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Fibre strain sensors commonly use three major modalities to transduce
strain—piezoresistance, capacitance, and inductance. The electrical signal in response
to strain differs between these sensing technologies, having varying sensitivity, maximum
measurable loading rate, and susceptibility to deleterious effects like hysteresis and drift.
The wide variety of sensor materials and strain tracking applications makes it difficult to
choose the best sensor modality for a wearable device when considering signal quality,
cost, and difficulty of manufacture. Fibre strain sensor samples employing the three
sensing mechanisms are fabricated and subjected to strain using a tensile tester. Their
mechanical and electrical properties are measured in response to strain profiles designed
to exhibit particular shortcomings of sensor behaviour. Using these data, the sensors are
compared to identify materials and sensing technologies well suited for different textile
motion tracking applications. Several regression models are trained and validated on
random strain pattern data, providing guidance for pairing each sensor with a model
architecture that compensates for non-ideal effects. A thermoplastic elastomer-core
piezoresistive sensor had the highest sensitivity (average gauge factor: 12.6) and a
piezoresistive sensor of similar construction with a polyether urethane-urea core had
the largest bandwidth, capable of resolving strain rates above 300% s−1 with 36% signal
amplitude attenuation. However, both piezoresistve sensors suffered from larger
hysteresis and drift than a coaxial polymer sensor using the capacitive strain sensing
mechanism. Machine learning improved the piezoresistive sensors’ root-mean-squared
error when tracking a random strain signal by up to 58% while maintaining their high
sensitivity, bandwidth, and ease of interfacing electronically.
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1 INTRODUCTION

The integration of electronics into clothing to make “smart
textiles” is commonly used to track motion and aid
rehabilitation, improve athletic training, prevent injury,
recognize gestures, and acquire bio-signals (Fleury et al.,
2015). The occurrence of wearable sensor research articles has
increased on average 28% yearly over the past 10 years1 and will
likely continue to grow in popularity as electronics become
smaller and more integrated. Advances in soft strain sensors
that enable motion tracking have progressed recently to ever
higher performance. The application of different sensor materials
and principles of operation can have a large effect on the signal
characteristics, for better or for worse. For example, accuracy
suffers when tracking running at high speeds with some resistive
sensor types (Mengüç et al., 2014). Others display high sensitivity
but only over a limited strain range making them best suited for
tracking fine movements—such as wearable sensors using
capacitance to detect strain of finger joints for gesture
detection (Liu et al., 2011; Lee et al., 2015; Kim et al., 2017).
Sensor properties such as strain bandwidth, dynamic range,
hysteresis, and static drift affect the tracking of movements
where high speeds, large strains, cyclic motion, or prolonged
static periods are expected, respectively. Quite often, these
deleterious effects are inherent to the materials used to create
the sensor and can be overlooked when focusing on advances
such as gauge factor (GF) or maximum achievable strain with
new sensor compositions or fabrication methods. An alternative
strategy for improving sensing performance has been to
implement machine learning (ML) algorithms to predict or
classify movements or estimate body segment positions (Vu
and Kim, 2018). Software models have also been used to
correct and improve sensor signals in the presence of
detrimental sensor properties, an approach that has been
limited to three reports (Kim and Kim, 2017; Miodownik
et al., 2019; Oliveri et al., 2019). The ability of machine
learning to extract patterns from complex, nonlinear signals in
the presence of disturbances like random noise and
electromagntic interference (EMI) may be used to maximize
the information gained from a sensor (Miodownik et al.,
2019). It is important for future developments to determine
the advantageous and limiting characteristics of each sensor
technology and understand the possible improvements in
signal fidelity realized when each type is combined with
modelling. This enables designers to gain knowledge about
which sensor is best suited for a specific type of motion
tracking application, or simply to push forward sensing
abilities from both hardware and software approaches.

Three modalities of fiber strain sensors may be distinguished
by their mode of operation: using changes in resistance,
capacitance, or inductance to transduce strain. Fibre sensors
using the piezoresistive effect have been fabricated with
conductive polymers, polymer-conductor composites, ionic

liquids, liquid metals, and carbon nanotubes (Shin et al., 2010;
Seyedin et al., 2015; Wu et al., 2016; Choi et al., 2017; Keulemans
et al., 2017; Zahid et al., 2017; Chen et al., 2018). Sensor
arrangement for integration into textiles may incorporate
monofilaments, multifilament fibres, knitted textiles, or foams
(Seyedin et al., 2015; Zahid et al., 2017; Jung et al., 2019; Yin et al.,
2019; Zheng et al., 2019). Polymer-conductor composite (PC)
sensors are commonly used in wearable applications because of
their scalable manufacturing processes, high sensitivity, and ease
of interfacing with textiles and electronics (Liu et al., 2018a).
Many factors (see Supplementary Equation S1 for details)
influence the piezoresistance of the polymer including
mechanical polymer properties, conductive filler choice and
distribution, mode of conduction, and the presence of micro-
cracks between conductive regions (Stübler et al., 2011; Liu et al.,
2018a).

The combination of effects that contribute to a sensor’s
resistance causes its signal to diverge from an ideal linear
strain-resistance relationship. The most obvious of these
effects is a varying GF across the working strain range (He
et al., 2019). A repeatable nonlinear signal response to strain is
not necessarily detrimental for strain sensing because an
operating point can be chosen around which the sensor signal
is approximately linear, or the nonlinearity can be compensated
for in software (Oliveri et al., 2019). Even simple regression
models are able to easily handle repeatable signal
nonlinearities. Mechanically, thermoplastic elastomers (TPE),
pristine or composite, may posses hysteresis, strain softening,
and fading memory in their stress-strain relationships (Diani
et al., 2009; Drozdov and Dusunceli, 2014). Analogous electrical
effects are often observed in TPE conductive composites
including signal hysteresis, dynamic drift, and static drift
(Clemens et al., 2012). Signal hysteresis occurs when the
sensor resistance is path dependent over a long number of
cycles, having different resistance values for a given strain
during extension and recovery (De Focatiis et al., 2012).
Hysteresis modelling for composite sensors and geometrical
modifications of the ionic liquid type have been used to
compensate for and reduce hysteresis (Choi et al., 2017; Kim
and Kim, 2017). Dynamic drift refers to a transient change in the
resistance when exposed to cyclic strain that decays to a steady-
state (De Focatiis et al., 2012). Static drift in resistance during
constant strain is attributable to polymer stress relaxation
(Kalantari et al., 2012). The readout electronics for
piezoresistive sensors may be as simple as a voltage divider
circuit with one analog-to-digital converter (ADC). In
addition, high sensitivities (GF > 1,000) are achievable while
maintaining maximum strain in excess of 100% (He et al., 2019).

Soft sensors that use capacitance to measure strain are
advantageous because they greatly reduce the dependency of
GF on strain when compared to the piezoresistive type. This is
due to the underlying mechanism of capacitance modulation
relying only on a change in geometry (see Supplementary
Equations S2, S3 for details). Capacitive sensors have been
fabricated from liquid metal in tubes, polymer composites, and
thin film electrodes in parallel plate, coaxial, and twisted-pair
configurations (Frutiger et al., 2015; Lee et al., 2015; Wang et al.,

1According to the results of anWeb of Science topic search conducted October 2020
using the keyword string “wearable sensor” restricted to date range 2009-2019.
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2016; Cooper et al., 2017; Kim et al., 2017). The relative change in
capacitance limits ideal capacitive sensors of this construction to
unity gauge factor. A difficulty associated with capacitive sensors
is the complex measurement electronics necessary to read
capacitance. Whereas resistive sensors can be read with
minimal electronic components, capacitive sensors require AC
excitation and precise timing to measure. Conductive polymer
electrodes have their own piezoresistive effect that manifests as a
strain-dependent equivalent series resistance (ESR) to the
measurement circuit (Michel et al., 2012; Liu et al., 2015).
High ESR hinders the rate at which a capacitive sensor may
be sampled and limits the strain frequencies that are measurable.
Manufacturing is more complex than piezoresistive sensors
because at least three layers are required—two electrode layers
with electrical connections that must remain isolated by a
dielectric layer—becoming difficult to manufacture at scale.
Eliminating short circuits between electrodes and accessing the
inner electrode in a downsized coaxial fibre are non-trivial
pursuits. Coupling capacitive sensors with modelling has been
limited to developing mathematical models to predict its
electrical behaviour (Frutiger et al., 2015). Combining ML
models with capacitive sensors has the potential to
compensate for strain-depedent ESR and improve
measurement at high strain rates.

Inductive strain sensors are under-represented in comparison
to piezoresistive and capacitive strain sensors. The inductive
sensing modality has utilized inductance of a single loop,
mutual inductance between loops positioned on different body
segments, or the gain between receiver and transmitter antenna
coils on various segments to track relative motion
(Wijesiriwardana, 2006; Laskoski et al., 2009; Sardini et al.,
2012; Patron et al., 2016). The inductance of a solenoid coil is
dependent on its number of turns, cross-sectional area, and total
wire length. One approach to single coil sensors is to rely on the
change of area of a stretchable solenoid loop to measure strain,
similar to inductance plethysmography systems (Zhang et al.,
2012). Like the capacitive sensor, the inductive signal is directly
dependent on geometry. However, this relationship is not linear.
For a sensor with a reasonable length, the logarithmic behaviour
with respect to length is negligible and sensor response can be
linearly approximated as the GF (Tavassolian et al., 2020).
According to Supplementary Equation S4, the number of
perimeter loops does not influence the sensitivity but rather
scales the baseline inductance allowing higher signal-to-noise
ratio. One challenge with inductive sensors in wearable
applications is rejecting electromagnetic interference (EMI)
from the environment. Furthermore, the inductive loops must
enclose a larger, rectangular area on the garment as opposed to
the thread-like piezoresistive and coaxial capacitive designs. The
aspect ratio varies during actual use and the sensor is not specific
to uniaxial strain. Competing effects (i.e., Poisson effect) of
decreasing width and increasing length when stretching along
only one axis causes the sensor to have lower sensitivity than
expected because the inductive signal is proportional to total area.

Herein, the performance of several ML models of increasing
complexity are investigated when they are paired with different
sensor types. The baseline performance of the sensors are

compared with and without predictive modelling to examine
its effect on strain-signal accuracy and how this would translate to
wearable devices. The use of ML to compensate for undesirable
sensor effects is explored and future areas of research to improve
sensor design and performance are proposed. The performance of
the sensors andMLmodels is probed by utilizing a random strain
pattern that can be both visualized and statistically analyzed for
performance improvements. Thus, by taking advantage of the
computing power available in modern low-cost microcontrollers,
ML may enable the use of simpler sensors and electronics with
accuracy and range not yet realized.

2 MATERIALS AND METHODS

2.1 Strain Sensor Fabrication
Two piezoresistive strain sensors, a capacitive, and an inductive
sensor were used in this study. Each of these sensors are fiber-based
to enable integration into textiles for quantitative motion tracking.
The piezoresistive and capacitive sensors were produced using
the same conductive composite of Hytrel 3078 (DuPont;
Kingston, ON, Canada) and carbon black. Two different core
filaments [Hytrel 3078 (H3078) monofilament and polyether
urethane-urea (PEU) multifilament fiber] were used to
understand the differences that mechanical supports have in
affecting the piezoresistive signal. The inductive sensor was
composed of an elastic fiber and coiled copper wire—it did
not include any conductive composite. The sensors were
fabricated as follows:

2.1.1 H3078-Core Piezoresistive Sensor (R-H3078)
A sensor with a piezoresistive sheath around a TPE core
(R-H3078) was fabricated as described previously (Rezaei
et al., 2019). A filament of H3078 TPE was extruded and dip
coated once into a 50 wt% solution of H3078 and carbon black
(Cabot Vulcan XC-72R; Alpharetta, GA, United States) in
dichloromethane (5 wt% w.r.t. H3078) producing a fibre with
450 μm diameter, as shown in Figure 1A. The sensor samples
were conditioned by subjecting them to 100 repeated cycles of
stretching from 0–40% strain on a linear stage. The R-H3078
sensor had an unstrained specific resistance of 1.3 kΩ cm−1.

2.1.2 PEU-Core Piezoresistive Sensor (R-PEU)
A second type of sensor with a piezoresistive sheath around a
PEU core (R-PEU) was fabricated as described previously (Rezaei
et al., 2019). A mixture of 50 wt% H3078 and carbon black in
dichloromethane (5 wt% w.r.t. H3078) was used to dip coat a
multifilament Dorlastan PEU fibre (Asahi Kasei; Düsseldorf,
Germany) once, resulting in a final diameter of 600 μm
(Figure 1B). These sensor samples were also conditioned by
subjecting them to 100 repeated cycles of stretching from 0–40%
strain. The R-PEU sensor had an unstrained specific resistance of
82Ω cm−1.

2.1.3 Coaxial Capacitive Sensor (C)
A capacitive sensor (C) was produced as previously described
(Geng et al., 2020). H3078 was extruded at 190°C to a diameter of
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400 μm. The filaments were cut into 5 cm samples and dip-coated
with a total of five layers: 1) 50 wt% H3078/carbon black in
dicholormethane (5 wt% w.r.t. H3078); 2) polystyrene-ethylene-
co-butylene-styrene (SEBS) in hexanes (5 wt%); 3) H3078 in
dichloromethane (5 wt%); 4) SEBS in hexanes (5 wt%); 5)
50 wt% H3078/carbon black in dichloromethane (5 wt% w.r.t.
H3078). Between dip-coating steps 1) and 2) the filament was
inverted to ensure the inner electrode was accessible for electrical
connection. Each dip-coated layer was allowed to dry before the
next layer was added. After layer 5) was added, the sensors were
put into a vacuum oven overnight at 60°C to ensure all volatiles
were removed. The final diameter of the sensor was 500 μm
(Figure 1C). The C sensor had an unstrained specific capacitance
of 2.8 pF cm−1.

2.1.4 Inductive Patch Sensor (L3)
An inductive sensor with three perimeter loops (L3) was
fabricated as described in previous work (Tavassolian et al.,
2020). Copper wire was coiled around a spandex elastic thread
(diameter: 640 μm) using a custom-built machine to form a
copper-coiled elastic thread (CCET). The feed rate of the
thread was adjusted to obtain a helical coil with a pitch
(spacing between coils) of 0.7 ± 0.1 mm. The CCET was then
arranged in a rectangular pattern of three perimeter loops with
approximate width of 2 cm and length of 4 cm. Rectangles of
fabric backing were sewn along the width segments to provide a
gripping surface for testing. The inner area of the sensor had an
air gap. A schematic of this type of sensor is shown in Figure 1D.

The L3 sensor had an unstrained specific inductance of
52 nH cm−1 in the length direction.

2.2 Experimental Set-Up
The experimental set-up, shown in Figure 2, consisted of one of
the four sensor types (exposed length: 37.35 ± 5.36 mm)mounted
vertically in an Instron E10000 universal testing machine (UTM)

FIGURE 1 | (A) Schematic of the R-H3078 sensor, consisting of extruded TPE core (grey) and dip-coated piezoresistive sheath (black). (B) Schematic of the R-PEU
sensor consisting of PEU core filament (grey) and dip-coated piezoresistive sheath (black). (C) Schematic of the C sensor consisting of conductive core electrode
(referred to as (1) in text), dielectric layer (3), and outer conductive electrode (5). The intermediate layers referenced in the text as (2) and (3) are not shown. (D) Schematic
of the L3 inductive patch sensor containing three perimeter loops (thick grey), fabric backing (hatched area), and close-up inset of the CCETwith copper wire (black)
coiled around an elastic thread (grey).

FIGURE 2 | A schematic of the experimental set-up, consisting of a
universal testing machine (UTM) driven to strain a sensor sample,
inductance-capacitance-resistance (LCR) meter for sensor measurement,
and laptop PC to control the UTM and log the resulting strain and
sensor signal data.
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(Instron; Norwood, MA, United States). A layer of electrical tape
provided an even clamping force and insulated the sensors from
the metal holding jaws. A strip of copper foil tape was used to
connect the sensor electrodes to external electrical connections.
The UTM used a 10 kN load cell sampling at 100 Hz and was
subjected to linear displacement only (no torsional
displacement).

Specimens were positioned in the clamps with approximate
lengths of 40 mm, and the UTM cross head was retracted until
the samples were just taut with minimal strain. The sensor
length was manually measured and used as the reference length
for 0% strain, ℓ0. For each test, the UTM was programmed to
follow preprogrammed displacement profiles. These profiles
were scaled relative to ℓ0, ensuring consistent strain among
sensor samples.

The electrical response of each sensor, regardless of modality,
was acquired by an Agilent E4980A precision inductance-
capacitance-resistance (LCR) meter (Agilent; Santa Clara, CA,
United States) with four-lead probe. The meter was configured in
the mode suitable for the corresponding sensing modality and
interfaced with a PC using a custom MATLAB script (The
Mathworks; Natick, MA, United States). For each test, the raw
impedance (resistance, capacitance, or inductance, denoted as Z)
was normalized to its value at zero strain, Z0 and expressed as the
ratio Z − Z0/Z0. Mechanical data from the UTMwas converted to
strain ε � ℓ − ℓ0/ℓ0 and down-sampled to match the 55 Hz LCR
sampling frequency.

3 RESULTS

3.1 Tensile Stress-Strain Curve
Samples were subjected to a stress-strain test from 0–100%
strain at a strain rate of 1%/s. The purpose of this test was to
quantify the gauge factor, linearity, and working strain
region. Plastic deformation was observed for all four
specimens upon return from the strain cycle. The R-H3078
sensor elongated by 9.6%, the R-PEU sensor by 7.0%, the C
sensor by 21.7%, and the L3 sensor by 1.9% compared to their
pre-test length. The yield point of these thermoplastic
elastomers was not abrupt and was observed as a gradual
change in slope (Figure 3A). The elastic region, and therefore
the working region, was previously found to be <30% strain
for the piezoresistive fibres and this range was reasonable for
use with all the sensor types (Rezaei et al., 2019). Within the
working region, the Young’s modulus (stiffness) for the
R-H3078, R-PEU, C, and L3 sensor types was 7.4, 6.9,
13.6, and 0.94 MPa, respectively. Stress and therefore
stiffness for the L3 sensor was computed per fibre, of
which there were six in parallel mechanically in the three-
loop configuration.

The linearity in the working strain range was measured by
the coefficient of determination (R2) between the strain and
the ΔZ/Z0 signal scaled to the range [0, 1]. The R-H3078,
R-PEU, C, and L3 sensors had R2 values 0.962, 0.986, >0.999,
and 0.997, respectively. The GF may be calculated

FIGURE 3 | (A) Mechanical stress-strain curves for each sensor, (B) sensor output signal during the elongation, (C) instantaneous (solid) and average (dashed)
gauge factor, (D) signal-to-noise ratio.
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conventionally, shown in Eq. 1, or by using the modified Eq.
2 that reduces the influence of the signal value at zero strain
(Liu et al., 2018b).

GF � Z − Z0

Z0(ε − ε0) (1)

GFp � dZ
Z · dε (2)

The conventional GF for the R-H3078, R-PEU, C, and L3
sensor was 12.6 ± 3.3, 8.0 ± 1.1, 0.77 ± 0.10, and 0.12 ± 0.03
[mean ± standard deviation (SD) over the working strain range].
The mean GF* was 4.2, 3.7, 0.72, and 0.14, respectively, using Eq.
2. Taking a 2.5 s period of zero strain just prior to the tensile test
as a baseline, the signal-to-noise ratio (SNR) was defined as Eq. 3,
where ΔZ � Z − Z0 is the change in raw sensor signal as the
sample is strained and σb is the SD of the baseline.

SNR � ΔZ
σb

(3)

The R-H3078, R-PEU, C, and L3 sensors showed 84, 99, 94,
and 55 dB SNR, respectively. The engineering stress, signal, GF,
and SNR curves are shown across the 0–100% strain range in
Figure 3.

3.2 Sensor Bandwidth
To evaluate the loading frequency dependence of the signal, the
UTM was configured to produce five sinusoidal strain patterns of
increasing frequency, shown in Supplementary Table S1. The
peak velocities (strain rates) experienced by the sensors ranged
from 0.63mm s−1 (1.6%/s) to 126mm s−1 (314%/s).

Constrained by the LCR sample rate of 55 Hz, it is unlikely to
observe a sample point at an exact maxima or minima of the
sinusoidal signal during high frequency movement. This makes it
difficult to reliably observe the change in signal amplitude with
respect to loading frequency in the time domain. To establish
whether any drop-off in sensor response occurred as loading
frequency was increased, a frequency domain approach was used
for greater robustness near the Nyquist rate of the LCR. Both the
strain, derived from the UTM displacement, and sensor signals
were fast Fourier transformed (FFT), then the FFT signal index
(bin) corresponding to each loading frequency was identified. The
ratio of the sensor signal FFT bin to the strain FFT bin was
calculated for each frequency to produce a strain-to-signal gain
metric G. This method should eliminate the effect of any
reductions in the UTM stroke amplitude as frequency is
increased. More details about the frequency-domain method
are available in Section 2 of the Supplementary Material.
Finally, these data were normalized to the G obtained with the
lowest loading frequency (i.e., G0.1 :� 1 for each series) to show
the attenuation of sensor signal with increasing strain
frequencies. The results are plotted in Figure 4.

3.3 Signal Hysteresis
Hysteresis is a common nonlinear effect in piezoresistive strain
sensors, because the re-aggregation of filler particles and thus
formation of conductive pathways may be slow relative to the
strain cycles (Stübler et al., 2011). Other sensor types can suffer
from mechanical hysteresis of the polymer material that manifests
in the signal. A test devised to measure the hysteresis of each sensor
type involved straining to six levels with a symmetrical return to
zero between each run at a constant strain rate (Supplementary
Table S2).

The sensor signal recorded during individual runs are
superimposed in Figure 5A. The two resistive sensors showed
clockwise signal hysteresis loops, becoming larger in area with
less positive slope as the strain maximum was increased. The
sensor signal was slightly elevated upon each return to zero for the
R-H3078 sensor as well as the R-PEU and C sensors, to a lesser
extent. The L3 sensor showed the opposite, with considerable
signal undershoot upon return to zero strain.

One way to compare hysteresis between the sensors is to measure
the area encircled by each hysteresis loop (AUC), shown inFigure 5B
(Isaia et al., 2020). Multiple loops caused by self-intersection, if
present, were summed in absolute area. For a meaningful
comparison despite large differences in signal level between
sensors, the signal was min-max normalized following Eq. 4.

Z � Z − Z0

Z30 − Z0
(4)

The C sensor had approximately one seventh the hysteresis
area of the R-H3078, R-PEU, or L3 types. Both piezoresistive
sensors had similar hysteresis that increased linearly with strain
maximum. The R-PEU sensor had greater consistency between
runs, especially at higher maximum strains. The L3 sensor
showed a linear increase in hysteresis area with strain while
the C sensor hysteresis are appeared exponential with respect

FIGURE 4 | Decreasing sensor response under sinusoidal strains of 0.1,
1, 10, 15, and 20 Hz; normalized to the 0.1 Hz trial.
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to strain, albeit having a much lower magnitude. The undershoot
at low strains observed with the L3 sensor was the primary
contributor to its AUC, with 54% of its total hysteresis AUC
attributable to strains below 5%.

3.4 Signal Drift
3.4.1 Static Drift
Rate-dependent hysteresis, material stress relaxation, and
temperature changes may contribute to drift of the sensor
signal under a constant strain. The test profile
(Supplementary Table S3) drove the UTM following a round-

trip staircase displacement pattern of up to 30% strain with a hold
of 30 s between each step to capture any signal drift. The step
profile further allowed the analysis of static drift by comparing the
signal drift at different strain levels and approaching those strain
levels from lower (extension direction) or higher (recovery
direction) preceding strain values.

Static signal drift shown in Figure 6A was found to be
influenced by strain magnitude, hold duration—and
sometimes—direction of the preceding strain step. The
R-H3078 sensor showed monotonic decreases in resistance
over time for all cases with the extension direction having less

FIGURE 5 | Results of the hysteresis test. (A) The overlaid sensor responses to a triangular strain pattern with the directionality of the hysteresis loop at 30% strain
shown (inset). (B) Hysteretic loss by sensor type and maximum strain level. Error bars indicate the standard deviation of 3 sequential trials.

FIGURE 6 | Static (A) and dynamic (B) drift in the sensors. (A) Change in sensor signal reading from baseline over a 10 s hold at three strain magnitudes. For
increased detail despite a lower sensitivity, the vertical scale of the non-resistive sensors (bottom) is enhanced by a factor of 10. Note that the small transient spike seen
around 0.5 s is an artifact that was due to a correction from the UTM positioning algorithm. (B) Sensor signal drift over 1,000 sinusoidal strain cycles. Solid lines indicate
the percentage change in signal peaks and dashed lines indicate the percentage change in signal valleys relative to the first cycle.
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drift than the recovery, although this could be confounded by the
ordering of the strain pattern where all extension steps were done
prior to all relaxation steps. For the resistive sensors, the ΔR/R0

drift was mostly independent of strain amount. The drift
observed from the R-PEU sensor was similar in magnitude to
that of the R-H3078, although with less directionality
dependence. The C and L3 sensors showed opposite drifts in
signal depending on the directionality of the preceding strain
step. Aside from the small change within the first 1 s, the C sensor
was very stable and quickly reached steady-state. The L3 sensor
had large initial drift, but all trials converged to with 1% of the
initial value after 10 s.

3.4.2 Dynamic Drift
For reliable tracking over many sessions, a wearable sensor must
give a repeatable signal in response to a given strain. The dynamic
drift test (Supplementary Table S4) was designed to evaluate
sensor resilience and signal drift under cyclic strain. The sensors
underwent 1,000 sinusoidal loading cycles from which the initial
and final sections may be compared to observe changes in signal
amplitude.

As shown in Figure 6B, the piezoresistive sensors had large
decreases in response that mostly stabilized within 100 cycles. The
L3 sensor had a lower rate of decrease in response but the drift
persisted to 1,000 cycles. The C sensor was relatively unaffected
by drift, having a small increase in capacitance throughout the
first 10 cycles before steady-state response. For all sensor types,
the drift behaviour at high and low strains were found to be
consistent since the signal peaks and valleys drifted by similar
amounts.

3.5 Machine Learning
Regression algorithms were used to predict strain from sensor
signals in the presence of nonlinearities. A random UTM
displacement signal was produced by generating a random
time series normalized such that the points lie in a [0, 1]
range, then scaling and biasing this reference signal for each
sensor so that the sample is strained between 5–15%. The
reference signal was spline interpolated and low-pass filtered
so that the final maximum velocity (strain rate) was 10mm s−1
(25%/s). The data collected during the random strain test served
as training and test sets for the regression algorithms.

Four regression models plus one model-free scaling approach
were compared using 5-fold time series splitting of the random
strain data. Training data consisted of the first 10, 20, 30, 40, and
50 s of the data for each fold, respectively, and testing data
consisted of the 10 s immediately following the training set.
This procedure was chosen over conventional 5-fold cross
validation because the SVR, RF, and RNN models (described
below) require contiguous past data for training.

A baseline for comparing regression models was a min-max
scaling of the sensor signal. Scaling was done so that the signal
minimum and maximum were equal to the strain minimum
(ε � 5%) and maximum (ε � 15%), respectively. The scaling was
performed once on the last 50 s of the data set because the
dynamic drift effect led to high errors in the initial strain
spikes. Fit metrics were computed per fold. The first model

considered was a linear regression (LR) completed on each
fold. The LR model is essentially the optimal linear scaling
that minimizes the mean squared error (MSE) on that fold.

The random forest (RF) and support vector regression (SVR)
models are capable of nonlinear regression and were trained over
a sliding window of the past 32 sample points or 0.6 s. Parameters
were tuned using a coarse grid search followed by ad-hoc fine
tuning and were kept the same for all sensors. The RF algorithm
had 30 decision trees and the SVR used radial basis functions with
c � 0.005 and C � 0.1.

The last model of interest was a recurrent neural network
(RNN) with 32 recurrent units followed by one fully connected
layer, a total of 2,113 parameters. The recurrent units used the
rectified linear unit (ReLU) activation function and the dense
layer used linear activation. An MSE loss function was used for
backpropagation and the recurrent layer had ℓ2 regularization
with a penalty factor of 0.01. The RNN model was also trained
with the 32-element sliding window, however, 30% of test data
were reserved for validation. The stopping condition for training
was a non-decreasing validation MSE over 200 consecutive
iterations, typically terminating after 300–700 iterations for the
largest fold.

The output of each sensor split by model is shown in
Figure 7A. The quality of the regression model fit on the test
data for each fold was measured by the R2 and root mean squared
error (RMSE) with results shown in Figures 7B,C. The results on
the first two folds were typically poor because they had a smaller
fraction of training data. Average R2 and RMSE across the last
three folds under the best model for each sensor type compared to
that of the scaling model are shown in Table 1, with more detail
provided in Supplementary Table S6.

3.5.1 Effect of the Model on Regression Fit
A Tukey multiple comparison test was run using the results of the
last three folds to compare the R2 to discriminate models using a
given sensor type. For the R-H3078 and R-PEU sensors, only the
baseline scaling model had significantly worse R2 than all others
(p < 0.001). For just the R-H3078 sensor, the SVR model had
significantly better R2 than LR (p < 0.05), as did the RNN model
vs. LR and RF (p < 0.05). For the C sensor, no statistically
significant difference between any models was observed. The
L3 sensor showed significantly better R2 with the SVR model
versus scaling, LR, and RF (p < 0.05). A similar pattern of results
was produced with respect to RMSE, except with the SVR model
no longer having significantly better RMSE over the LR model
with the R-H3078 sensor nor over RF with the L3 sensor.

3.5.2 Effect of the Sensor Type on Regression Fit
The same test was run using the R2 and RMSE values but using
sensors rather than models as factors. The R-H3078 sensor had
significantly worse R2 than the other sensors across all regression
models (p < 0.05), with its best R2 and RMSE of 0.8947 and 0.0068,
respectively, under the RNN model. The R-PEU sensor had
significantly better R2 versus the L3 sensor using LR and RF
models (p < 0.05). With the RNN model, the R-PEU sensor
achieved a best R2 value of 0.9576 and RMSE of 0.0042.
Regarding RMSE, the R-H3078 sensor again had significantly
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worse RMSE than the other sensor types under allmodels (p< 0.025)
while the C sensor had significantly better than all the other types
(p < 0.005). Like in the R2 case, the R-PEU sensor had significantly
better RMSE than the L3 sensor using LR and RF (p < 0.025).

4 DISCUSSION

Three fundamentally different fiber strain sensor technologies
have been reported previously—piezoresistive, capacitive, and
inductive. Each sensor type has characteristics of differing
importance when considering the application requirements.
The majority of material science research on fiber strain

sensors has focused on the increase of sensing range (%
strain) and sensitivity (gauge factor). Both of these
characteristics are dependent on the composition of the sensor
and fabricationmethods, important for widening the applications
for flexible sensors in motion tracking. In theory, once a flexible
sensor is incorporated into a device, the actual performance of the
sensor is focused less on the accessible strain range and gauge
factor, and more on the signal consistency and the characteristics
that are unique to a type of sensor and motion of interest. These
characteristics include strain rate and history dependence
(hysteresis), gauge factor, linearity, and baseline drift, listed in
Table 2 for the sensors tested here. These factors are less
prominently explored and can have a large impact on the

FIGURE 7 |Output traces (A) and performance (B), (C) of the regression models trained on random strain data for each sensor type. (A) Strain estimated by each
model for each sensor type (solid) and the actual strain (dashed) during the random strain test. (B)Box plots of the coefficient of determination for the four sensors and five
regression models. Boxes indicate interquartile range (IQR) and whiskers extend to the smallest and largest observations that are up to 1.5 IQR from the boxes. Outliers
are denoted with filled circles while goodness of fit values for the first fold, which often had poor results, are shown with open circles regardless of whether or not
they are an outlier. (C) Box plots of the root mean squared error for the four sensors and five regression models.

TABLE 1 | Improvement in average R2 and RMSE across the last three folds by the best performing model for each sensor type.

Sensor R-H3078 R-PEU C L

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Baseline 0.5541 0.0150 0.7759 0.0100 0.9977 0.0010 0.8668 0.0077
Best Value 0.8947 0.0068 0.9576 0.0042 0.9979 0.0010 0.9548 0.0045

Model RNN RNN RNN RNN LR LR RNN RNN
% Change +61.4% −54.7% +23.4% −58.0% 0.0% 0.0% +10.2% −41.6%
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performance of the sensor in a device beyond the proof-of-
concept testing that is typically included in strain sensor
reports. If the change of sensor characteristics is predictable,
even if not initially obvious, the application of ML prediction
models could rectify any perceived limitations and result in a
higher tracking accuracy. To begin, three different types of
sensors were tested to understand the baseline mechanical
properties and identify each characteristic that could be
improved with the application of ML. Additionally, two
piezoresistive-type sensors (R-H3078 and R-PEU) with
different structural core materials were tested to understand
the effect of different mechanical properties using this popular
type of sensor.

When tracking mechanical properties during extension,
the stress-strain relationship of the polymer sensors
(R-H3078, R-PEU, and C) in Figure 3A resembles the
gradual decrease in slope with increasing strain reported
for TPE-carbon black composites (Drozdov and Dusunceli,
2014). All sensors tested could withstand straining to 100%,
indicating that they could tolerate large non-sensing strains
which they might be exposed to when donning a garment, for
example. The C sensor showed the largest amount of plastic
deformation when straining to 100%, although it did not
undergo pre-test conditioning which was standard for the
other sensors. The L3 sensor was exposed to a lower
engineering stress (per-fibre) because the three-loop design
had six fibers running in parallel. The mechanical data
collected during tensile testing established the elastic
region of the sensors which can be useful to limit the
amount of irreversible change to the sensors mechanical
and electrical characteristics throughout the tests. Using a
sensor beyond this region without a highly elastic support can
result in a change in signal characteristics, such as gauge
factor, by having an irreversible reduction in conductive
pathways within the material—which was observed in both
piezoresistive sensors. If this irreversible phenomenon occurs
in a device that is attempting to track an output, the accuracy
of the device post-strain would be impacted. Alternatively, if
the irreversible reduction of the conductive pathways is
predictable, then machine learning could enable the
immediate improvement of device accuracy with enough
training data.

Gauge factor is the primary sensor characteristic that relates
signal response to strain. A constant, large GF is desirable since it
enables linear correlations of signal to strain and increases
resolution of small strains across a variety of pre-strains. High
resolution is important for tracking fine movements such as facial
expressions, where the range of strains is small (Yin et al., 2017).
Gauge factors of piezoresistive sensors can vary over three orders
of magnitude (Supplementary Table S9); ultimately, most
piezoresistive sensors do not possess linear strain-to-resistance
changes across both small and large strains. To compare the non-
linear response of each sensor, a slow strain rate of 1%/s was used
to reduce the possibility of other rate-dependent characteristics

TABLE 2 | Summary table for the properties of each sensor studied with any test conditions noted in the comments column.

Parameter R-H3078 R-PEU C L3 Comments

Young’s Modulus 7.4 MPa 6.9 MPa 13.6 MPa 0.9 MPa Per fibre
Plastic deformation 9.6% 7.0% 21.7% 1.9% After 0–100% strain
Static linearity, R2 0.962 0.986 >0.999 0.997 Signal-strain linear fit
Bulk impedance 1.3 kΩ cm−1 82Ω cm−1 2.8pF cm−1 52 nH cm−1

Sensitivity, GF 12.6 8.00 0.77 0.12 Averaged over 0.01–30% strain range
Signal-to-noise ratio 74 dB 84 dB 84 dB 43 dB At 30% strain
Strain bandwidth 39% 64% 48% 40% Signal amplitude at 20 vs. 0.1 Hz
Hysteresis area 6.91 × 10−3 6.04 × 10−3 1.17 × 10−3 8.39 × 10−3 0–30–0% triangular strain profile
Static drift over 10 s −2.2% −2.9% +0.3% −0.1%a After extension and hold at 30% strain
Drift over 1,000 cycles −26% −34% +6.7% −23% Change in signal peaks

aAs seen in Figure 6A, the maximum drift for the L3 sensor is much higher than that of the C sensor, however, it stabilizes to within 0.1% after the 10 s hold period.

FIGURE 8 | The general trade-off between sensitivity, as measured by
gauge factor, and linearity, as measured by R2 of the linear fit between signal
and strain. Clustering between sensor types is suggested by bounding
polygons. Examples from literature were chosen that had published GF
and R2 data (see Supplementary Table S9 for details) and the sensors
fabricated in this research are highlighted with a black border.
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impacting the gauge factor results. The increase in GF observed in
the R-PEU sensor above 50% strain indicates that the
disconnection of conductive pathways becomes the dominant
piezoresistive mechanism and may be non-reversible upon
release—entrance into this destructive mechanism of
piezoresistive sensing is ideally avoided because it results in
further negative sensor characteristics for accurate strain
tracking such as unrecoverable drift. This motivated the choice
to limit further testing to strains below 30% for all sensors. The
gauge factor of the R-H3078 sensor peaked at low strain enabling
high resolution for small signals. It displays a larger, although
more variable, GF across the strain range decreasing from
5–100% strain. The R-PEU shows a more linear working
region that persists to a strain of 50%. The nonlinear GF
behaviour of both resistive sensors could pose significant
negative effects to accuracy tracking. Linearity versus
sensitivity is typically an area of trade-off between sensor
mechanisms, as shown in Figure 8. The use of ML models to
adapt to GF changes in response to certain strain magnitudes or
strain rates could then improve the strain tracking accuracy.

C and L3 sensors have a lower GF equating to a reduced
sensitivity. However, their GF is more constant across the strain
range, bringing an increase in accuracy. These types of sensors
have a sensing mechanism less dependent on the change of the
conductive pathways that may undergo irreversible changes such
as in a piezoresistive sensor (Busfield et al., 2003). Increased
sensitivity allows the measurement of smaller strain signals using
the same readout hardware. While machine learning algorithms
may improve sensor accuracy, they offer no improvement to
sensitivity. ML models operate after the signal has been digitized
and thus are limited by the sensor GF, readout circuit, and ADC
in resolving small strains. The reliance on a geometrical change
for C and L3 sensors eliminates the negative effects observed in
both the piezoresistive sensors and undoubtedly improved the
accuracy of C and L3 sensors.

Motion tracking is not always focused on measuring fast,
dynamic movements. Some motion tracking devices focus on
slight changes in posture over long, nearly static periods. In
these situations, signal stability at a static strain over time or
between device uses may be more important than sensitivity.
Inductive (L3) and piezoresistive (R-PEU/R-H3078) sensors all
had signal drift of 3% or greater for 10 s holds at 30% strain,
similar to what others have observed for composite sensors
(Melnykowycz et al. (2014)). The L3 sensor stabilized during
periods of static strain that lasted greater than 10 s, converging
to within 1% of its initial value. Its repeatable drift, relatively
independent of strain, is a characteristic where ML could impact
the signal accuracy. Drift was not observed during the random
motion testing for the C and L3 sensors whereas both
piezoresistive sensors can be seen to drift following a strain
maxima (Figure 7A, Scaling model). Machine learning was able
to correct for this drift quite effectively and was observed in the
last 5 s of the random motion plots in Figure 7A under the SVR
and RNN models. However, the random strain testing patterns
were quite short and lacked long static periods that could be
used to quantitatively determine how much drift the machine
learning compensated for.

Large numbers of repetitive cycles are likely in a lot of
applications such as tracking gait parameters. Unsurprising,
the C sensor was quite stable, with its reliance on the
geometrical change of the fibre, as shown in Figure 6A. Both
piezoresistive sensors stabilized after 250 cycles, indicating that
sensors required for wearable devices need robust conditioning
prior to use. Conditioning could reduce dynamic drift which
would decrease the size of the ML training dataset required to
predict this type of behaviour. The L3 sensor drifted over the
1,000 cycles at a nearly constant rate, which could allow a simpler
MLmodel to extrapolate the baseline change more easily. The use
of simpler models trained with limited data is highly useful for
using these devices with ML in actual settings and will be a focus
of future research.

The last sensor characteristic that can hinder performance is
related to the loading frequency and rate of change of strain.
Some applications require the measurement of high frequency
strains, such as detecting physiological finger tremors around
6–30 Hz or shank impact shock around 4–40 Hz (Winslow and
Shorten, 1989; Raethjen et al., 2000). As loading frequencies are
increased, signals can be attenuated by hysteresis (Oliveri et al.,
2019; Geng et al., 2020). The effect of high frequency strain on the
accuracy and performance of wearable devices using strain
sensors has not been extensively explored. A comparison by
Shintake et al. that reported a stable signal for both resistive
and capacitive sensor types at a maximum tested velocity (strain
rate) of 25mm s−1 (50%/s) (Shintake et al., 2018). A reduction in
the accuracy of the signal could be from either mechanical lag
directly correlated to the materials that comprise the sensor, or an
effect from the mechanism of sensing (Costa et al., 2015). The
comparison of the C and R-H3078 sensors demonstrates that the
piezoresistive signal hysteresis is dominant at low loading
frequencies because both sensors are comprised of the same
materials, but the sensing mechanism of the C sensor
eliminates the hysteresis associated with the piezoresistive
material by relying on geometrical changes rather than
electrode resistivity. As loading frequency increases (Figure 4,
the C sensor performance starts to attenuate at a similar rate to
the R-H3078 sensor indicating that the mechanical hysteresis
phenomenon reduces the tracking performance of both sensors.
In contrast, the R-PEU sensor was capable of resolving strain
rates up to 126mm s−1 with an attenuation of 36%—the best of
the sensors tested and can be attributed to the highly elastic and
resilient PEU-core (Reza et al., 2019). The R-H3078, C, and L3
sensors had 61%, 52%, and 60% attenuation, respectively.
Piezoresistive rubber composites have been shown to measure
in excess of 350mm s−1 (7000%/s) (Boland et al., 2014). While
hysteresis is dependent on the history of the material, ML training
with a broad variety of strain patterns and rates could enable the
ML to efficiently predict when this phenomenon is causing a
reduction in accuracy. Hysteresis was observed in the random
strain testing predominantly immediately after large strains
followed by faster and smaller strains in Figure 7A. This
would be compounded at higher frequencies and could
saturate the strain signal leading to a loss of tracking accuracy.
Development of high strain bandwidth sensors likely requires
more elastic and resilient polymers to reduce any mechanical
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hysteresis, while ML could be implemented to extend the range of
strain frequencies that current sensors can track efficiently.

Each of the characteristics that have been discussed thus far are
responsible for the performance of a strain tracking sensor. To
gauge the performance of different ML models between different
sensing mechanisms, a random strain pattern was generated that
had a range representative of what a wearable device for running
or walking might produce (Rezaei et al., 2019; Geng et al., 2020;
Tavassolian et al., 2020). Different models attempt to predict the
applied strain with the resulting signal change—the simplest
model being a linear correlation. It was hypothesized that
certain combinations of sensors and models may be more
accurate when predicting strain by recognizing certain
characteristics more efficiently. For instance, sensors with
higher degrees of nonlinearity may require a nonlinear
regression model (RF, SVR, RNN) to sufficiently correct their
signal. The capacitive sensor had an inherently linear response
and therefore did not benefit from any ML models. In
comparison, the piezoresistive sensors have many
characteristics that decrease the accuracy of the strain-signal
tracking. The R-PEU linearity was improved by 23% and error
reduced by 58% with the RNN model compared to the baseline
(scaling) model. Similarly, the same model improved the R-PEU
linearity by 61% and reduced fit error by 55% over scaling. The
RNN model performed the best, in general, having the highest
average R2 and lowest average RMSE the context of the random
strain experiment. While choosing the best material for the
application was shown to be important for applications that
require high strain frequencies (specifically elastic and resilient
materials such as PEU), ML models have the capability of
improving the performance of the devices in the range
acceptable similar to optical motion capture devices without
the spatial limitations. The advantage of using a combination
of R-PEU with a ML model over the C sensor is that the sensor
retains its high GF and bandwidth not currently attainable with
the capacitive technology. For practical purposes, the simpler
analog circuitry needed for resistive sensors and the availability of
inexpensive digital computing power to run a model further
create scenarios where a piezoresistive sensor would be preferred
over the highest performing C sensor. Given the fact that the
training dataset used was small and the ability for neural network
models to improve with a large amount of data, RNN is a
promising model architecture to explore further. The RF
model would likely also benefit from a more diverse training
dataset because its decision trees were unable to extrapolate
accurate predictions outside the training set.

All sensors studied here consist of a single fiber and may be
easily incorporated into a garment in areas subject to strain as a
linear segment or rectangular patch. Sensors may be anchored
to the base textile by means of cross-stitching or encapsulation
between layers of fabric. Resistive sensors have the advantage
of being read with a simple voltage divider rather than the LC-
tank, bridge, or impedance measurement circuit required for
the other types. Especially for multichannel systems, resistive
sensor arrays with simple interfacing may lead to a
significantly reduced number of components and therefore
circuit cost. Multichannel systems are common approaches to

motion tracking using wearable sensors and the large amount
of data collected make such systems a good target for ML
improvements. The susceptibility of inductive sensors to noise
was observed with the inductive sensor having the lowest SNR
in Table 2 and a higher noise floor in Figure 6A. The issue of
noise susceptibility with inductive and even un-shielded
capacitive sensors have been reported (Yang et al., 2017;
Patiño et al., 2020). A summary of qualitative factors
relating to the practicality of using each sensor type is
shown in Table 3. The acquisition hardware used in this
study was limited to a sample rate of 55 Hz making
measurements at high strain frequencies unreliable. The
method used in Sensor Bandwidth attempts to quantify
sensor response to strain rates near the LCR Nyquist
frequency, but it would be useful to run a similar
experiment with a faster sample rate to confirm the
responses to strain rates above 20 Hz. The inclusion of tests
to expose the limitations of sensor types that are often not
reported combined with the machine learning model results
gives insight into which types of limitations may be corrected
with modelling, and to what degree, aiding future sensor
development.

5 CONCLUSION

Simpler to manufacture piezoresistive sensors may approach the
high degree of strain tracking displayed by capacitive fiber
sensors, when combined with machine learning. A
piezoresistive sensor is a good candidate for situations with
many channels or where high sensitivity is required for
tracking fine movements. Piezoresistive sensors also show
promise for use with high frequency strain signals, an area
that has had relatively little research. Trained nonlinear
regression models, such as the SVR and RNN architectures
explored here, allow the designer to take advantage of the high
sensitivity, bandwidth, ease of manufacturing, and simpler
interfacing of piezoresistive sensors by compensating for most
of the signal non-idealities. More research is needed into signal
conditioning for the inductive sensor types to reduce noise and
address the undershoot at low strains, although this technology
also benefits from the incorporation of machine learning in its
signal processing. Areas of future work may include exploring the
direct prediction of joint angle from sensor data with machine
learning and expanding the scope of the study to other sensor
variants.

TABLE 3 | Ranking of sensors by their relative performance on several qualitative
factors.

Factor R-H3078 R-PEU C L

Cost Low Low Low Moderate
Susceptibility to EMI Low Low Moderate High
Intrusiveness Low Low Low Moderate
Readout circuit complexity Low Low High High
Manufacture difficulty Moderate Moderate High Low
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