predictive model gives an
outstanding performance followed by GEP and ANN predictive
models. In the validation stage, the coefficient of correlation (R) for
ANFIS, GEP, and ANN models is 0.9783, 0.9643, and 0.9314,
respectively. All three models also accurately fulfill the external
verification criterion suggested in the literature. Generally, the
GEP predictive model is ideal as it delivers a simplistic and

easy mathematical equation for future use. Furthermore, the
k-fold CV of the GEP model is also conducted, which verifies
the accurateness and robustness of the GEP predictive model.
The parametric study is carried via the proposed GEP
expression. This confirms that the GEP model accurately
covers the influence of all the explanatory variables used for
the prediction of f ′c of FGPC. Thus, the proposed GEP
equation can be used in the preliminary design of FGPC.

However, it is highly suggested to conduct the leachate
study, before the addition of fly ash (FA) as geopolymer
material. This study offers a practical and effective base for
the use of hazardous FA in concrete, as a substitute for
discarding into landfills. This would eventually step toward
viable, sustainable, and efficient construction with reduced
greenhouse gases and lesser utilization of energy. In terms of
disposal cost of FA and carbon credit, it would increase the
economy of a country.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MAK: methodology, software, data curation, and writing
–original draft; AZ: supervision, funding acquisition and
project administration; FF: investigation, writing –review and
editing; MFJ: conceptualization, software, writing –review and
editing; RA: resources and validation; HA: visualization and
resources; MIK: resources and formal analysis.

FUNDING

This research was supported by the deanship of scientific research
at Prince Sattam Bin Abdulaziz University under the research
project number 2020/01/16810 and was also followed by the
National University of science and technology (NUST),
Islamabad, Pakistan.

REFERENCES

Ahmadi-Nedushan, B. (2012). Prediction of elastic modulus of normal and high
strength concrete using ANFIS and optimal nonlinear regression models.
Construction Building Mater. 36, 665–673. doi:10.1016/j.conbuildmat.2012.06.002

Akande, O., Owolabi, K., O. T., Twaha, S., and Olatunji, S. O. (2014). Performance
comparison of SVM and ANN in predicting compressive strength of concrete.
IOSR J. Comput. Eng. 16, 88–94. doi:10.9790/0661-16518894

Akbar, A., Farooq, F., Shafique, M., Aslam, F., Alyousef, R., and Alabduljabbar, H.
(2021). Sugarcane bagasse ash-based engineered geopolymer mortar incorporating
propylene fibers. J. Building Eng. 33, 101492. doi:10.1016/j.jobe.2020.101492

Akbar, A., and Liew, K. M. (2020). Assessing recycling potential of carbon fiber
reinforced plastic waste in production of eco-efficient cement-based materials.
J. Clean. Prod. 274, 123001. doi:10.1016/j.jclepro.2020.123001

Akbar, A., Liew, K. M., Farooq, F., and Khushnood, R. A. (2020). Exploring mechanical
performance of hybrid MWCNT and GNMP reinforced cementitious composites.
Constr. Build. Mater. 267, 120721. doi:10.1016/j.conbuildmat.2020.120721

Alavi, A. H., Ameri, M., Gandomi, A. H., andMirzahosseini, M. R. (2011). Formulation
of flownumber of asphaltmixes using a hybrid computationalmethod.Construction
Building Mater. 25, 1338–1355. doi:10.1016/j.conbuildmat.2010.09.010

Alavi, A. H., and Gandomi, A. H. (2011). Prediction of principal ground-motion
parameters using a hybrid method coupling artificial neural networks and
simulated annealing. Comput. Structures 89, 2176–2194. doi:10.1016/j.
compstruc.2011.08.019

Albitar, M., Visintin, P., Mohamed Ali, M. S., and Drechsler, M. (2015). Assessing
behaviour of fresh and hardened geopolymer concrete mixed with class-F fly
ash. KSCE J. Civ. Eng. 19, 1445–1455. doi:10.1007/s12205-014-1254-z

Aliabdo, A. A., Abd Elmoaty, A. E. M., and Salem, H. A. (2016). Effect of cement
addition, solution resting time and curing characteristics on fly ash based

Frontiers in Materials | www.frontiersin.org May 2021 | Volume 8 | Article 62116316

Khan et al. Geopolymer Concrete: Artificial Intelligence Techniques

https://doi.org/10.1016/j.conbuildmat.2012.06.002
https://doi.org/10.9790/0661-16518894
https://doi.org/10.1016/j.jobe.2020.101492
https://doi.org/10.1016/j.jclepro.2020.123001
https://doi.org/10.1016/j.conbuildmat.2020.120721
https://doi.org/10.1016/j.conbuildmat.2010.09.010
https://doi.org/10.1016/j.compstruc.2011.08.019
https://doi.org/10.1016/j.compstruc.2011.08.019
https://doi.org/10.1007/s12205-014-1254-z
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


geopolymer concrete performance. Construction Building Mater. 123, 581–593.
doi:10.1016/j.conbuildmat.2016.07.043

Alkroosh, I. S., and Sarker, P. K. (2019). Prediction of the compressive strength of
fly ash geopolymer concrete using gene expression programming. Comput.
Concr. 24, 295–302. doi:10.12989/cac.2019.24.4.295

Aprianti S, E. (2017). A huge number of artificial waste material can be
supplementary cementitious material (SCM) for concrete production - a
review part II. J. Clean. Prod. 142, 4178–4194. doi:10.1016/j.jclepro.2015.12.115

Aslam, F., Farooq, F., Amin, M. N., Khan, K., Waheed, A., Akbar, A., et al. (2020).
Applications of gene expression programming for estimating compressive
strength of high-strength concrete. Adv. Civil Eng. 2020, 1–23. doi:10.1155/
2020/8850535

Assi, L. N., Deaver, E., Elbatanouny, M. K., and Ziehl, P. (2016). Investigation of
early compressive strength of fly ash-based geopolymer concrete. Construction
Building Mater. 112, 807–815. doi:10.1016/j.conbuildmat.2016.03.008

Babanajad, S. K., Gandomi, A. H., and Alavi, A. H. (2017). New prediction models
for concrete ultimate strength under true-triaxial stress states: an evolutionary
approach. Adv. Eng. Softw. 110, 55–68. doi:10.1016/j.advengsoft.2017.03.011

Bachir, R., Sidi Mohammed, A. M., and Habib, T. (2018). Using artificial neural
networks approach to estimate compressive strength for rubberized concrete.
Period. Polytech. Civil Eng. 62, 858–865. doi:10.3311/PPci.11928

Bajpai, R., Choudhary, K., Srivastava, A., Sangwan, K. S., and Singh, M. (2020).
Environmental impact assessment of fly ash and silica fume based geopolymer
concrete. J. Clean. Prod. 254, 120147. doi:10.1016/j.jclepro.2020.120147

Beheshti Aval, S. B., Ketabdari, H., and Asil Gharebaghi, S. (2017). Estimating shear
strength of short rectangular reinforced concrete columns using nonlinear
regression and gene expression programming. Structures 12, 13–23. doi:10.
1016/j.istruc.2017.07.002

Behnia, D., Ahangari, K., Noorzad, A., and Moeinossadat, S. R. (2013). Predicting
crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy
inference system and gene expression programming intelligent methods.
J. Zhejiang Univ. Sci. A. 14, 589–602. doi:10.1631/jzus.A1200301

Carlson, C. L., and Adriano, D. C. (1993). Environmental impacts of coal
combustion residues. J. Environ. Qual. 22, 227–247. doi:10.2134/jeq1993.
00472425002200020002x
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