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To establish an efficient model for sonotrode system, a key part that continuously applies
ultrasonic oscillation on metal foils to form solid state bond in ultrasonic consolidation
equipment, this research presents modeling methods for sonotrode system. After an
introduction to the construction of sonotrode system along with its operating principle, the
transfer matrix method was adopted to build the model for the system consisting two
ultrasonic transducers and one sonotrode. Simulation results of transfer matrix model were
compared to that of finite element method. A prototype was fabricated and tested. A
comparison of the resonance frequencies calculated by two modeling methods to the
experimental result showed that the difference between transfer matrix model and
prototype is 6.96% while the difference between finite element model and prototype is
9.26%. The proposed transfer matrix method is an efficient way to simulate dynamic
performances for sonotrode system, which provide a better foundation for further
optimization.

Keywords: ultrasonic consolidation, transfer matrix model, piezoelectric transducer, sonotrode, finite element
model

INTRODUCTION

Ultrasonic consolidation (UC) was developed based on metal ultrasonic additive manufacturing
(UAM) which was mainly used for welding the congeneric metal and heterogeneous metal foil
(Mariani and Ghassemieh, 2010; Jiao et al., 2019; Wang et al., 2019b). In UC process, high-power
ultrasonic energy is transmitted to layers of metal foil through an ultrasonically vibrating sonotrode,
pressed onto them, resulting in metallurgical bonding between atoms and interfaces of metal layers
(Li and Soar, 2008; Li and Soar, 2009). This process avoids the high temperature needed for
recrystallization, thus no protecting atmosphere is necessary for avoiding oxidization and smaller
thermal deformation is arisen (Foster et al., 2013; Obielodan and Stucker, 2014). UC has shown
unique advantages and broad prospects in metal composite material manufacturing, intelligent
structure processing, and complex functional structure manufacturing (Zhang et al., 2009; Zhang
and Li, 2009; Zhang and Li, 2010; Panteli et al., 2012). In the past, the researches on ultrasonic
consolidation mainly focused on the exploration of consolidation principle, numerical simulation,
and thermal analysis of consolidation process, as well as the evaluation of the quality and process
parameters of consolidated foil (Dehoff and Babu, 2010; Friel et al., 2010; Koellhoffer et al., 2011;
Schick et al., 2011; He et al., 2013; Zhang et al., 2015; Han et al., 2020). However, as the core element
of UC, the study of consolidation equipment is also important (Kelly et al., 2015). The first ultrasonic
consolidation equipment is a single transducer structure invented by White. D et al., which can
achieve continuous seam welding with the power of 3 KW. Later, the Edison Welding Institution
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proposed a high-power composite vibration mode piezoelectric
vibrator with two transducers in series with welding power of
9 KW (Sriraman et al., 2010). With the gradual improvement in
this technology, Fabrisonic company combined the consolidation
equipment with CNC machine tools and developed an ultrasonic
consolidation automation equipment that can realize the one-
step forming. Piezoelectric vibrator as the key energy conversion
component of sonotrode system for ultrasonic consolidation
equipment, the establishment of piezoelectric vibrator model is
convenient for its optimal design and dynamic design, which is
one of the key technologies in the development of this kind of
equipment.

In the studies on the vibration characteristics of ultrasonic
systems, the modeling methods commonly used for a
piezoelectric vibrator include equivalent circuit method,
transfer matrix method (TMM), and finite element method
(FEM). In most cases, piezoelectric transducers can be
modeled with the finite element method. The FEM can
provide a relatively accurate solution. However, the
customized TMM for a certain geometry model can
significantly reduce computing time. As a result, the TMM is
gradually adopted by researchers (Feyzollahzadeh and Bamdad,
2020). The TMM is more convenient for the optimization of
ultrasonic systems in the circumstance of repeatedly modeling a
single system with the same geometry (Wang et al., 2019a).

This work aimed at an efficient dynamic model for a push-pull
transducer adopted in high-power ultrasonic welding equipment
and a transfer matrix model for its sonotrode was proposed. In
the model, the transducer was divided into three kinds of
longitudinal vibration elements: the elastic bar with constant
cross-section, elastic bar with variable cross-section, and the

piezoelectric element. Besides, a finite element model of the
same sonotrode was also built for comparison. Finally, a push-
pull transducer prototype is manufactured and its impedance test
was carried out. The feasibility of the two modeling methods was
verified and the possible factors of errors were analyzed.

CONSTRUCTION AND WORKING
PRINCIPLE

Construction
The requirement of consolidation equipment for ultrasonic
consolidation is a high power, large output vibration
amplitude, and stable operation. The design consists of two
sandwich piezoelectric transducers with symmetrical
sonotrode. The structural parameters of the left and right
transducers are identical, as shown in Figure 1. The sonotrode
includes a welding head in the middle and amplitude adjusters on
both sides. In order to achieve the purpose of continuous welding,
the sonotrode is a wheel disc type, with grooves on both sides to
facilitate the loading of static pressure. The sandwich transducer
consists of three parts: piezoelectric element, metal front cover
plate directly contacting with the horn end, and metal back cover
plate connecting the ultrasonic generator. The energy generated
by the transducer radiates the longitudinal vibration efficiently to
the horn end through the front cover plate, while the back
cover plate contacts the air directly. The whole piezoelectric
vibrator uses the first-order longitudinal vibration to generate
axial vibration, so as to obtain high-frequency vibration at the
welding head and achieve consolidation effect through
friction.

FIGURE 1 | Construction of the sonotrode system.
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Working Principle
The movement direction of the left and right sandwich
transducers of push-pull piezoelectric vibrator keeps the same
direction all the time. When one side shrinks, the other side

stretches, and the transducers produce longitudinal vibration as a
whole. To realize the push-pull excitation, two sandwiched
transducers are applied with two voltage excitation of reverse
phases, or the piezoelectric ceramics in the two transducers are

FIGURE 2 | Push-pull excitation (A) The piezoelectric ceramics polarized in opposite direction with the same voltage (B) The piezoelectric ceramics polarized in
same direction with two voltage excitation of reverse phases.

FIGURE 3 | Working principle of sonotrode system.
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polarized in opposite directions, as shown in Figure 2.The
working principle is shown in Figure 3.

The specific materials to be fixed are mainly aluminum foil
and titanium alloy, and the working frequency of the ultrasonic
vibration system is aimed at about 20 kHz. The parameters of
PZT8 are shown in Table 1.

MODELING

Transfer Matrix Modeling
The transfer matrix method discretizes the complex system and
then connects them through the transfer connection between each
discrete element (Eduard, 1963). The TMMcan obtain the accurate
solution of the vibration velocity of each discrete element with the
resonance frequency of the system, which plays a key role in
analyzing whether the frequency of the designed transducer and
the vibration velocity of the welding head meet the requirements.
Since there is only one vibration form of longitudinal vibration in
the whole sonotrode system, the longitudinal vibration wave

equations of elastic rod and piezoelectric element were
established, and its transfer matrix can be obtained, and simple
boundary conditions can be set up to solve the problem.

As shown in Figure 4, the piezoelectric vibrator was mainly
divided into the right transducer (A), the left transducer (B), and
the sonotrode (C). According to symmetry, the sonotrode can be
divided into three parts: left amplitude modulator, right
amplitude modulator, and M-type welding head. All the
discrete elements can be divided into three types: the
longitudinal vibration of the constant cross-section bar, the
longitudinal vibration of the variable cross-section bar, and the
longitudinal vibration of the piezoelectric element.

Longitudinal Vibrations of Elastic Rod
The longitudinal vibration of elastic rod was divided into
constant cross-section and variable cross-section, as shown
in Figure 5.

According to Newton’s second law, the wave equation of
elastic rod with constant cross section in free boundary can be
formulated as:

TABLE 1 | Parameters of piezoelectric ceramics.

Parameters Dielectric constant matrix
(F/m)

Piezoelectric constant matrix
(C/m3)

Stiffness matrix(N/m2)

PZT8 ⎡⎢⎢⎢⎢⎢⎣ 6.04 6.04
6.04

⎤⎥⎥⎥⎥⎥⎦ × 10− 9
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −5.2
0 0 −5.2
0 0 15.1
0 12.7 0

12.7 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

120 53.5 51.5 0 0 0
53.5 120.6 51.5 0 0 0
51.5 120.6 51.5 0 0 0
0 0 0 31.3 0 0
0 0 0 0 31.3 0
0 0 0 0 0 31.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 1010

FIGURE 4 | Discrete model of the push-pull transducer.
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z2u(x, t)
zx2

� 1
c20

z2u(x, t)
zt2

(1)

u(x, t) is vibrational displacement function. c0 is the wave velocity
of the elastic rod. The transfer matrix model of the elastic rod with
constant cross-section can be obtained with the theory of the
separated variable method as follow:

Z0,r � T0,lZ0,l � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ cos(k0l0) −sin(k0l0)
jA0z0

jA0z0 sin(k0l0) cos(k0l0)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Z0,l (2)

T0,l is the longitudinal vibration transfer matrix of elastic rod.
Z0,r � [ v0,l F0,l ]T and Z0,r � [ v0,r F0,r ]Trepresent the input
state vector and the output state vector, respectively. c0 � 






E0/ρ0
√

is the wave velocity. E0 is the elastic modulus of rod. ρ0 is the
density of rod. k0 � ω/c0 is the wave beam. z0 � 





ρ0E0
√

is the
impedance. A0 is the section area of rod and l0 is the length of
the rod.

The wave equation of variable cross-section can be
formulated as.

z

zx
[EbAb(x) zu(x, t)

zx
] � ρbAb(x) z

2u(x, t)
zt2

(3)

where Ab(x) � (ax + b)n is the section area of rod, ρbis the
density of rod, and the transfer matrix model as follow:

Zb,r � TblZb,l �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a sin(ξlb) + bξ cos(ξlb)
(alb + b)ξ

jω sin(ξlb)
bEξ(alb + b)

Eba2 lbξ cos(ξlb) − Eb[a2 + bξ2(alb + b)]sin(ξlb)
jωξ

ξ(alb + b)cos(ξlb) − a sin(ξlb)
bξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where Zb,r � [ vb,l Fb,l ]T and Zb,r � [ vb,r Fb,r ]T represent the
input state vector and the output state vector of variable cross-
section rob, respectively. Tb,l is the longitudinal vibration transfer
matrix of variable cross-section rob. ξ � ω







ρb/Eb

√
, Eb is the elastic

modulus of the rod and lb is the length of rob.

Longitudinal Vibrations of Piezoelectric Element
In the sandwich transducer structure, the piezoelectric element
with d33 vibration mode is mainly used, and its polarization
direction is along the thickness direction. To maximize the
amplitude of piezoelectric ceramics, the polarization direction
of two adjacent ceramic sheets was opposite. The thickness of the

copper electrode is so thin that it can be ignored. The model is
shown in Figure 6, which is the transfer matrix model of two
ceramic plates.

The elastic coupling matrix, dielectric coupling matrix and
piezoelectric coupling matrix of PZT8 were written as a whole,
and the relationship among strain, stress, electric field and
potential shift (j1 � 1,2,3,4,5,6) of piezoelectric element can be
obtained intuitively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1,p
S2,p
S3,p
S4,p
S5,p
S6,p
D1,p

D2,p

D3,p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sE11 sE12 sE13
sE12 sE22 sE23
sE13 sE23 sE33

0 0 0
0 0 0
0 0 0

0 0 d31
0 0 d32
0 0 d33

0 0 0
0 0 0
0 0 0

sE44 0 0
0 sE55 0
0 0 sE66

0 d24 0
d15 0 0
0 0 0

0 0 0
0 0 0
d31 d32 d33

0 d15 0
d24 0 0
0 0 0

εT11 0 0
0 εT22 0
0 0 εT33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1,p

T2,p

T3,p

T4,p

T5,p

T6,p

E1,p

E2,p

E3,p

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

FIGURE 5 | Longitudinal vibrations of tapered sticks (A) constant cross-section rob (B) variable cross-section rob.

FIGURE 6 | Longitudinal vibration of piezoelectric element.
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SEj1j2 (j2 � 1, 2, 3, 4, 5, 6) is the compliance coefficient, εTj1j2 is the
dielectric constant and dj1j2 is the piezoelectric constant of PZT ceramic.

Wave equation of PZT element is similar to the elastic rod
which can be formulated as:

z2up(x, t)
zx2

� 1
c2p

z2up(x, t)
zt2

(6)

And the transfer matrix of PZT element is:

Zp,r � TpZp,l �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(Lpkp) −sin(Lpkp)
jApzp

−αp sin(Lpkp)
jApzp

jApzp sin(Lpkp) cos(Lpkp) αp[cos(Lpkp) − 1]
αp[cos(Lpkp) − 1] −αp sin(Lpkp)

jApzp
jωC0p −

α2p sin(Lpkp)
jApzp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

where Zp,l � [ vp,l Fp,l Up,l ]Tand Zp,r � [ vp,r Fp,r Up,r ]Tare
the input state vector and the output state vector of PZT element,
respectively. Ap � π(R2

p − r2p) is the cross sectional area of PZT
sheet. Lp is the thickness of PZT sheet. kp � ω/cp is the beam of
piezoelectric element. zP �







ρP/S

E
33

√
is the impedance of

piezoelectric element. C0P � 4AP(εT33 − d233
SE33
)/Lp is the blocked

piezoelectric capacitance. αp � Apd33/LpSE33 is the
electromechanical translation factor.

Transfer Conditions
After the whole transducer was discretized, according to the two
key conditions that the resultant force is zero and the velocity is
equal between adjacent elements on their contact interface, each
vibration unit is connected with the state vector. Each discretized
part of the push-pull piezoelectric transducer was connected in
series, which can be divided into two types. Type1 is the series
connection of elastic rod and elastic rod, and Type2 is the series
connection of piezoelectric element and elastic rod as expressed:

{ CeZe,i+1 − CeZe,i � 0
CpZp,i+1 − CelZe,i � 0

(8)

Where Ze,i and Ze,i+1 represent the input state vector and the output
state vector of variable cross-section rob i and i+1, respectively.Ce is the
longitudinal vibration condition matrix between two adjacent elastic
bars with a dimension of 2 × 2. Zp,i+1 � [ ve,i+1 Fe,i+1 ]Trepresent
the input state vector and the output state vector of piezoelectric
element i+1. Cp is the longitudinal vibration transfer condition matrix
of piezoelectric element and Cel is the longitudinal vibration transfer
condition matrix of rob as expressed:

The Total Transfer Matrix Equation
The discrete model of the whole sonotrode system with boundary
conditions is shown in Figure 7 and structural parameters are
also given. The solution direction is from element one to element
23. Each element has input and output state vectors.

The sandwich transducer A and B have the same transfermatrix.
Based on the transfer matrix of each element and the transfer
condition matrix between elements, a simple boundary condition
matrix was added. The boundary conditions are mechanically free
and voltage is applied to the piezoelectric ceramic element. The
transfer matrix equation of transducer is obtained as:

(9)

Where TLA is the physical matrix of transducer A, CLA is the
transfer condition matrix of transducer and BeA is the boundary
condition matrix of transducer. The three matrixes constitute the
total systematic transfer matrix of transducer SCA. ZCA concludes
the total input and output mechanical state vectors of transducer
and BLA represents the total boundary condition values.

The sonotrode C can be divided into three parts as shown in
Figure 8.

The right amplitude modulator (R1∼R4) and the left one
(L1∼L4) have the same transfer matrix can be expressed:

(10)

Where THR is the physical matrix of amplitude modulator, CHR is
the total transfer condition matrix of amplitude modulator. The
three matrixes constitute the total systematic transfer matrix of
transducer SHR. ZHR concludes the total input and output
mechanical state vectors of transducer and BHR represents the
boundary condition values.

And the M tool head can be expressed:

(11)
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Where THM is the physical matrix of M-type welding head, CHM is
the transfer condition matrix of welding head. The three matrixes
constitute the total systematic transfer matrix of welding head SHM.
ZHM concludes the total input and output mechanical state vectors
of welding head and BHM represents the boundary condition values.

So the transfer matrix model of the sonotrode can be
expressed.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
SHR

SHM
SHL

CRM1 CRM2

CML1 CML2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡
⎢⎢⎢⎢⎢⎣ ZHR

ZHM

ZHL

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

SHL is total physical matrix of the left amplitude modulator.
CRM1, CRM2 is the total transfer condition matrix with a
dimension of 2×2 between the right amplitude modulator and
the welding head. CML1, CML2 is the total transfer condition
matrix a dimension of 2×2 between the welding head and the
left amplitude modulator. ZHR, ZHM and ZHL three matrixes
constitute the total input and output mechanical state vectors.

From above, the sonotrode system is divided into three parts
and the transfer matrix model of the piezoelectric vibrator is
expressed:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
SCA

SCC
SCB

CAC CCA

CCB CBC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ZCA

ZCC

ZCB

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
BLA

BLC

BLB
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

SCA is the total physical matrix of the right transducer, SCC is
the total physical matrix of the sonotrode and SCB is total
physical matrix of the left transducer. CAC, CCA is the total
transfer condition matrix with a dimension of 2×2 between
the right transducer amplitude and the sonotrode. CCB, CBC is
the total transfer condition matrix a dimension of 2×2
between the sonotrode and the left transducer. ZCA, ZCC

and ZCB three matrixes constitute the total input and
output mechanical state vectors. BLA, BLC, BlB are right side
matrix including all boundary conditions of the entire
piezoelectric vibrator.

FIGURE 7 | Integral transfer matrix model of sonotrode system.

FIGURE 8 | Discrete model of sonotrode.
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Finite Element Modeling
The FEM of sonotrode system was established by ANSYS finite
element analysis software. The quarter section of the piezoelectric
vibrator is shown in Figure 9 and its geometrical sizes of the
piezoelectric vibrator are listed in Table 2. Solid five was selected
as piezoelectric ceramic and solid 45 was selected as other metal
parts which are shown in Table 3. Tomodel the preloading bolt, a
slot with a width of G and length of H was built at the back cover

plate. Moreover, due to the existence of preloading bolts, there is a
gap with the width ofG at the exit of the PZT sheets, which makes
the piezoelectric ceramic sheet and the middle bolt not connect
together on the grid.

To make the mesh more regular, the 1/4 model of the
piezoelectric vibrator was first established, then the three element
symmetry was adopted to obtain the finite element model of the
whole piezoelectric vibrator, which is shown in Figure 10.

FIGURE 9 | Parameter diagram of quarter section model of piezoelectric vibrator.

TABLE 2 | Geometrical sizes of the piezoelectric vibrator.

Parameter D1 D2 D3 D4 D5 D6 L1 L2 L3 T1 L4 L5 L6 C1 C2 C3 C4 W H G

Value (mm) 60 16 40 80 46 90 18 18.5 39.5 10 18 35 33 6 12 6 12 25 4 1

TABLE 3 | Material properties of piezoelectric vibrator.

Structure Materials Density (kg/m3) Elastic modulus
(Gpa)

Longitudinal wave
velocity (m/s)

Element

Piezoelectric ceramics PTZ-8 7.5 — 3,100 Solid5
Front cover Al 2.7 71 5,100 Solid45
End block 45# steel 7.8 200 3,940 Solid45

FIGURE 10 | Establishment of finite element model.
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RESULT AND DISCUSSION

Through the calculation of the transfer matrix in Transfer
matrix modeling Section, the relationship between the
vibration velocity and frequency of the sonotrode system is
shown in Figure 11. It can be seen that when the frequency is
near 18645 Hz, there is a peak value of vibration velocity which
gets its resonant frequency.

After the finite element model was obtained, the modal
analysis of the piezoelectric vibrator was carried out. Taking
the symmetry center as the origin, the longitudinal displacement
of the nodes on the axis of the piezoelectric vibrator was extracted,
and the vibration mode of the piezoelectric vibrator was obtained
as shown in Figure 12. The resonant frequency of the
longitudinal mode is 18,187 Hz. It can be seen that the model
obtained a longitudinal vibration mode. The maximum
displacement is at the sonotrode. When the transducer on one
side is extended, the other side is shortened. It can be seen from
the modal shape in the figure that both of them are close to the
sinusoidal mode and are similar.

Apply the voltage with a phase difference of 180° and peak to
peak value of 200 V on the left and right transducers to obtain the
amplitude of the two models, respectively, as shown in Table 4.
The absolute errors between them were also calculated.

It can be seen the frequency difference between the twomodels
is small, but the amplitude difference is large. The amplitude of
the FEM is related to the excitation, while the amplitude of the
TMM is the theoretical value derived from the vibration rate.

Experiment
To verify the effectiveness of the twomodelingmethods, a prototype
of sonotrode system was established as shown in Figure 13. The
material and structural parameters were consistent with the
proposed above. Two supporting flange plates were attached to
the base and installed at the nodes of the transducer.

In order to obtain the resonant frequency of the push-pull
transducer, the impedance experiment was carried out. An
impedance analyzer ZX70A was used for the impedance test.
The basic accuracy of the impedance analyzer is 0.05%, and the
frequency accuracy is 1 mHz. Because the left and right
transducers are the same, only one section of the transducer
was connected to the impedance analyzer. The frequency range
of 10 kHz–80 kHz and the number of scanning points 1,556
were set. It can be seen that the transducer has resonant
frequencies in each frequency band. Then take the frequency
close to 20 kHz, and set the number of scanning points 1,001.
The admittance of the prototype was obtained. As shown in
Figure 14, the maximum admittance frequency is 20,042 Hz.
According to the resonance theory, there is a resonance
frequency of the piezoelectric vibrator near and below this
frequency.

DISCUSSION

Comparison of experimental results, the relative error of the
resonant frequency of TMMmodel is 6.96% and that of the FEM
model is 9.26%. The error of TMM is smaller and closer to the
actual characteristics of the prototype. The reason for the error of
TMM can be attributed to the fact that the chamfering was
regarded as a variable cross-section. The reason for the error of
the FEM may be the grid and the selected elements have an
impact on the model. When building a finite element model, the
preloading force between the preloading bolt and the
piezoelectric ceramics sheet cannot be reflected after assembly.
Besides, the processing technology still affects the properties of
the material, thus affecting the solution of the vibration
calculation. In order to compact the assembly of the
transducer and the sonotrode, holes were punched in both the
output amplitude horn and the modulator of the transducers, and
the existence of such holes was not considered in both two
models.

By comparing the two models and the experiment, it can be
found that the TMM seems more accurate. When studying this
kind of sandwich piezoelectric transducer, it’s found that the FEM
is difficult to calculate very accurately, and the preload on the
piezoelectric ceramic is very exquisite. In the FEM, the gap
between the preloading bolt and the PZT sheet was simulated,
and the joint end face was connected together, there are still some
inevitable errors. In general, the FEM and the TMM have similar
calculation themes, both of which discretizes the target object.
FEM is very particular about grid division and the density and the
size of mesh determine the solution accuracy. However, the TMM
only needs to decompose the vibrating body according to its
different vibration modes. Compared with the traditional finite
element modeling method, the transfer matrix modeling method
can indeed shorten the calculation time and intuitively obtain the
working frequency. The TMM can intuitively reflect the
relationship between the structural parameters and the
resonant frequency.

FIGURE 11 | The vibration velocity of the TMM.
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TABLE 4 | Comparison of two models.

Model
types and errors

Resonant frequency (Hz) The ratio of
speed of vibration

Amplitude
of sonotrode (μm)

TMM model 18,645 1.5898 10.1
FEM model 18,187 1.5333 10.8
Relative error 2.5 3.6% 6.4

FIGURE 13 | The prototype of sonotrode system.

FIGURE 12 | Modal analysis of piezoelectric vibrator.
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CONCLUSION

Based on the sonotrode system for ultrasonic consolidation, two
models were established, that is, the finite element model and
the transfer matrix model. The ratio of the speed of vibration,
resonant frequency, and amplitude ratio of the two models were
compared. The prototype was made and its testing results
verified the results of modeling. The dynamic performances
calculated by both models were compared with the
experimental results, which show that the transfer matrix
method has the same feasibility as the finite element model
and can achieve higher efficiency.
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