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It is crucial to develop highly energy-efficient and selective sensors for wide
concentration range of H2S, a common toxic gas that widely exists in petrochemical
industries. In this work, MoO2 nanospheres were rapidly synthesized by microwave-
assisted solvothermal method, and were subsequently fabricated into H2S gas sensor.
The MoO2 nanospheres-based sensor exhibited excellent response toward H2S with
good linearity in a wide concentration range (10–240 ppm). Besides, this sensor
presented low working temperature, good repeatability, and selectivity against CH4,
H2, and CO. The outstanding sensing performance results from the reaction between
H2S and abundant chemisorbed oxygen introduced by oxygen vacancies of MoO2. This
result indicates that MoO2 nanosphere synthesized by microwave-assisted solvothermal
method is a promising sensing material for H2S detection.

Keywords: MoO2 nanospheres, microwave, solvothermal, H2S, broad range, gas sensor

INTRODUCTION

H2S, a common gas in petroleum refining and storage, would cause serious pollution to air and
great damage to human body once leaked (Hu et al., 2018). Therefore, the detection and monitoring
of H2S are vital for both environmental conservation and human health. In recent years, different
kinds of H2S sensors have been developed, such as electrochemical sensors, surface acoustic wave
sensors and resistive sensors (Mirzaei et al., 2018; Zhao et al., 2018; Khan et al., 2019; Tang et al.,
2019). Among them, resistive sensors based on metal oxide nanoparticles have attracted great
attention due to the high sensitivity and short recovery time. The metal oxide nanoparticles applied
for resistive sensors can be classified into two categories: n-type (ZnO, SnO2, Fe2O3, and MoO3)
and p-type (CuO, Cr2O3, and Co3O4) semiconductors (Fine et al., 2010; Walker et al., 2019).
However, both of them need high operation temperature to achieve good sensing performance,
which results in energy consumption issues and gas explosions risks (Gupta Chatterjee et al., 2015).
Besides, the detection range of H2S for current nanoparticle based resistive sensors is mainly around
the low end (<50 ppm), leading to inaccurate measurement of high concentration H2S (Guo Y.
et al., 2016; Sukunta et al., 2017; Tian et al., 2017).
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MoO2, a n-type semiconductor, has been applied as catalysts,
photochromic, and electrochromic materials, due to good
electronic conductivity and ion transport property (Ni et al.,
2015; Jin et al., 2016; Zhang B. et al., 2017; Xia et al., 2018).
However, there have been few reports on H2S sensors fabricated
with MoO2. The preparation methodology of MoO2 needs
to be improved as well–MoO2 is usually synthesized by the
reduction of MoO3 with H2 or CO at ultrahigh temperature,
which exhibits enormous risk of explosion (Wang L. et al., 2017;
Prabhakar et al., 2018); conventional solvothermal/hydrothermal
methods are milder ways to prepare MoO2, however, the long
processing time, additional surfactants and low yield restricts
its application (Xiang et al., 2015; Wang et al., 2016; Zhang
et al., 2019). Microwave-assisted solvothermal method is a
promising alternative method for the preparation of MoO2.
Compared to traditional heat source, microwave irradiation
generates a rapid heating to attain the desired temperature,
due to the direct heating to polar molecules and conducting
ions (Zhu and Chen, 2014). In contrast to the conventional
solvothermal/hydrothermal methods, which suffer from large
thermal gradients between the inner and outer media, the
direct heating provides negligible thermal gradients through
the reaction system (Mirzaei and Neri, 2016). The uniform
heat distribution is beneficial for preparing regular products.
Although MoO2 nanoparticles prepared with microwave-assisted
hydrothermal method has been reported, which still need
additional carbon or graphene, the resultant MoO2 nanoparticles
shows irregular morphology (Palanisamy et al., 2015; Fattakhova
and Zakharova, 2020). There are few works about MoO2
nanospheres prepared with microwave-assisted solvothermal
method without additional surfactants.

In this report, a new method to synthesize MoO2 nanospheres
without surfactant template by the microwave-assisted
solvothermal method was presented. The morphology,
crystalline, chemical state and stability of samples were
investigated by SEM, XRD, XPS, and TGA. The working
temperature, response, repeatability, and selectivity of the gas
sensors based on MoO2 nanospheres were further studied in
a gas sensing measurement system. Finally, the gas sensing
mechanism of MoO2 nanospheres was discussed.

EXPERIMENTAL

Materials
MoCl5 was purchased from Sigma-Aldrich (China), absolute
ethanol was purchased from Sinopharm (China). All reagents
were of analytical grade without further purification, and the
deionized water was used in all experiments.

Fabrication of MoO2 Nanospheres
MoO2 nanospheres were synthesized by microwave-assisted
solvothermal method. In a typical synthesis procedure, 0.57 g
of MoCl5 was dissolved in 240 ml absolute ethanol with
vigorous stirring for 30 min. The MoCl5 solution was transferred
into autoclaves and heated at 200◦C for 3 h in a microwave
oven (Multiwave PRO, Anton Paar). After cooled to room

temperature, the resulting precipitate was collected and washed
by centrifuging in deionized water and absolute ethanol, followed
by freeze-drying under vacuum for 2 days. The resultant MoO2
nanospheres were named as MMOs. MMO-180 and MMO-
160 were prepared at 180◦C and 160◦C for 3 h, respectively.
For comparison, MoO2 nanospheres were also synthesized
by conventionally solvothermal method, in which the MoCl5
solution was transferred into autoclaves and heated at 200◦C
for 24 h in an oven. The resultant MoO2 nanospheres
were named as CMOs.

Characterization
A scanning electron microscope (SEM, JEOL JSM-7610F) was
used to observe the morphologies of MoO2. X-ray diffraction
(XRD) patterns were obtained on a Bruker D8 Advance Xray
diffractometer with a Cu Kα radiation of 0.154 nm at a
generator voltage of 40 kV. The chemical compositions of
MoO2 were measured using Thermo Fisher ESCALAB 250
XI X-ray photoelectron spectroscopy (XPS). Thermogravimetric
analysis (TGA) was performed in air atmosphere with a
heating rate of 10◦C/min by using a Shimadzu DTG-60 A
thermogravimetric analyzer.

Fabrication and Test of Gas Sensors
The MoO2 powder was ground and mixed with terpineol at
the mass ratio of 1:1 to form a paste. The paste was uniformly
coated on the surface of alumina ceramic tube attached with
a pair of gold electrodes, which were connected by Pt wires.
A Ni-Cr heating wire was inserted into the tube to heat the
gas sensor. Before the tests, the sensors were aged at 100◦C for
5 days to improve stability. Gas sensing tests were performed on
a commercial CGS-8 Gas Sensing Measurement System (Beijing
Elite Tech Company Limited) with a test chamber (500 mL in
volume). After the sensors’ resistance was stabilized at the target
temperature, a calculated volume of gas was injected into the
chamber. All tests were conducted at a room temperature of
25± 5◦C and at 40± 5% relative humidity.

The gas response is defined as (Rair-Rgas)/Rair (Rair and Rgas
are the sensors’ resistance in air and target gas, respectively).
The response time and recovery time is defined as the time
taken for the response to reach 90% of total change after testing
atmosphere changed.

RESULTS AND DISCUSSION

Morphology and Structure
Figure 1 shows the morphology of MoO2 nanospheres prepared
from microwave-assisted and conventional solvothermal
method. The diameter of MMOs is in the range of 400–1,000 nm
and the average diameter is about 740 nm. In contrast, CMOs
own broader distribution of diameter and larger particle size,
which affects the homogeneity and sensitivity of gas sensors.
Besides, the process of microwave-assisted solvothermal
method takes much less time than conventionally solvothermal
method, because of the rapid microwave heating (Wang B.
et al., 2017). The heating temperature is vital for the regular
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FIGURE 1 | SEM images and diameter statistics of (a–c) MMOs and (d–f) CMOs.

FIGURE 2 | (A) XRD patterns of MMO, MMO-180, MMO-160, and CMO; XPS spectra of (B) Mo 3d and (C) O1s, and (D) TGA curves of MMOs.

Frontiers in Materials | www.frontiersin.org 3 May 2021 | Volume 8 | Article 670044

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-08-670044 April 28, 2021 Time: 17:17 # 4

An et al. H2S Sensors of MoO2 Nanospheres

FIGURE 3 | (A) The response of MMOs to 10 ppm H2S at different working temperature; (B) the response of MMOs to different H2S concentration at 100◦C; (C) the
real-time response of MMOs to 40 ppm H2S at 100◦C; (D) five response cycles of MMOs to 40 ppm H2S at 100◦C.

FIGURE 4 | (A) the response of MMOs to various gases; (B) the response of MMO, MMO-180, MMO-160, and CMO to 160 ppm H2S.

morphology of MoO2 nanospheres during microwave-assisted
solvothermal method. As shown in Supplementary Figure 1,
MMO-180 and MMO-160, prepared at lower temperature,
exhibit irregular morphology, which may affect their sensing
properties (Cai et al., 2015). Therefore, MMO is chosen to do
further characterization and gas tests.

The crystal structure and chemical composition of MMOs
were inspected by XRD and XPS. As shown in Figure 2A, MMO

has distinct diffraction peaks at 2θ = 26.03◦, 36.852◦, 53.512◦, and
66.456◦, which could be indexed to (−1 1 1), (1 1 1), (−3 1 2), and
(2 0 2) planes of monoclinic MoO2 phase according to the JCPDS
32-0671 (Kim et al., 2009). This suggests MoO2 was successfully
synthesized by microwave-assisted solvothermal method. On the
contrary, MMO-180, MMO-160, and CMO have broader and
weaker diffraction peaks, applying to the incomplete crystalline
phase, which is consisted with the SEM images. To identify the

Frontiers in Materials | www.frontiersin.org 4 May 2021 | Volume 8 | Article 670044

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/
https://www.frontiersin.org/journals/materials#articles


fmats-08-670044 April 28, 2021 Time: 17:17 # 5

An et al. H2S Sensors of MoO2 Nanospheres

valence of Mo and the chemisorption of O, we characterized
the MMOs by XPS. As shown in Figure 2B, XPS spectra of Mo
consists of three peaks: two peaks at 231.7 and 235.6 eV present
the Mo 3d5/2 and Mo 3d3/2 spin-obit components of Mo6+,
respectively; the peak at 233.1 eV is assigned to Mo 3d5/2 of Mo4+

(Choi and Thompson, 1996). The appearance of Mo6+ indicates
the slightly oxidation at the surface of MoO2 by the exposure
to air at room temperature, considering no distinguishing peaks
of MoO3 observed at XRD patterns as shown in Figure 2A.
Figure 2C shows the XPS spectra of O 1 s, consisted of two peaks
at 531 and 531.9 eV, corresponding to lattice and chemisorbed
oxygen, respectively. The appearance of chemisorbed oxygen
results from the coordination unsaturation of Mo, implying the
presence of oxygen vacancy (Yang et al., 2015). The abundant
chemisorbed oxygen is beneficial for the sensitivity of MoO2,
since the resistance change is mainly occurred by the reaction
between chemisorbed oxygen and target gas (Jian et al., 2020).
TGA curves of MMO (Figure 2D) shows a decrease of mass
before 300◦C, due to the loss of adsorbed water. During this
temperature range, there is no obvious increase of mass, which
implies MMOs are relative stable at low temperature. The stability
of MMOs at low temperature is crucial for the repeatability of
gas sensors. At higher temperature, a slight increase of mass
occurred, corresponding to the oxidation of MoO2.

Gas Sensing Properties
The response to H2S depends on the physical and chemical
absorption of gas, which is strongly affected by the working
temperature (Su et al., 2019). Thus, we investigated the optimal
working temperature of MMO gas sensor. As shown in
Figure 3A, the response of MMO gas sensors to 10 ppm H2S
increased first and then decreased as the working temperature
rising. The optimal working temperature is 100◦C, which is much

TABLE 1 | Comparison of sensing performance between MMO and
other metal oxide.

Materials Optimal working
temperature (◦C)

Range of H2S
concentration

(ppm)

Reference

Pt-WO3 365 1–5 Kim et al., 2018

Pt-SnO2 250 1–5 Bulemo et al., 2018

Fe2O3/TiO2 120 1–50 Xu et al., 2019

NiO-SnO2 200 1–10 Ngoc Hoa et al., 2019

MoO3 177 1–100 Zhang et al., 2016

SnO2-CuO 150 1–40 Park et al., 2020

MoO2 100 1–240 This work

lower than that of other metal oxide gas sensors and beneficial
for energy saving (Guo W. et al., 2016; Wang et al., 2019; Nguyen
et al., 2020). The low working temperature may come from the
abundant chemisorbed oxygen and oxygen vacancy in MMO
(Shen et al., 2019). Therefore, further tests of sensing properties
are all completed at 100◦C.

Figure 3B presents the response of MMO to H2S at different
concentrations (1–240 ppm). It can be seen the response increases
significantly with increasing concentration of H2S, and there is
good linear relationship (R2 = 0.996) between response and the
concentration of H2S in the whole range. Unlike other sensors’
narrow range of linear relationship, sensors of MMO with good
linear relationship in a broad range are suitable for detection
of H2S with large change of concentration (Na et al., 2019;
Teng et al., 2020). The response and recovery curve of MMO
to 40 ppm H2S at 100◦C is shown in Figure 3C with a response
time of ∼6 min and recovery time of ∼1 min. The repeatability
presented in Figure 3D is also important for gas sensors and
other devices (Kong et al., 2021a,b). The curves of response

FIGURE 5 | Schematic diagram of H2S sensing mechanism of MMOs.
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show negligible difference after repeating five cycles of tests to
40 ppm H2S, which implies good repeatability and stability of
MMO. To investigate the selectivity of MMO sensor, it was
exposed to various gases, including CH4, H2, and CO. As shown
in Figure 4A, the sensor exhibits higher response to H2S than
other gases, which could greatly weaken the interference of non-
target gases. The response of MMO, MMO-180, MMO-160, and
CMO are shown in Figure 4B, in which MMO has the highest
response to H2S.

Table 1 summarizes the sensing performance of different
metal oxide to H2S. Compared to other metal oxide in early work,
MMO sensor exhibits lower working temperature and wider
concentration range to detect H2S. Besides, the good repeatability
and selectivity makes MMO sensor suitable for detection of H2S
leakage in chemical petrochemical companies.

Gas Sensing Mechanism
As a typical n-type semiconductor, the sensing performance of
MMO strongly depends on the free electron density (Figure 5).
According to the density functional theory (DFT), the adsorption
and dissociation of O2 on MoO2 surface could occur rapidly
at room temperature, due to the high adsorption energy and
low dissociation barrier (Zhang Q. et al., 2017). Therefore,
when MMO exposed to air, oxygen molecules adsorb onto the
surface of MMO and take free electrons from MMO, forming
chemisorbed oxygen (O2

−) and resistant electron-depletion layer
(EDL) as the working temperature below 150◦C (Franke et al.,
2006). This leads to decreased free electron density and increased
resistance (Mirzaei et al., 2018). After H2S was injected into the
chamber, H2S molecules react with O2

− to form SO2 and water
vapor. In this process, free electrons trapped by O2

− come back
to the MMO, causing the increased free electron density and
decreased resistance (Katoch et al., 2015). After exposed to air
again, the oxygen molecules will be re-adsorbed and reconstruct
the EDL. During the tests, H2O also participated in the reaction
via reacting with hole (h+) to render the radical hydroxyl(•OH),
which justifies the optimal working temperature is 100◦C.

The whole reaction is described below:

O2(g)↔ O2(ad)

O2(ad) + e− → O2
−(ad)

2H2S + 3O2
−(ad)→ 2SO2 + 2H2O + 3e−

H2O(ad) + h+ → •OH + H+

As discussed in XPS characterization before, there is abundant
chemisorbed oxygen on the surface of MMO, which could react
with a large of H2S molecules without saturation. This causes the
good linear relationship in a broad range of MMO sensors to H2S.

CONCLUSION

MoO2 nanospheres was rapidly synthesized by microwave-
assisted solvothermal method at 200◦C for 3 h. The resultant
MMO exhibit more regular dimension than CMON prepared
by conventionally solvothermal method. At an optical working
temperature of 100◦C, the MMO-based sensors exhibit excellent
response, linear relationship, repeatability and selectivity toward
a broad concentration range of H2S (10–240 ppm). The
oxygen vacancies on the surface of MMO results in abundant
chemisorbed oxygen which could react with H2S, causing
outstanding sensing performance of MMO sensors. In a word,
MoO2 nanosphere with abundant chemisorbed oxygen is a
promising sensing material for detection of H2S leakage in
chemical companies.
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