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Recently, there has been significant advancement in efforts toward achieving zero-
energy buildings. It is quite evident that the HVAC systems consume a considerable
percentage of the total energy consumption of a building; therefore, making them
sustainable is of the utmost importance. Nanofluid serves as a simple, yet innovative,
approach in decreasing the power consumption of the HVAC systems by improving
the thermophysical properties of the coolants and enhancing heat transfer. As a result,
this has attracted the attention of many researchers across the globe. This manuscript
reviews the different preparation methods of nanofluid, surfactants used in stabilizing
the nanofluid, and the different areas in which it can be used.
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INTRODUCTION

Due to global warming, the increase in demand for alternate sources of energy and sustainable
technologies has increased by leaps and bounds. Consequently, in the year 2011, the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) (Ashare and Ce,
2011) highlighted the need for energy-efficient buildings as the majority of the energy consumption
is in the commercial sector. The publication also issued a design guide for small-to-medium-sized
office buildings to cut down their electricity costs as well as the running cost of the HVAC systems.
Since then, there has been tremendous progress in achieving net-zero buildings either by making
the existing HVAC systems sustainable or by developing disruptive technologies, which can solve
the purpose of reducing energy consumption. Out of these, the development of the nanofluid has
been a very interesting milestone. In simple terms, nanofluid can be better understood by taking
the example of the research work of Bialik et al. (2008), where the authors demonstrated how
adding salt to distilled water can improve the thermophysical properties of the resultant fluid
mixture such as the boiling point. The research study inferred that adding salt not only shortened
the intermolecular distance but also strengthened the intermolecular bond. It was evident that,
by adding salt, the ion–dipole attraction increase led to a much stronger bond than the hydrogen
bonding of the water molecules. As a result, a greater amount of thermal energy was required to
break the bonds, which led to the increase in the boiling point of the resultant solution. Fabuss
and Korosi (1966) and Meranda and Furter (1977) also presented a comprehensive study on the
effect of the boiling point of water at different salt chemical compositions and concentrations.
Frederick et al. (1980) and Bujanovic and Cameron (2001) executed similar experimentations on
black liquor and slash pine black liquor. Similarly, nanofluids are also a new branch of thermally
optimized fluids, which are developed by mixing nanoparticles at different volume fractions into
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the solvent, as described in the study of Trisaksri and Wongwises
(2007). The nanoparticles are generally in the form of nanotubes
comprising ground micro-sized metallic powders and organic
powders. The nanoparticles being in the solid form when mixed
with the solvent, which is in a liquid form, together produce a
two-phase (solid–liquid) mixture. As reported in various research
studies discussed further, these mixtures generally have higher
thermal conductivity, viscosity, coefficient of thermal convection,
specific heat, and Nusselt numbers compared to other existing
coolants. The article has, therefore, been divided into three parts
which are discussed in detail: first, the preparation methods of the
nanofluid; second, the various surfactants used in stabilizing the
nanofluid mixture; and lastly, the different existing and possible
applications of this fluid. Although there are a number of case
studies in the domain of inorganic nanofluids, such as the ones
by Wang and Mujumdar (2007, 2008), Li et al. (2009); Kakaç
and Pramuanjaroenkij (2009), Özerinç et al. (2010); Yu and Xie
(2012), and Devendiran and Amirtham (2016), any review work
related to organic nanofluids is missing to date. As a result, the
scope of this study has been limited only to organic nanofluids.

Researchers around the world are trying to synthesize
environment-friendly organic nanofluids that are not only lower
in cost but also have lower emissions due to rapid climate
change (Mehrali et al., 2016; Zareh-Desari and Davoodi, 2016;
Amani et al., 2017; Sinha et al., 2017). In inorganic nanofluids,
metal ions such as Cu, Fe, Ag, Mn are used along with some
solvents to synthesize the nanofluid (Wang and Mujumdar,
2007; Wang and Mujumdar, 2008; Kakaç and Pramuanjaroenkij,
2009; Li et al., 2009; Özerinç et al., 2010; Yu and Xie, 2012;
Devendiran and Amirtham, 2016). On the other hand, organic
nanofluids generally have alkyl groups attached with the base
liquid, such as in the research work of Shanbedi et al. (2013),
where the authors studied the effect of multi-walled carbon
nanotubes on the efficiency of two-phase closed thermosyphon.
It is seen that, along with an increase in the volume fraction
of the nanoparticle in the nanofluid (organic/inorganic), the
thermal conductivity and other properties such as viscosity,
specific heat, and coefficient of thermal convection also increase.
Consequently, the improvement of the thermophysical properties
of the nanofluid using carbon nanotubes has been further
explored in the research works of Mehta and Khandekar (2007),
Afshar et al. (2009), Garg et al. (2009) and Mahian et al. (2013). In
the research work of Majumder and Das (2020), the authors used
the same technique to harness novel sodium methoxide-based
nanofluid. The study revealed an increase of heat transfer by 10–
12% and a decrease in power consumption of chillers by 5–10%.

It was found that, with an increase in the nanoparticle
concentration in the nanofluid, the Nusselt number has also
simultaneously increased (as shown in Figures 1C,D). It is
known that, by improving the thermophysical properties, such
as thermal conductivity and coefficient of thermal convection,
of the nanofluid, the need for higher compression by the
compressors decreased significantly due to the reduction on
temperature difference to achieve a required refrigerating effect.
As compressors are among the major power consumption
devices, a reduction in their operating cost will be a huge boon
for centralized air-conditioned buildings or offices as it will lead

to an increase in the coefficient of performance (COP) of the
system. Another eco-friendly way to reduce carbon impact is
by adopting solar thermal collectors. The solar thermal collector
is basically a heat exchanger that converts solar irradiation
into thermal energy by trapping the heat inside its chamber
and then passing the heat into a fluid medium through tubes
having high thermal conductivity. Solar collectors come in
different shapes depending on the extent of heating required
for the fluid, such as in the review work of Tian and Zhao
(2013), where the authors provided the temperature ranges
in which different types of collectors work. The maximum
temperature that can be reached by the flat plate collectors,
parabolic troughs, and dish collectors is 373, 873, and 1473 K,
respectively. The temperature at which the fluid can be heated
is also dependent on the concentration ratio (CR). The CR of
flat plate collectors, parabolic troughs, and dish collectors is
around 1, 100, and 10,000, respectively. Due to their performance,
solar tube collectors are now used widely in space heating
applications and even in industrial processes, such as heat solar
desalination systems, solar power systems, solar furnaces, and
solar chemistry applications. Said et al. (2021) and Tiwar et al.
(2021) provided a detailed review exploring the use of nanofluids
in enhancing the performance of solar collectors and reducing the
energy consumption of conventional air conditioning and space
heating systems.

ORGANIC NANOFLUID PREPARATION
METHODS

The various preparation methods adopted in different research
studies for developing organic nanofluids have been discussed in
detail in this section. In general, the preparation techniques have
been classified based on the number of steps: (1) one-step method
and (2) two-step method. First, the one-step preparation methods
have been discussed in detail followed by the two-step method.

One-Step Method
Harnessing nanosolid particles from a fluid mixture was a
bit difficult, initially due to agglomeration. To eradicate this
problem, Akoh et al. (1978) invented a technique known as
the direct evaporation method, which was later named the
Vacuum Evaporation into a Running Oil Substrate (VEROS),
as shown in Figure 2A. This method uses high-pressure
magnetron sputtering to synthesize solid nanoparticles from a
fluid mixture. This method was further improvised by Wagener
et al. (1997) and Eastman et al. (1997) for the synthesis
of fluids having dispersions of Cu, Fe, and Ag particles,
respectively. Another popular single-step method is the chemical
vapor condensation (CVC). This process was developed by
Wang et al. (2003), where the final product was achieved
using evaporation and sputtering of the nanoparticles inside a
vacuum chamber filled with an inert gas such as helium. The
temperature inside the chamber is also fairly low due to very
low pressure. As a result, when the nanoparticles collide with
each other, condensation occurs and they get collected in a
collection chamber at the bottom of the device, as shown in
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FIGURE 1 | Development of organic nanofluid by Majumder and Das (2020) - (A) Processes involved in developing and checking the stability of the nanofluid, (B)
Visual of the developed nanofluid. (C) Variation of specific heat and thermal conductivity with an increase in the volume fraction of the nanoparticle, and (D) Variation
of Nusselt number with an increase in the volume fraction of the nanoparticle.

Figure 2B. Hong et al. (2005) used this process to harness Fe-
based nanofluids, whereas Ramzan et al. (2020) used a numerical
simulation to illustrate this process for nanotube-based organic
nanofluids. Such numerical-based studies were also conducted
by other researchers (Khanafer et al., 2003; Khan and Pop, 2010;
Hassani et al., 2011; Sheikholeslami et al., 2013b; Zeeshan et al.,
2016; Saleh et al., 2017; Srinivasacharya and Shafeeurrahman,
2017). Simultaneously, the chemical precipitation method, as
shown in Figure 2C, used by Mondal et al. (2016), also serves
as a single-step approach for the synthesis of nanofluids. In this
study, the nanoparticles are left to be filtered away or settle at
the bottom of the beaker or collecting flask. The settling mainly
occurs due to the flocculation of the nanoparticles in the medium
over a given period of time. Paul et al. (2010) explored the
use of this method for determining the thermal properties of
gold nanoparticle-based nanofluid for the first time. However,
literature related to the use of this method for the synthesis of
organic nanofluids is unavailable to date and, therefore, offers
excellent future scope for further experimental research. Despite
the advance mechanisms of synthesis, single-step approaches
are often detrimental as it leads to chemical contamination and
deposition, which are often difficult to treat and dispose of into
the environment (Cerpa et al., 2009).

Two-Step Method
Unlike the single-step approach, the nanofluid synthesis here is
done in two steps. The most commonly used two-step approach
for the synthesis of nanofluid is the gas condensation/dispersion
method, as shown in Figure 2D. In this method, first, the nano-
sized powders/particles are being synthesized using chemical
methods, such as steam distillation (Fahlbusch et al., 2000; Yu and
Xie, 2012), or other forms of vapor condensation and physical
methods, such as grinding. Once the particles are obtained, they
are then dispersed into a solvent at certain volume fractions.
Following this, using stabilizers, such as centrifuge agitation,
ultrasonic agitation, and magnetic sputtering, the mixture is
being homogenized and is left stable for a given interval of time.
This method is known for lack of complications, consumes less
time and monetary expenses, and, at the same time, produces
almost zero contamination (Esfe et al., 2014a). Therefore, this
method found its use in the synthesis of almost all organic
nanofluids for the past two decades (Baghalha and Kamal-
Ahmadi, 2011; Yousefi et al., 2012; Esfe et al., 2014b; Ghozatloo
et al., 2014; Sarafraz et al., 2016; Soltanimehr and Afrand,
2016; Sabiha et al., 2016; Alirezaie et al., 2017; Sadri et al.,
2017; Raju et al., 2017; Choi et al., 2018; Karami et al., 2019;
Zhai et al., 2019; Pourrajab et al., 2020; Almanassra et al., 2020;
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FIGURE 2 | Different preparation methods of organic nanofluid. (A) Vacuum evaporation into a running oil substrate process by Akoh et al. (1978), (B) chemical
vapor condensation process by Wang et al. (2003), (C) chemical precipitation process by Mondal et al. (2016), (D) condensation/dispersion method by Ali et al.
(2018), and (E) bio-based process by Sadri et al. (2017).
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Dovjuu et al., 2020). Figure 1A shows a typical layout of the
processes involved during the research work of Majumder and
Das (2020) and an illustration of their synthesized nanofluid
has been shown in Figure 1B. With this process, the fluid has
also achieved stability of around –36.2, revealing no instances of
agglomeration and coagulation of the nanoparticles. However, as
all these methods often lead to unwanted emissions of greenhouse
gases, there was a need for an eco-friendly approach. The bio-
based process developed by Sadri et al. (2017) and later modified
by many other authors (Sadri et al., 2017) provides a solution
to this problem. In this study, we proposed a novel non-
hazardous approach for synthesizing carbon nanotube-based
nanofluids using a free-radical grafting reaction. Figure 2E
shows the schematic diagram of the experimental setup of
this process. Similar to other synthesis processes, the solubility
of the nanofluid is a crucial factor while determining the
thermophysical properties as finer the mixture, the better will
be the heat transfer. Often, heat transfer takes place properly as
the number of solids required for the energy transfer decreases
due to agglomeration, thereby resulting in an overall decrease in
the thermal efficiency of the system. Peng et al. (2003) and Tasis
et al. (2007) focused their works on improving the solubility of
the organic nanofluids in their research works and found that
free-radical grafting can indeed have a positive influence on the
physical characteristics of the nanofluid. Finally, it was concluded
that this method was beneficial than using other chemical
alternatives, such as sulfuric acid, nitric acid, or a mixture of both
the chemicals, as mentioned in the research works of Yang et al.
(2010); Kolacyak et al. (2011), and Chen et al. (2012).

SURFACTANTS USED IN STABILIZING
ORGANIC NANOFLUIDS

As discussed in previous research works (Tasis et al., 2007; Yang
et al., 2010), stabilizing the mixture is a crucial step toward
enabling proper heat transfer through the medium. Therefore,
surfactants are a commonly used material for serving this
purpose (Islam et al., 2003; Murakami and Nakashima, 2006).
Surfactants are amphiphile molecules, which mean that they
comprise both hydrophilic and hydrophobic ends (Schubert
et al., 1995). The purpose of using such a material is to break
the intermolecular bonds, leading to a decrease in the surface
tension and density. As the surface tension reduces, the ability
of particles to float or sink in a medium can also be altered.
With a lower density, the mixtures can attain better stability as
the surface area over which the forces are acting increases. As
a result, when surfactants are added to a given nanofluid, the
chances of agglomeration and coagulation of the nanoparticles
reduce drastically. This is a very critical parameter as coagulation
of nanoparticles might deteriorate the thermal diffusivity of a
medium, resulting in poor heat conduction and convection.
Therefore, the higher the stability, the better is the thermal
performance of the nanofluid. Based on the nature of the
surfactant, it can be divided into three groups: (1) anionic, such
as carboxylates, sulfates, sulfonates, and phosphates; (2) cationic,
such as ammoniums and amines; and (3) uncharged, such as
diacylglycerol and oligoethyleneglycols.

This section provides a generalized overview of the different
surfactants used in different research studies in the domain
of organic nanofluids. Shanbedi et al. (2013) and Sarsam
et al. (2016) studied the thermal performance of multi-walled
carbon nanotubes (MWCNTs)/H2O nanofluid. In this study,
the nanotubes were first dispersed, and then, the mixture was
stabilized using an ultrasonic stabilizer along with the addition
of surfactants such as sodium dodecyl sulfate (SDS), sodium
dodecyl benzene sulfonate (SDBD), cetyltrimethyl ammonium
bromide (CTAB), and gum arabic (GA). Then, the effect of
the aforementioned surfactants was studied at different volume
fractions of the graphene nanoparticle. Both the research studies
show a similar trend in their results, where the effectiveness was
higher in the case of GA and lower in cases of SDS, SDBD,
and CTAB. This claim was further solidified in various other
research works (Bandyopadhyaya et al., 2002; Baghalha and
Kamal-Ahmadi, 2011; Yousefi et al., 2012; Ghozatloo et al., 2014;
Sabiha et al., 2016; Raju et al., 2017; Choi et al., 2018; Zhai et al.,
2019; Almanassra et al., 2020; Dovjuu et al., 2020). However, the
effectiveness of the surfactants cannot be judged on the basis of
just one or two parameters. It also additionally depends on the
polarity of the base fluid, such as, in the research work of Al-
Waeli et al. (2019), CTAB was found to provide the maximum
stability to the nanofluid, which was used by the authors
to study the efficiency of the photovoltaic–thermal systems.
SDS, on the other hand, has also been used extensively for
stabilizing graphene/water-based nanofluid for welding, turning,
and grinding processes (Haque et al., 2015; Seong et al., 2018;
Zhai et al., 2019) and has been found to be quite effective. Selvam
et al. (2017) studied the stability mechanism and performance
of sodium deoxycholate on graphene-based nanofluids and
concluded that not only the mixture was stable, but the
magnitude of the coefficient of thermal convection surpassed
100%. Other surfactants such as diphenyl sulfone, benzethonium
chloride (BZC), and benzalkonium chloride (BAC) have been
used by Gimeno-Furio et al. (2017) and Timofeeva et al. (2011) in
their research studies, where they have shown promising stability
results within the standard range of –30 to +30 using the zeta
potential analyzer. As the performance of the surfactants varies
with temperature (Chen et al., 2008), the most plausible way of
finding out the best surfactant would be to analyze the magnitude
of the hydrophilic/lipophilic balance (HLB) as available in the
review work of Ali et al. (2018). A higher HLB value indicates
the need for a water-soluble surfactant while a lower HLB value
indicates an oil-soluble surfactant.

CONCLUSION

Over the last two decades, there has been significant advancement
in the development of efficient, environment-friendly, and
cost-effective organic nanofluids. These thermally optimized
nanofluids generally have better thermophysical properties in
terms of thermal conductivity, specific heat, coefficient of thermal
convection, and Nusselt number. It is quite evident from various
research works cited in this review that organic nanofluids
generally perform better than their inorganic counterparts.
This is possible due to the long chains of the carbon
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nanotube-based nanoparticles and the covalent behavior of other
organic additives, which provide them with better stability for
a longer period of time. Despite the advantages, nanofluid does
come with few disadvantages, which can be dealt with in future
research works such as: (1) at high temperatures, the bond
strength of surfactants reduces; (2) with an increase in the
volume fraction of nanoparticle, the viscosity is observed to
increase, which often leads to increase in the pumping power
requirements; (3) as the experimental results are often not in close
agreement with Dittus–Boelter equations, there is, therefore, a
need for the development of better mathematical models to
accurately predict the thermophysical properties of the nanofluid;
and (4) apart from the surfactants and surfactant-free methods
for achieving stability of nanofluids, future works should focus
more on the shape and geometry of the nanoparticles instead.
If accomplished, the need for surfactants will be eradicated.
Also, as zero-energy buildings would be a new technological
marvel in a few years from now, therefore, making the HVAC
systems sustainable from an economical standpoint is of prime
importance. As a result, more research studies should now focus
on employing nanofluids in the central air conditioning systems
of buildings and minimize the use of conventional refrigerants.
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