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Hard-magnetic barium ferrite (BF) nanoparticles with a hexagonal plate-like structure

were used as an additive to a carbonyl iron (CI) microparticle-based magnetorheological

(MR) fluid. The morphology of the pristine CI and CI/BF mixture particles was examined

by scanning electron microscopy. The saturation magnetization and coercivity values of

each particle were measured in the powder state by vibrating sample magnetometry. The

MR characteristics of the CI/BF MR fluid measured using a rotation rheometer under a

range of magnetic field strengths were compared with those of the CI-based MR fluid.

The flow behavior of both MR fluids was fitted using a Herschel–Bulkley model, and

their stress relaxation phenomenon was examined using the Schwarzl equation. The MR

fluid with the BF additive showed higher dynamic and elastic yield stresses than the MR

fluid without the BF additive as the magnetic field strength increased. Furthermore, the

BF nanoparticles embedded in the space between the CI microparticles improved the

dispersion stability and the MR performance of the MR fluid.

Keywords: carbonyl iron, barium ferrite, magnetorheological, additive, sedimentation

INTRODUCTION

Magnetorheological (MR) fluids consisting of soft-magnetic particles suspended in a medium
liquid, including silicone oil and mineral oil, are field-responsive functional materials that can be
finely controlled from the liquid-like state to a solid-like phase under an applied magnetic field
strength (H) (Svåsand et al., 2009; Sedlačík et al., 2010; Susan-Resiga et al., 2010; Qiao et al., 2012;
Ashtiani et al., 2015). Without H, the particles in an MR fluid are dispersed randomly in the MR
suspension, following a Newtonian fluid-like behavior at their low-particle volume concentrations.
Under an applied H, the field-induced magnetic polarization interactions of the magnetic particles
result in the formation of a chain-like form in the parallel direction of the applied H within several
tens of milliseconds (Vasiliev et al., 2016). During this rapid and reversible phase transition, the
chain structures in the MR fluid undergo breaking and reformation processes, resulting in changes
in their viscoelastic characteristics, including shear stress, shear viscosity, and dynamic moduli
under an applied magnetic field (Li et al., 2000, 2004; Ahamed et al., 2016). This technology has
been introduced to industrial sections, such as damping devices, engine mounts, and MR polishing
machines (Choi et al., 2003; Yang et al., 2010; Mao et al., 2014).
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Soft-magnetic particles are widely adopted as the dispersed
part of the MR fluids, owing to their negligible magnetic
hysteresis and supreme magnetization value of saturation
(Kordonskii et al., 1999). Among their family, carbonyl iron
(CI) microparticles have attracted considerable attention as
disperse particles owing to their large magnetic permeability,
low coercivity, spherical shape, and appropriate micron size
(Bombard et al., 2005). Despite these advantages, the high
density of CI microparticles can lead to problems, such as
sedimentation and abrasion, which are of concern with long-term
industrial applications.

Several techniques have been introduced to overcome
these problems, including coating the surface of magnetic
microspheres with polymeric or inorganic materials and
adding various additives, such as organic clay and inorganic
nanoparticles (Vicente et al., 2003; Fang and Choi, 2008; López-
López et al., 2008; Aruna et al., 2019). On the other hand, the
process of applying a polymeric coating of CI microparticles to
decrease the difference in density between the CI microspheres
and the non-magnetic fluid is too difficult and complex for
industrial application. This is because the coating process is
strongly influenced by various factors, such as the reaction
temperature, time, and the molar ratio between monomer and
initiator. Therefore, the addition of additives to CI-based MR
suspensions is rather simple and reliable (Jang et al., 2005; Liu
et al., 2015; Han et al., 2019; Aruna et al., 2020; Maurya and
Sarkar, 2020).

Various additives, such as organic clays, carbon nanotubes,
celluloses, and inorganic particles, have been introduced in MR
fluid systems to enhance the sedimentation stability of magnetic
particles composed predominantly of MR fluids (Machovsky
et al., 2014; Bae et al., 2017; Bossis et al., 2019; Gopinath et al.,
2021). On the other hand, non-magnetic additives tend to reduce
the MR effect, even though they can solve the sedimentation
problem. Thus, the addition of magnetic materials as an additive
is an efficient method to increase the sedimentation stability
and MR effect of suspensions (Hajalilou et al., 2016; Zhang
et al., 2020). Ngatu and Wereley (2007) added iron nanowires of
diameter ranging from 5 to 250 nm to the MR fluid to improve
the MR effect and the dispersion stability. Han et al. (2020)
used hollow-Fe3O4 particles fabricated using a solvothermal
process as an additive to reduce the sedimentation problem
and enhance MR properties of CI-based MR fluid. Recently,
Jang et al. (2015) and Kim et al. (2017) added hard-magnetic
particles, such as γ-Fe2O3 and CrO2, respectively, to CI-based
MR fluids and reported improvement in both the MR behavior
and suspension stability.

Barium ferrite (BaFe12O19) (BF) with a non-circular plate-like
structure and the perpendicular magnetic moment has attracted
considerable interest as a high-performance permanent magnet
because of its high magnetocrystalline anisotropy, high Curie
point, relatively highmagnetic saturation (Ms) value and coercive
force, and superior chemical stability and corrosion resistance
(Choi et al., 2000; Wei et al., 2020). Furthermore, non-circular
hexagonal plate-like particles have a slower sedimentation rate
than spherical or rod-like particles, such as γ-Fe2O3 and CrO2.
These hard magnetic particles that have a special shape could

increase the Ms value of the CI particles, which is related directly
to improving the MR efficiency of MR suspensions. In addition,
hard magnetic particles are better able to adhere to the surface
of CI particles as an additive, thus increasing the strength of the
chain and the tendency to reform broken chain structures during
operation. Therefore, BF particles were newly introduced as an
additive, and their sedimentation stability was expected to be
superior to previously reported additives.

This study examined the sedimentation stability and MR
performance of MR suspensions by adding nano-sized BF
particles as an additive between micron-sized CI particles. CI-
based MR fluids were fabricated using silicone oil, and the
BF additive was added to examine the effect of the additive.
Their MR behaviors were measured using a rotation rheometer,
and the sedimentation stability was recorded using a Turbiscan
(MA2000, Formulaction, Toulouse, France).

EXPERIMENTAL

Materials
The CI [Badische Anilin-und-Soda-Fabrik (BASF), standard
CM grade, particle density: 7.90 g/cc, diameter: about 4µm,
Germany] microspheres with their Ms of 209.5 emu/g and
silicone oil (Shin-Etsu Chemical Co., Ltd., KF-96, viscosity: 100
cSt, Japan) were used as a dispersed and a continuous part of
the MR fluids, respectively. The hard-magnetic BF (density: 5.28
g/cm3, Toda Co., Tokyo, Japan) particle was introduced as an
additive material. The physical properties of the BF are well-
reported with its diameter of 0.13µm and the aspect ratio of 0.1,
corresponding to its thickness of 0.013µm (Kwon et al., 1997;
Choi et al., 2000).

Sample Preparation
Barium ferrite nanoparticles, used as an additive, were prepared
by sonication for 1 h and dried. Three different MR fluids were
prepared. The CI microparticle-based MR fluid without the
additive was made by suspending 50 wt% of CI microspheres
in silicone oil (50 wt%). To examine the additive effect, a 0.5 wt%
concentration of BF particles with Ms of 63.8 emu/g was mixed
in silicone oil (49.5 wt%), and CI microparticles (50 wt%) were
then added. Furthermore, the pure BF nanoparticle-based MR
fluid (50 wt%) was also prepared for comparison. The MR fluid
with the additive is called a CI/BF-basedMR fluid. A vortex (IKA,
Korea. Ltd., GENIUS3) and sonicator (HWASHIN CO., Ltd.,
Powersonic 410) were used to disperse the magnetic particles
uniformly during sample preparation.

Characterization
The surface morphologies of the CI, BF, and CI/BF systems were
observed using a high-resolution scanning electron microscopy
(HR-SEM, SU-8010, Hitachi, Tokyo, Japan). The dispersion
stability of the MR fluids was investigated using a Turbiscan
(MA2000, Formulaction, Toulouse, France), and the static
magnetic characteristics of the magnetic particles were examined
by making them in a powder form through a vibrating sample
magnetometer (VSM) (7307, Lakeshore, LA, USA). The particle
densities were measured using a gas pycnometer (AccuPyc
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1330, Micromeritics, Norcross, GA, USA). Their MR properties
were examined using a rotation rheometer (MCR 302, Anton-
Paar, Graz, Austria) attached to a device for applying the
magnetic field.

RESULTS AND DISCUSSION

Figures 1a–c present SEM images of pristine CI, BF, and their
mixtures, respectively. Figure 1a shows the pristine CI with a
spherical shape and a smooth surface. The mean diameter of the
pure CI particle was ∼3µm. As shown in Figure 1b, BaFe12O19

had a hexagonal plate-like structure with a mean size of 700 nm.
Figure 1c exhibited a mixture of pure CI particles and a small
amount of BaFe12O19 particles. Hexagonal plate-like BaFe12O19

particles were attached to the space between pure CI particles.
Their hard-magnetic properties, nano size, and unique structure
were expected to enhance the MR efficiency and suspension
stability by occupying the space between the CI microspheres.

The static magnetic characteristics of the pristine CI, BF, and
CI/ BF mixture particles were measured in the powder form
via VSM, with an applied H from −15 to 15 kOe at room
temperature. Figure 2 shows the magnetic moment as a function
of H, in which the measured Ms and coercivity (Hc) of the BF
particles were 63.8 emu/g and 1.74 kOe, respectively (Ko et al.,
2009). When the 0.5 wt.% of BF particles were added to pure
CI, the Ms value of the CI/BF mixture particles appeared to
be slightly increased. Overall, BF particles, which exhibit hard-
magnetic properties with magnetic hysteresis, could improve the
MR performance in the magnetic response of a CI microparticle-
based MR fluid, as shown in Figure 2 (Moon et al., 2016).

Two types of MR fluids were used to measure the MR
property. One contained 50 wt.% pure CI microparticles
dispersed in 100 cS of silicone oil, and the other contained
0.5 wt.% BaFe12O19 particles added at the same ratio as the
CI microparticles in the same silicone oil. The measurements
were taken using a parallel-plate rotation rheometer under a
controlled shear rate mode. For each test, a certain amount ofMR
suspensions was dropped in the gap of the parallel-plate geometry
device and the base plate.

The flow tests were carried out at shear rates in the range of
0.1 to 200 s−1 under an applied H of 0 to 343 kA/m. Figure 3
shows the shear stress τ (a, c) and shear viscosity (b, d) data as
a function of the shear rate (γ̇ ) under various H for all of the
three MR fluids, in which the closed and open symbols refer to an
MRfluid without andwith BF additive, respectively. According to
Figures 3A,C, τ of the three MR suspensions increased linearly
with increasing shear rate without an applied H, indicating that
three MR fluids exhibited Newtonian fluid-like characteristics.
On the other hand, the non-Newtonian fluid property of non-
linearity between τ and γ̇ , when exposed to external H, was
prominent in the three MR samples. This is because the chain-
like structure of the magnetized particles was built up by strong
magnetic dipole–dipole (D–D) interactions (Zhang and Widom,
1995). In particular, at each H, a CI-based MR fluid containing
the BF additive showed higher τ values than those without BF
nanoparticles over the entire shear rate range. By applying H,

FIGURE 1 | Scanning electron microscopy images of (a) pure carbonyl iron

(CI) microparticles, (b) BaFe12O19 nanoparticles, and (c) CI/ BaFe12O19

mixture.

hexagonal plate-like structured BF particles, which were relatively
smaller than CI microparticles, filled the space between the
CI microparticles. These structural characteristics promoted the
response to the magnetic field, forming stronger chain structures
and improving the MR performance. The 0.5 wt% additive
concentration was used because too much additive in the MR
fluid resulted in a significant increase in shear viscosity without
increasing the MR performance (Iglesias et al., 2012; Moon et al.,
2016). In addition, the pure BF-based MR fluid has relatively less
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shear stress and shear viscosity, which can also be predicted and
explained with its lowMs value and hard-magnetic property.

On the other hand, the flow behaviors of the two MR
suspensions were fitted using the Herschel–Bulkley model to

FIGURE 2 | Vibrating sample magnetometer data of pure carbonyl iron (CI)

(CM grade), BaFe12O19, and CI/BaFe12O19 0.5 wt% mixture.

analyze typical steady-shear behavior. This model was expressed
as follows:

τ = τy + Kγ̇
n, τ ≥ τy (1)

where τy is the yield stress, depending on the applied H, shape,
and particle concentration, and γ̇ is the shear rate (Choi et al.,
2001; Jang et al., 2015). Both K and n are denoted as the
consistency index and power-law exponent, respectively. The τ

curves of pristine CI and CI/BF-based MR suspensions were
fitted very well to the Herschel–Bulkley Equation (1) at each
magnetic field strength. Figure 3A presents two MR fluids as a
solid line and dotted line (Cvek et al., 2016). Table 1 lists the
optimal parameters obtained from Equation (1), showing the
Herschel–Bulkley model.

Similarly, the shear viscosity graphs for both MR fluids
showed the same behavior over the shear rates at various
H, as presented in Figure 3B. The viscosities of both MR
fluids increased with increasing H and exhibited shear-thinning
behavior; hence, the viscosity decreased with increasing shear
rate. Note that the increase in shear viscosity had an important
influence on the MR characteristics (Hong et al., 2013). As
H increased, the magnetization of the CI microspheres also

FIGURE 3 | (A) Shear stress and (B) shear viscosity of CI/ BaFe12O19 mixture-based MR fluid (open symbol) and pure carbonyl iron (CI)-based magnetorheological

(MR) fluid (closed symbol), shear stress (C), and shear viscosity (D) of pure barium ferrite (BF)-based MR fluid as a function of shear rate under various magnetic field

strengths.
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TABLE 1 | The optimal parameters in Herschel–Bulkley (HB) model equation obtained from shear stress data.

MR fluid Parameters Magnetic field strength (kA/m)

86 171 257 343

CI τdy 463 1,333 2,100 2,506

K 158.8 72.6 43.1 29.3

n 0.362 0.569 0.703 0.795

CI/BaFe12O19 (0.5 wt%) τdy 556 1,646 2,581 2,994

K 172.2 65.1 46.9 43.7

n 0.354 0.611 0.717 0.737

increased consistently, interfering with the free movement of
the particles due to chain formation, thereby increasing the
shear viscosity of the MR suspension. While the magnetic D–
D interactions between the magnetic microspheres are parallel
to the applied stimuli direction, the flow is perpendicular to the
stimuli direction. Therefore, the shear viscosity is represented
as apparent shear-thinning behavior, resulting from the shear-
deformation of the chain structure over the entire γ̇ range (Hong
et al., 2013; Wang et al., 2019).

Without H, the CI/BF-based MR suspension showed slightly
larger shear viscosity than the MR suspension without the BF
nanoparticles because of the reduced hydrodynamic volume by
the added BF particle concentration. Under an applied H, the
shear viscosity of the MR suspension containing the BF additive
was higher than that without BF nanoparticles. This suggests that
the strength of the chain structure was increased by the added
hard magnetic nanoparticles, and the shear stress was increased.

Figure 4 shows the relationship between the τy andH for both
CI microparticles and CI/BF-based MR suspensions. Dynamic
τy, which is one of the important rheological parameters, was
acquired by extrapolating the τ at zero γ̇ limit for each H. In
general, the τy is expressed by the power-law of H, as given in
Equation (2):

τy ∝ Hα (2)

The magnetic-field-dependent τy can be divided into two parts
depending on the appliedH (Ginder et al., 1996). At a lowH, τy is
proportional to H2, following the polarization model due to the
attraction force between the magnetized particles (Bossis et al.,
1997, 2019). When the magnetic field strength increases to an
intermediate value, τy will change toH3/2, which is similar to the
conduction model (Choi et al., 2001). This can be considered an
increase in localized magnetization saturation that can decrease
the MR performance. At the intermediate value, where local
saturation becomes dominant, the equation for the τy is given
as follows:

τy =
√
6φµ0Ms

1/2H3/2 (3)

where ϕ is the magnetic particle volume fraction and µ0 is the
free space permeability (Genç and Phulé, 2002).When a sufficient
H was applied, all of the particles reached full saturation and

became an independent relationship with H.

τy
sat = 0.086φµ0Ms

2 (4)

To analyze the flow effect for MR fluids more accurately and to
determine the relationship between τy and H, the universal yield
stress equation was proposed in the presence of a critical H (Hc)
as follows (Fang et al., 2009):

τy (H) = αH 2(
tanh

√
H/Hc√

H/Hc
) (5)

where α is dependent on the susceptibility of the MR fluid, ϕ,
and particle shape (Ginder et al., 1996; Bossis et al., 2019). Hc is a
boundary value dividing the τy behavior of the MR suspensions,
in which τy represents two limiting values with respect to H as
follows (Chae et al., 2015):

τy = αH2(H≪ Hc)

τy = α
√

Hc H
3/2(H≫ Hc) (6)

Figure 4 shows the relationship between τy and H for both MR
suspensions. The Hc values of both the CI- and CI/BF-based MR
fluids were 171 kA m−1. A universal yield stress function was
obtained using the following: Hc and τy (Hc)= 0.762αH2

c ,

τ̂ = 1.313Ĥ3/2 tanh
√

Ĥ (7)

The results were fitted onto a single line using this generalized
universal yield stress function, as demonstrated in Figure 5.

The dynamic oscillation measurements of the MR samples
include both the strain amplitude and frequency sweep tests to
examine the viscoelastic characteristics of both MR suspensions
with and without BF nanoparticles under different H up to 343
kA/m. Figure 6 presents data from the strain amplitude sweep
measurements in the strain value from 10−2 to 102 at a fixed
angular frequency (ω). This test was carried out to select the
linear viscoelastic region (γLVE) before performing the frequency
sweep test. Overall, the storage modulus (G′) of the CI/BF MR
fluid was slightly larger than that of the MR fluid without an
additive in the entire strain range, suggesting that the fluid
rigidity was enhanced by the BF additive (Wei et al., 2010).
In particular, the G′ of both MR suspensions showed a steady
plateau region up to 3× 10−2 %,whichwas called the LVE region.
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FIGURE 4 | Dynamic yield stress as a function of magnetic field strength for

both pure carbonyl iron (CI)-(square symbol) and CI/BaFe12O19 mixture-based

magnetorheological (MR) fluids (triangle symbol).

FIGURE 5 | Universal plot of τ̂ vs. Ĥ for pure carbonyl iron (CI; square symbol)

and CI/BaFe12O19 mixture-based magnetorheological (MR) fluids (triangle

symbol). The solid line is obtained using Equation (7).

When the strain exceeded a certain level, the storage modulus
decreased sharply with increasing strain. This behavior is called
the Payne effect, and it was attributed to an irreversible change in
the microstructure of the material because of a sufficiently large
strain (Gong et al., 2012).

The frequency sweep test was taken with a given strain of 3
× 10−2%, as determined by the previous amplitude sweep test.
Figure 7 presents G′ as a function of ω at a constant strain for
two MR fluids. When H was not applied, the G′ of both MR
fluids was not large enough, and fluid-like characteristics were
observed. When the H was applied, the G’ of both MR fluids
showed a stable region over the entire ω, and the value increased
gradually with increasingH. This suggests that the two MR fluids
transitioned from a fluid-like state to a solid-like state under the
influence of H, and a stronger chain structure was formed as H
increased. Furthermore, when comparing the twoMR fluids over

FIGURE 6 | Strain amplitude sweep test for pure carbonyl iron (CI; closed

symbol) and CI/BaFe12O19 mixture–(open symbol) based magnetorheological

(MR) fluids under various magnetic field strengths.

FIGURE 7 | Angular frequency sweep test for pure carbonyl iron (CI; closed

symbol) and CI/BaFe12O19 mixture–(open symbol) based MR fluids at

constant strain (0.03%).

the entire frequency range, the G′ of the MR fluid containing the
additive was larger than that of the fluid without an additive.

As shown in Figure 8, the solid-like behaviors of the two MR
fluids can be interpreted more closely by the Schwarzl equation
for deriving their stress relaxation modulus, G(t), which was
calculated using the G′ and loss (G′′) modulus values obtained
in the frequency sweep experiment shown in Figure 7. The
Schwarzl equation is expressed as Equation 8 below (Chae et al.,
2015):

G (t) ≈ G′ (ω) − 0.566G′′(ω/2)+ 0.203G′′(ω) (8)

The G(t) of both MR suspensions showed steady plateau
behaviors under an applied magnetic field, unlike G(t) in the
absence of a magnetic field over time. In other words, the
relaxation feature did not appear as a function of time (Figure 8).
Thus, the stable solid-like behavior of both MR fluids was
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FIGURE 8 | Relaxation modulus of the pure carbonyl iron (CI; closed symbol)

and CI/BaFe12O19 (open symbol) -based MR fluids as a function of time.

FIGURE 9 | Sedimentation stability curve verse time for pure carbonyl iron (CI;

square symbol) and CI/BaFe12O19 mixture-based MR fluids (circle symbol).

studied as a function of time because of the strongly increased
interactions between the CI particles under an external H.

As shown in Figure 9, the sedimentation stability of both
MR fluids was investigated using Turbiscan in cylindrical glass
cells, each containing a 40-mm MR fluid. The measurements
were carried out by illuminating a light source from the bottom
to the top at regular intervals (Buron et al., 2004). From the
measurements, the transmission was plotted as a function of
time (Upadhyay et al., 2013). Initially, the transmission of both
MR fluids was close to zero. The absence of transmitted light
indicates that the scattered light was not transmitted through
the uniformly suspended particles in the MR fluid. After a
few minutes, the transmission of a pristine CI-based MR fluid
increased faster than that of a fluid containing the BaFe12O19

additive for the same time. This is because pure CI-based MR

fluid particles aggregated more easily than the CI/BaFe12O19-
based MR fluid particles and precipitated quickly to the bottom
of the cell over time, showing slightly higher transmission. On
the other hand, the CI/BaFe12O19-based MR fluid exhibited
a low transmission due to the additive, showing a stable and
improved dispersion state. This was attributed to the reduced
particle density from the BaFe12O19 nanoparticles attached
between the CI particles. The distance between the centers of
the two magnetic particles determined the interaction between
the particles, and for the two magnetic plates, this distance is
the thickness of the particles. However, this value is significantly
less than that of two spherical or elongated particles (Lisjak and
Mertelj, 2018). As a result, the D–D interactions between two
plate-like particles are strong, resulting in better stability of the
MR suspension. Therefore, the addition of BaFe12O19 magnetic
particles improved the sedimentation stability compared with the
pristine CI-based MR suspension.

CONCLUSIONS

This study examined the effects of a hard-magnetic BF additive
on a CI-based MR fluid. SEM and TEM revealed the morphology
of the BF nanoparticles adsorbed in empty spaces between
CI microspheres. The magnetic characteristics of the BF
nanoparticles were confirmed using VSM. Two types of MR
fluids with and without the BaFe12O19 additive in CI-based MR
fluids were prepared to compare the rheological behavior and
sedimentation stability under various H. The flow behavior of
both MR fluids followed a typical Herschel–Bulkley model when
an external H was applied, and a CI-based MR fluid with the
BaFe12O19 additive exhibited improved MR characteristics, such
as the yield stress, shear viscosity, and dynamic modulus with
increasing H. Furthermore, the sedimentation stability of the
CI-based MR fluid with the BaFe12O19 additive was improved
remarkably by the reduced particle density due to the effect of the
additive in the space between CI microspheres. Based on these
results, synergistic effects were demonstrated to improve the
MR properties and sedimentation stability of the ferromagnetic
BaFe12O19 additive for a pure CI-based MR fluid.
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