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Hydrogen economy, wherein hydrogen is used as the fuel in the transport and energy
sectors, holds significant promise in mitigating the deleterious effects of global warming.
Photocatalytic water splitting using sunlight is perhaps the cleanest way of producing the
hydrogen fuel. Among various other factors, widespread adoption of this technology has
mainly been stymied by the lack of a catalyst material with high efficiency. 2D materials
have shown significant promise as efficient photocatalysts for water splitting. The
availability of open databases containing the “computed” properties of 2D materials
and advancements in deep learning now enable us to do “inverse” design of these 2D
photocatalysts for water splitting. We use one such database (Jain et al., ACS Energ. Lett.
2019, 4, 6, 1410–1411) to build a generative model for the discovery of novel 2D
photocatalysts. The structures of the materials were converted into a 3D image–based
representation that was used to train a cell, a basis autoencoder and a segmentation
network to ascertain the lattice parameters as well as position of atoms from the images.
Subsequently, the cell and basis encodings were used to train a conditional variational
autoencoder (CVAE) to learn a continuous representation of the materials in a latent space.
The latent space of the CVAE was then sampled to generate several new 2Dmaterials that
were likely to be efficient photocatalysts for water splitting. The bandgap of the generated
materials was predicted using a graph neural network model while the band edge positions
were obtained via empirical correlations. Although our generative modeling framework was
used to discover novel 2D photocatalysts for water splitting reaction, it is generic in nature
and can be used directly to discover novel materials for other applications as well.
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INTRODUCTION

Hydrogen as an alternate fuel and energy carrier has the potential to substantially mitigate carbon
emissions for a green and sustainable future (Turner, 2004). Since it is not naturally available in free
form for large scale applications, hydrogen is produced synthetically through a variety of processes
(Sigfusson, 2007). Photocatalytic/photoelectrochemical splitting of water using sunlight, a suitable
photocatalyst, water, and renewable electricity is perhaps the environmentally most benign method
to produce hydrogen at scale (Edwards et al., 2007). Ever since the demonstration of solar water
splitting by Fujishima and Honda (1972) using TiO2 electrodes, enormous amount of efforts has
been put in identifying new photocatalysts. Various materials, such as metal oxides, nitrides, sulfides,
oxysulfides, oxynitrides, and Z-scheme materials, have been developed with enhanced efficiencies for
solar water splitting. A detailed overview of these developments and the progress made in the field
has been documented in several excellent review articles (Osterloh, 2008; Kudo and Miseki, 2009;
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Maeda and Domen, 2010; Osterloh and Parkinson, 2011;
Tachibana et al., 2012; Hisatomi et al., 2014; Ahmad et al.,
2015; Zou and Zhang, 2015; Moniruddin et al., 2018; Prasad,
2020). The emergence of 2D materials, heralded by the discovery
of graphene (Novoselov et al., 2004), has added a new dimension
in the search of efficient photocatalysts. In addition to stability
and suitable electronic structure, these materials provide a large
surface to volume ratio, higher charge carrier mobility, and
reduced recombination rates, all of which aid in enhancing the
reaction rates at the photocatalyst surface (Li et al., 2017). Various
2D materials, mostly chalcogenides such as SnS and SnSe (Sun
et al., 2014), CdS (Xu et al., 2013), WS2 (Voiry et al., 2013), SnS2
(Sun et al., 2012), and MoS2 (Maitra et al., 2013) have been
synthesized and shown to have enhanced photocatalytic
performance.

With rapid advancements in first principles methods and
computational power, in-silico design/screening of materials
has emerged as a promising alternative method to narrow the
search space of novel functional materials (Agrawal and
Choudhary, 2016). For instance, high-throughput density
functional theory (DFT) calculations have been used to
identify oxynitrides (Wu et al., 2013), perovskites (Castelli
et al., 2012a; Castelli et al., 2012b), and chalcogenides (Zhuang
and Hennig, 2013a; Zhuang and Hennig, 2013b; Singh et al.,
2015) as potential photocatalysts for water splitting. Properties of
a vast number of materials computed in such high-throughput
fashion using accurate first principles methods have been made
openly available in repositories such as the Materials Project
(MP) (Jain et al., 2013), the Open Quantum Materials Database
(OQMD) (Saal et al., 2013), Automatic FLOW for materials
discovery (AFLOW) (Curtarolo et al., 2012), and Novel
Materials Discovery (NOMAD) (The NOMAD (Novel
Materials Discovery) Center of Excellence (CoE), (2021)).
While these repositories primarily contain data on bulk
materials, two different datasets containing DFT-computed
properties for 2D materials were also published recently
(Haastrup et al., 2018; Zhou et al., 2019). Knowledge stored in
these repositories has then been mined to screen materials for
diverse applications (Zhang et al., 2018; Singh et al., 2019; Zhang
et al., 2019). In addition, machine learning models have also been
trained using data from these repositories to predict properties of
novel materials (Ahmad et al., 2018; Xie and Grossman, 2018; Ye
et al., 2018; Joshi et al., 2019; Liu et al., 2020). In a recent article,
Sorkun et al. (2020) identified several potential 2D materials for
photocatalytic water splitting, CO2 reduction, and N2 reduction
by training AI models on the computational 2D materials
database and using the predictions from these models to
screen a vast chemical space obtained by systematic elemental
substitution in 2D material prototypes.

An alternate approach to the high-throughput screening is to
build unsupervised deep learning (DL) models that can learn the
encodings of materials in a continuous latent space. This latent
space could then be sampled to generate novel materials. When
linked with one or more material property, such techniques can
enable discovery of novel materials conditioned on certain
properties (i.e., inverse design of functional materials).
Variational autoencoder (VAE) (Kingma and Welling, 2019)

and generative adversarial network (GAN) (Goodfellow et al.,
2014) are two of the most widely used generative models. VAEs
use concepts of variational inference to learn the representation of
input data by minimizing the reconstruction loss (formally called
maximizing the log likelihood of observations) as well as
divergence of the learned distribution from an assumed prior
distribution (formally called Kullback-Leibler divergence)
(Kingma and Welling, 2019). On the other hand, GANs use
concepts from game theory to adversarially train a generative and
a discriminative network. While the objective of the generative
network is to fool the discriminator by generating realistic
samples, the discriminator aims to correctly distinguish fake
samples created by the generator from true samples
(Goodfellow et al., 2014). Recently, both VAEs and GANs
have been used for the generation of novel inorganic
materials. In their iMatGen framework, Noh et al. (2019) used
an image-based representation of crystal structures and trained a
VAE to generate novel phases of vanadium oxides. While their
model was restricted to only two element types (V and O),
Hoffmann et al. (2019) introduced a generalization of this
concept via inclusion of a segmentation network, to generate
novel materials containing multiple types of elements. Court et al.
(2020) used these concepts to build a conditional VAE for the
generation of novel binary alloys, ternary perovskites, and
Heusler compounds, all in cubic symmetry. Ren et al. (2020)
used an invertible representation of crystal structures by a
combination of descriptors in both real and reciprocal spaces
and trained a VAE to generate novel thermoelectric materials.
Long et al. (2020) and Kim et al. (2020) used GANs to discover a
new crystal structure of the Bi-Se and Mg-Mn-O systems,
respectively.

In this study, we have developed a generative modeling
framework for the discovery of novel 2D materials as
photocatalysts for water splitting. In comparison to prior
works, our framework does not place any restriction on the
structure or the stoichiometry of the materials. The bandgap
of the generated materials was predicted using the CGCNN
model (Xie and Grossman, 2018) while their band edge
positions were computed using empirical correlations. Using
this framework, we have discovered several novel 2D materials
as potentially good photocatalyst for water splitting. While we
have demonstrated the discovery of 2D photocatalysts as an
application, our framework is generic enough to be applied for
any kind of functional material discovery.

METHODS

Data Preparation and Representation
The dataset of 2D materials, to train our hierarchical generative
model was obtained from the earlier published study of Jain et al.
(2019). This dataset included data for all the materials that were
included in earlier 2D materials’ databases such as C2DB
(Haastrup et al., 2018) and 2DMatPedia (Zhou et al., 2019) as
well as the materials cloud (Mounet et al., 2018). Furthermore,
properties such as the bandgap and energy above hull for all the
materials were reported using a uniform level of theory, thereby
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providing us a consistent set of data to learn from. Around 7,500
unique 2D materials were present in the dataset whose structures
were provided as cif files. These structures were converted to
image-based representations which were subsequently used to
train all our models.

In order to represent the crystal structures as images, we
followed the same concept as proposed by Noh et al. (2019) in
their iMatGen framework. Just as a crystal structure is construed
as a “basis” of atoms in an underlying “lattice”, each structure in
our dataset was represented using a “cell” and a “basis” 3D image.
Both the images had a dimension of (32 × 32 × 32). The voxel
values of the cell image were obtained using a Gaussian
function as:

Fijk � exp(−r2ijk
2σ2

), (1)

where rijk is the Euclidean distance between the center of the
lattice and (i, j, k)th voxel. The basis image was generated using an
atomic number weighted Gaussian transformation as described
by Hoffmann et al. (2019). Concretely, the voxel values of the
basis image were obtained as follows:

Gijk � 1

σ3(2π)1.5 ∑l
Zlexp(−d(Zl, (i, j, k))2

2σ2
), (2)

where Zl is the atomic number at site “l” of the material, d[Zl,
(i,,j,k)] is the Euclidean distance between the site “l” and the (i, j,
k)th voxel, and “σ” is the width of the Gaussian.We used a value of
σ � 1.0, consistent with earlier works by Noh et al. (2019) and
Hoffmann et al. (2019), since testing with lower values of σ
resulted in larger errors. In contrast, Court et al. (2020) used the
ionic radius of various elements for σ instead of a constant value.
Prior to generating the basis image, the atoms in a material were
translated such that their center of geometry lay at the center of a
cube of length 10 Å. Together with the basis image, an elements
matrix was also constructed to ascertain the positions and types of
atoms from the basis image. The elements matrix had the same
dimensionality as the basis image (i.e., 32 × 32 × 32). The voxel
values of the “elements matrix” were assigned as:

Sijk � {Zl if d(Zl, (i, j, k)) ≤ 0.5�A
0 otherwise

. (3)

Use of a larger value for the cutoff (larger than 0.5�A) would result in
an overlap of nearby atoms, thereby rendering unique assignment of

atomic numbers to voxels difficult. On the other hand, the use of a
smaller value of the cutoff would result in too few voxels (or data)
having non-zero values among the 32 × 32 × 32 voxels, making it
difficult for the segmentation network to correctly identify atoms.
Figure 1 shows a representative crystal structure from our dataset, its
cell and basis images and the corresponding elementsmatrix. In order
to ensure that the generated images had adequate resolution to
faithfully represent a crystal structure as well as limit the memory
requirement, we only considered those materials from our dataset
whose lattice dimensions along the basal plane directions as well the
slab thickness were not more than 10 Å each. The resulting dataset
had a total of about 6,300 structures. This dataset was augmented by
creating supercells as well as applying random translations and
rotations to the crystal structures to ensure that each element was
represented in at least 3,000 structures. Overall, this augmentation
resulted in a dataset containing about 0.2 million structures which
was split in a 90:10 ratio for train and test.

Deep Learning Model and Network
Architecture
We constructed a two-step hierarchical deep learning model like the
iMatGen framework (Noh et al., 2019) to learn the representations of
the 2D materials in our dataset and to generate novel materials by
sampling from learned continuous representations. The first step of
the model consisted of training a cell and basis autoencoder as well as
a segmentation network for identification of atomic positions and
corresponding element types from the basis image and the elements
matrix. Both the autoencoders were constructed as 3D convolutional
neural networks (3D CNNs). The encoder of the cell autoencoder
consisted of four 3D convolutional layers while the decoder used four
3D convolution transpose layers (i.e., a mirror image of the encoder).
Similarly, the encoder of the basis autoencoder consisted of four 3D
convolutional layers followed by a fully connected layer. However, the
decoder used upsampling instead of 3D convolution transpose. The
dimensions of cell and basis encoding vectors (i.e., the autoencoder
bottleneck dimension)were 128 and 256, respectively.While training,
mean squared error (MSE) was used as the loss function. The detailed
architecture of cell and basis autoencoders is shown in Figures 2, 3,
respectively.

After training of the basis autoencoder, the segmentation network
[a 3D attention U-net model (Oktay et al., 2018)] was trained
independently using the reconstructed basis images (i.e., images
obtained as the output from the decoder of the basis autoencoder)
to identify location and types of elements at that location as atomic

FIGURE 1 | (A) Crystal structure of a material in our dataset, (B) its cell image, (C) its basis image, and (D) the elements matrix.
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clusters. This contrasts with the study of Hoffmann et al. (2019) who
trained their segmentation network together with the basis
autoencoder in an end-to-end fashion to identify the locations of
atoms in a material. The elements matrix prepared earlier for each
structure was converted into a species matrix via one hot encoding
into 95 classes at each grid point. Of these 95 classes, one class
represented the background (or vacuum) while the other 94 classes
corresponded to different elements. If a particular element type was
present at a grid point of the elements matrix, its corresponding class
was set to 1 while the rest of the values of the one hot vector remained
as zeros. Thus, for each material, the ground truth to train the
segmentation network was a species matrix of dimension (32 × 32 ×

32× 95). The binary cross entropy (BCE) loss was usedwhile training
the segmentation network.

In the second step of our hierarchical model, we trained a
generative model to obtain a continuous representation of the
2D materials that can be sampled to discover novel materials.
Thermodynamic stability and the presence of a bandgap are two
necessary conditions that any 2D material must satisfy to qualify
as a potential photocatalyst for water splitting reaction. As a
thumb rule, we considered a material in our database to be stable
if its energy above the hull (e_hull) value was less than 150 meV
per atom. Thus, the materials in our training dataset were
classified into four categories as shown in Table 1.

FIGURE 2 | Architecture of the cell autoencoder.

FIGURE 3 | Architecture of the basis autoencoder.
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The objective of our study was to discover novel 2D materials
belonging to class 1) (i.e., thermodynamically stable with a finite
electronic bandgap) so that potential photocatalysts for water splitting
reaction could be identified. Accordingly, a conditional variational
autoencoder (CVAE) was chosen as our generative model so that,
while sampling the latent space for new materials, control could be
exerted over the class of material to be generated (i.e., material
belonging to class 1) described above). Our CVAE model was
trained using the cell and basis encodings from the previous step
(step 1) together with the one hot encoded class vectors. Cell
encodings were padded with zeros such that both the cell and
basis encodings were 256-dimension vectors. Subsequently, these
were scaled using the normal quantile transformer with 1000

quantiles. The four dimensional one-hot encoded vector was
connected to a 256 dimension hidden layer so that the cell, basis,
and the class encodings were all 256 dimensional vectors. These
vectors were then concatenated as “channels” so that each training
data was now represented by a (256 × 3) dimension image. The
CVAE network comprised of a probabilistic encoder and a
probabilistic decoder. We represented both the encoder and the
decoder via 2D CNNs. The detailed architecture of our CVAEmodel
is shown in Figure 4.

The probabilistic encoder encoded the input into a distribution
with mean µ and standard deviation σ. A latent vector was then
sampled from this distribution using the reparameterization trick, z �
µ+ε*σ, where ε is a random variable from a normal distribution. This

TABLE 1 | Classification of the 2D materials in our dataset into four different classes based on their bandgap and energy above the hull values.

Condition One hot encoding Category

1) Gap > 0 eV, e-hull <� 0.15 eV/atom (1,0,0,0) Nonmetal, stable

2) Gap � 0 eV, e-hull <� 0.15 eV/atom (0,1,0,0) Metal, stable

3) Gap > 0 eV, e-hull > 0.15 eV/atom (0,0,1,0) Non-metal, unstable

4) Gap � 0 eV, e-hull > 0.15 eV/atom (0,0,0,1) Metal, unstable

FIGURE 4 | CVAE network architecture.
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vector was passed through the probabilistic decoder to obtain the cell
and basis encodings as the output. To train CVAE, we implemented
optimal σ-VAE variant, a simple and effective methodology
suggested by Rybkin et al. (2020), that did not require tuning the
weight on the KL divergence term of the objective function as
hyperparameter. The implementation automatically balances the
two terms of CVAE objective function, namely, reconstruction
loss (or MSE) and KL-divergence. The objective function for our
CVAE network was defined as:

LCVAE � Dlnσ + D
2σ2

MSE(x̂, x) + DKL(q(z|x)∣∣∣∣∣∣∣∣(p(z)), (4)

where D is dimensionality of the input (x), DKL is the KL
divergence, q (z|x) is the encoding distribution, p(z) is the
prior distribution (chosen as a normal distribution with zero
mean and unit standard deviation), and σ is the weighting
parameter to balance the KL-divergence and MSE terms.

Bandgap and Band Edge Positions of 2D
materials
The bandgap of a material and its band edge positions must be of
appropriate values for a material to be a potentially good photocatalyst
for water splitting. While DFT has been the method of choice to
compute these properties of a material, several DL models with good
accuracy have been reported recently that are well suited for rapid
screening of novel materials. We used the CGCNN model (Xie and
Grossman, 2018) to predict the bandgaps of the materials obtained
from our model. The weights of the CGCNN model were retrained
using our 2D materials dataset. Since data augmentation of the
aforementioned kind is irrelevant for graph-based models, we
considered only those materials from the original dataset that had
a non-zero bandgap. The bandgap predicted from the trained
CGCNN model was used to compute the band edge positions
using the empirical equations given below:

E0
CB � ω(X) − ESHE − 1

2
Eg , (5)

E0
VB � ω(X) − ESHE + 1

2
Eg , (6)

ω(X) �












Xa
1X

b
2X

c
3....X

q
n

N
√

, (7)

where ECB
0 and EVB

0 are the conduction and valence band edge
energies, Eg is the bandgap predicted by the CGCNNmodel, ESHE

is the absolute electrode potential of the standard hydrogen
electrode (� 4.4 V), and Xi is the electronegativity of the
constituent elements in a material while a,b,c..q are there
number of each of these elements in the materials’ unit cell.
“ω” is the geometric mean of the electronegativities of the
constituent elements in a material.

RESULTS

Deep Learning Model Training
A two-step hierarchical DL model using an image-based
representation of materials was developed to discover novel

2D materials as potential photocatalysts for water splitting
reaction. The first step of the model consisted of autoencoders
and a segmentation network to encode the cell and basis images
and ascertain the location and types of atoms from the basis
images. The subsequent step used the cell and basis encodings
together with a conditional property vector to obtain a
continuous latent space encoding of the 2D materials using a
CVAE. This latent space could be sampled to generate novel 2D
materials whose bandgaps and band edge positions were
predicted using a reparametrized CGCNN model and
empirical correlations, respectively. While the usual practice of
training these DLmodels initializes the weights of the networks to
random values, we used a more “informed” initial guess by
pretraining these networks on the data from the Materials
Project (MP) database (Jain et al., 2013). Details of the dataset
used for this pretraining as well as all the model hyperparameters
are provided in Supplementary Tables S1, S2 of the
supplementary material. We first present the training results
for individual models and then present the error metrics upon
execution of the entire pipeline.

Table 2 provides a summary of the test set error after training our
individual DLmodels from the first step on the 2Dmaterials dataset.
For the cell and basis autoencoders, the MSE and MAE correspond
to the error incurred in reconstructing the input images while for the
segmentation network, the MAE corresponds to the error in
reproducing the species matrix. Clearly, we see that the networks
were able to accurately reconstruct the cell and basis images.
Figure 5 compares a 2D-slice from the input 3D cell image for a
material in our test set as well as the corresponding reconstructed
image produced by the cell autoencoder.

While the autoencoders learned to reconstruct the images well,
the cell parameters of the materials (i.e., the cell lengths and angles)
themselves were obtained from the output of the cell autoencoder
(i.e., the decoded cell image) by feeding the voxel values to the inverse
of the Gaussian function that was used to construct the cell images
originally. Table 3 lists the reconstruction errors in the cell
parameters. Firstly, we observed that the intrinsic error (i.e., the
error in transforming the lattice parameters to the cell image and
back calculating the lattice parameters from the constructed image)
in the cell image representation was zero, suggesting that the lattice
to image transformation was perfect. Secondly, we observed that the
error in cell lengths and angles obtained upon inverting the output
image from the cell autoencoder was also very small, suggesting that
the learned cell encodings represented the cell images well.

In comparison to cell parameters, obtaining the atomic positions
from the output of basis autoencoder and segmentation network
required a multi-step post processing. Firstly, the output of
segmentation network was converted to elements matrix using the
argmax function on one-hot encoded species matrix. This assigned
atomic numbers to each site in the elements matrix. Then clusters of
atoms were found from the elements matrix using the skimage
package (Van der Walt et al., 2014). Finally, positions of the atoms
were assigned as the centroids of clusters while the type of atom at that
location (i.e. the atomic number) was assigned based on majority
voting among sites belonging to that cluster. The error in the atomic
position was obtained by computing the distance between the
predicted atom “i” in the output element matrix and the nearest
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true atom “j” in the original element matrix (i.e., ground truth) of that
material. Figure 6A shows the test set predictions from the
segmentation network as a parity plot between the predicted vs.
true number of atomswhileFigure 6B shows a parity plot between the
predicted vs. true atom types for those materials predicted to have
correct number of atoms. Clearly, from Figure 6 and the loss values
mentioned inTable 2, it can be inferred that the networks were able to
closely reconstruct the materials in the test set.

Further analysis of these predictions revealed that for 87.7% of
materials in the test set, the basis autoencoder and segmentation
network was able to predict the correct number of atoms as well as
material composition with a very small RMSE of 0.06Å in the atomic
positions. Suchgoodaccuracyof the basis autoencoder and segmentation
network can also be gleaned from Figure 7which shows a 2D slice of an
input and reconstructed basis images of a material from the test set as
well as the corresponding elements matrices.

Having trained the cell, basis autoencoders and the
segmentation network, we next trained the generative model

(CVAE) with the cell and basis encodings, one hot property
vector as the inputs. Once again, pretrained weights from the MP
dataset were taken as the initial guess for the CVAE model. The
main objective of this study being the discovery of novel 2D
materials for photocatalytic water splitting, it was essential that
the learned latent space be smooth and continuous for generating
realistic materials. The kernel density estimate (KDE) plot in
Figure 8 shows that the 128-dimensional latent space was mostly
smooth and continuous and approximately followed a unit
Gaussian profile. This is further elucidated by the tSNE plot
(Van der Maaten and Hinton, 2008) shown in Supplementary
Figure S1 of the supplementary material, which shows a uniform
distribution of the latent space encodings. Note that unlike
conventional autoencoders, the CVAE latent space is not
expected to be segregated into different regions based on the
class of material since every sampling produces an instance of a
material of a particular class (Atienza, 2018). The average mean
and variance of the latent vectors were found to be 10−3 and 0.99,
respectively. The test set KL loss was 1.97, while the
reconstruction loss was 0.014.

After training the individual models, we ran the entire two-
step generative model pipeline to obtain the errors in our test set
prediction upon end-to-end execution. The cell and basis
encodings of the test set materials obtained from the
respective autoencoders together with their appropriate one
hot encoded property values were passed through the CVAE

TABLE 2 | Test set errors in the cell and basis autoencoder and the segmentation network after training these models on the 2D materials dataset.

Mean
squared error (MSE)

Mean
absolute error (MAE)

Cell autoencoder 3.17 × 10−8 8.32 × 10−6

Basis autoencoder 1.99 × 10−4 6.59 × 10−3

— Binary cross entropy loss (BCE) Mean Absolute Error (MAE)

Segmentation network 3.60 × 10−5 2.17 × 10−5

FIGURE 5 | A 2D slice of the input cell image (A) and its comparison with the corresponding 2D slice from the reconstructed (output of cell autoencoder) cell
image (B).

TABLE 3 | Reconstruction error in the cell parameters for 2D materials.

Δa (Å) Δb(Å) Δα(°) Δβ(°) Δγ(°)

Intrinsic 0.00 0.00 0.00 0.00 0.00

Test set 0.04 0.04 0.70 0.61 0.87
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network. The output cell and basis encodings from the CVAE
network were passed through the decoders of the respective
autoencoders. The output cell images were then inverted to
obtain the cell parameters, while the output basis images were

segmented to obtain the positions of atoms in each material.
Analysis of the results revealed that for 93.8% of the materials, the
pipeline was able to predict the correct number of atoms. Among
those materials predicted to have the correct number of atoms,
51% of materials were predicted to have the correct
stoichiometry. For 22.4% of materials, the largest deviation in
the atomic number of any atom constituting the material was
within ±2. 26.6% of materials and had larger than ±2 deviation in
the predicted atomic numbers. When all the test set
materials were included, the errors in the lattice parameters
were 0.07 Å in “a” and “b” cell lengths, 0.85˚, 0.86˚, and 1.13˚
in the α, β, and c cell angles, respectively. These values reduced to
0.05Å and 0.06Å for “a”, “b” cell lengths and 0.73˚, 0.72˚, and
0.93˚ for α, β, and c cell angles, respectively, when only those
materials in the test set with correctly reconstructed
stoichiometry were considered. While the accuracy in
reconstructing the lattice and basis of the materials slightly
reduced upon end-to-end execution of the pipeline, they are
comparable to those reported by Hoffmann et al. (2019).

Finally, to predict the bandgap of the generated materials, we
reparameterized the CGCNN model with our 2D dataset. Use of
the network weights directly from the original CGCNN model
resulted in a large MAE in the bandgap of 0.727 eV. To reduce the
prediction error, we retrained the network beginning with the
original CGCNNmodel weights as the initial guess. A dropout of
0.5 was introduced after the pooling layer of the model to prevent

FIGURE 7 | Performance of a basis autoencoder and a segmentation network. (A) and (B) panels show a 2D slice of the input and reconstructed basis images for a
material from the test set, respectively. (C) and (D) panels show the corresponding input and output elements matrices, respectively.

FIGURE 8 | Kernel density estimate plot for the 128-dimensional CVAE
latent space. The learned latent space was mostly smooth and continuous
and approximately followed a unit Gaussian.

FIGURE 6 | Performance of the segmentation network. (A) Predicted vs. true number of atoms in materials from the test set. (B) Predicted vs. true atomic numbers
of atoms in those materials that were predicted to have the correct number of atoms.
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overfitting. The trained model gave a test set MAE of 0.567 eV.
While this error is smaller than the original model error of
0.727 eV on our dataset, it is still larger than the CGCNN
model error of 0.388 eV reported for bulk materials (Xie and
Grossman, 2018). Nevertheless, owing to the generalizability of
the model as well as rapid prediction of bandgaps, we used this
model to predict the bandgaps of the generated materials.

Generation of Novel 2D Materials
The trained DLmodels were used to generate novel 2D materials by
sampling from the CVAE latent space. While the latent space can be
sampled in several different ways, we chose to explore the space
around the encodings of the materials belonging to class 1 in our
training set (i.e., thermodynamically stable and non-metal) so that
the generated materials are likely to share the characteristics of the
pivot material. Specifically, for each of the 1000 randomly chosen
materials belonging to class 1 in our model training set, we drew 100
samples from a normal distribution of the formN(µpivot, 0.1), where
µpivot was the mean of the distribution learned by the CVAE for the
pivot material (i.e., the material in the training set). The sample
drawn from the normal distribution was then passed through the
probabilistic decoder of the CVAE and subsequently through the cell
and basis autoencoders to get the respective images. The lattice and
atomic basis of the materials were obtained from these images as
described earlier. After constructing the crystal structure, the
materials were subjected to a set of post-processing steps to filter
improbable structures as well as narrow our search space for
photocatalysts. These steps were as follows:

1) Hydrogen atom position curation: Hydrogen atoms that were
more than 1.8 Å away from atoms in the generated crystal
structure were deemed “free” hydrogen atoms in vacuum,
which were generated due to segmentation network errors.
Such hydrogen atoms were deleted from the structure.

2) Bond distance–based filtering: Those materials in which the
interatomic distance between any pair of atoms without
hydrogen was less than 1.2 Å, were discarded. If an atom
pair contained hydrogen atom, this distance threshold was set
to 0.8 Å.

3) Number of elements–based filtering: We discarded those
materials that contained more than four element types.

In all, ∼45% of the sampled materials were discarded after the
above screening procedure. The crystal structure of the remaining
materials was passed through the CGCNN model to obtain an
estimate of their bandgap. Finally, the obtained bandgap was used
in empirical equations 5–7 to obtain the position of the valence
and conduction band edges. Analysis of the filtered materials
firstly revealed that the sampling generated 411 materials with 73
unique compositions that were present in the test set, but not in
the training set. Of these, the crystal structures of 42 materials
closely matched with that in the test set. Supplementary Table S3
in the supplementary material lists these compositions as well as
the absolute deviations in the predicted lattice parameters and
bond lengths from their true values. The crystal structures of the
predicted materials ranged from simple metal halide structures
(such as MoI2, containing alternate layers of metal and halide

ions) to more complicated structures containing molecular
species such as carbonates (e.g., MnC2O6) and phosphates
(e.g., Mo2P2O10). These results show that our model was able
to generate not only realistic material compositions unseen by it
during training but also closely predict their crystal structure,
further emphasizing on the accuracy of model training and
reliability of its predictions. In addition, the model was also
able to suggest different phases (i.e., crystal structure) for a
given material composition.

Having established the reliability of the trained model, we
analyzed the filtered materials to search for novel 2D materials as
potential water splitting catalysts. Attention was paid to those
materials that were present neither in our training nor test set, so
that the generated materials were truly novel. In addition to the
material composition, the bandgap and the band edges of the
material had to be in suitable ranges to qualify as a potential
photocatalyst. Specifically, the bandgap of the material had to be
between 1.6 and 3 eV, while the conduction and valence band edge
had to lie below and above 0 eV and 1.23 eV, respectively. Such
alignment of band edges ensures that the holes generated in the
valence band upon photoexcitation are able to oxidize water [since
they lie at a more positive potential than the water oxidation
potential (� 1.23 V vs. SHE)] while the electrons populating the
conduction band are able to reduce protons [since they lie at a more
negative potential than the hydrogen evolution potential (� 0 V vs.
SHE)]. Furthermore, we imposed a constraint of charge neutrality on
the generated materials by assigning formal atomic charges
corresponding to all the well-known oxidation states of each
atom in a material. Then the charges on all the sites were
summed up to ensure that at least one combination of oxidation
states led to a net zero charge. Considering these aspects, our model
generated about 150 new materials as potential photocatalysts for
water splitting. A list of these materials, together with their bandgap,
band edge positions, and lattice parameters are given in
Supplementary Table S4 of the supplementary material.

To further narrow this set down to a few tens of materials, we
used a CGCNN-based model to classify the materials as stable vs.
unstable using a more stringent criteria for e_above_hull ≤
50 meV/atom. As before, the CGCNN model was pretrained
on the MP dataset followed by training on the 2D materials
data. Details of the model training and hyperparameters are
provided in Supplementary Table S5 of the supporting
information. The test accuracy of the model was 0.87 while
the area under the receiver operating characteristic curve
(AUC curve) was 0.924. Subsequently, the ∼150 materials
identified above were passed through the classification network
resulting in 19 materials that had a probability of >0.99 to belong
to the stable class (i.e., e_above_hull ≤ 50 meV/atom). These 19
materials are listed at the beginning of Supplementary Table S4
in bold while their structures are provided as cif files. From
Supplementary Table S4 we see that all the materials generated
were either halides or oxides/chalcogenides apart from Ag2PdN2,
LiRhN2, and InRhN2. This stems from the fact that halides were
the dominant materials in the 2D materials dataset followed by
oxides and chalcogenides. Furthermore, analysis of the
e_above_hull values of the materials in class 1 of the dataset
revealed that the mean value was 47 meV/atom for halides while
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it was 69 meV/atom for oxides. Consistently, all 19 shortlisted
materials were seen to be halides.

Visualization of the structure of these 19 materials revealed
that they belonged to a few different structural prototypes.
Ce2N2I2, Dy2S2Cl2, Lu2S2Cl2, Tm2S2Br2, and W2P2Cl2 had a
BiOCl oxyhalide-like orthorhombic structure with each metal
ion coordinated to 4 S/P/N atoms which were in turn coordinated
to four metal ions. The halide ion occupied the hollow site above
the metal ions. Other halides such as LuClI, LuSeCl, LuSCl, and
RePBr adopted the 2H-MoS2-like hexagonal structure while
InSCl adopted the 1T-MoS2-like structure. In both cases, each
metal ion was coordinated to six anions, and each anion was
coordinated to three metal ions. It must be noted that both BiOCl
(Faraji et al., 2019) and MoS2 (Li et al., 2013) depicted excellent
photocatalytic activity for water splitting reaction themselves.
Given that these newly generated materials display favorable
bandgap and band edge positions, high confidence of being
thermodynamically stable and adopting a structure similar to
known photocatalysts, they could perhaps be considered as new
targets for synthesis and evaluation.

Ce2Se2Br4, Nb2S4Cl2, ScTiCl6¸ CeNdBr6, NdTbBr6, and PrNdCl6
had a metal trihalide-like structure, with the former three adopting a
BiI3-like trigonal structure and the latter three adopting an NdBr3-
like orthorhombic structure. Earlier reports have shown that metal
trihalides depicted interesting magnetic behavior and could
potentially be used in magnetic and spintronic applications
(McGuire, 2017; Tomar et al., 2019). Thus, in addition to
photocatalysts, these newly generated materials could be studied
for other interesting applications as well. Finally, GaSCl adopted an
HgI2-like structure with four coordinated metal ions and two
coordinated anions while W2CCl2 adopted an MXene-like
structure with chloride termination.

DISCUSSION

With rapid increase in computational power and advancements in
AI algorithms, applications of generative models in synthesizing
realistic data has widespread appeal in various fields. Application of
these techniques in materials science holds significant promise for
realizing in-silico design/discovery/screening of functional materials.
In this study, we have demonstrated one such generative modeling
approach for the discovery of novel 2D materials as photocatalysts
for water splitting. Using an image-based representation of crystal
structures, our two-step model first built cell and basis autoencoders
to obtain a representation of these images in a lower dimensional
space. The reconstructed images from the basis autoencoder were
used to train a segmentation network so that the positions and types
of atoms in a material could be ascertained. Next, a CVAE model
was trained using the cell and basis encodings together with a
conditional one hot property vector to obtain a continuous latent
space that can be sampled to generate newmaterials. The bandgap of
the generated materials was predicted using a reparameterized
CGCNN model, which was then used to obtain their band edge
positions via empirical relations. Evaluation of the model showed
good accuracy in reconstructing materials from the test set. The
latent space was then sampled to generate novel 2D materials by

exploring the region around materials from the training set. An
important metric of reliability for any generative model is its ability
to produce realistic samples, which in our case is the crystal structure
of known materials that were previously unseen by the model. To
that end, our model was able to predict 73 different compositions
that were present in the test set but not in the training set. Of these,
the structures of 42 compounds matched closely with their true
structures. Further analysis of the sampled materials gave several
novel materials as potential photocatalysts for water splitting.

Our generative modeling framework is an advancement over
other related models reported in the literature. While our model
is conceptually similar to the iMatGen framework (Noh et al.,
2019), the latter was restricted to predicting novel phases of
vanadium oxides only. The use of atomic number weighted
gaussians to construct the basis image together with
segmentation allowed us to generalize the model to all crystal
and atom types. While Court et al. (2020) used a somewhat
similar approach in their model, lack of an explicit
representation of the lattice precluded the application of their
model to non-orthogonal systems. Furthermore, all these
generative models hold an advantage over high-throughput
virtual screening approaches such as those reported by
Sorkun et al. (2020), since they possess the capability to not
only identify new material compositions but also new phases for
known material compositions. However, this in no way
undermines the importance of high-throughput screening
approaches. A large amount of data is usually required to
build accurate generative models. In cases where such data is
absent (which often happens in materials science), building
shallow models with available data and using these models in
high-throughput screening is perhaps the only viable approach
to identifying novel materials.

Although our generative modeling framework showed good
accuracy, admittedly, there is scope for improvement. For
instance, the cell and basis accuracies deteriorated upon end-
to-end execution of the full model owing to the reconstruction
error of the CVAE network. Better performance of the VAE
network could perhaps be achieved by using deep feature
consistent (DFC) VAEs (Hou et al., 2017), as was
demonstrated by Court et al. (2020). Instead of minimizing
the pixel-to-pixel difference between the input and
reconstructed images (via MSE loss), DFC-VAEs attempt to
minimize the difference in the hidden representations between
the two images (called feature perceptual loss), which eventually
leads to a truer (less noisy) reconstruction of the input image.
Accurate reconstruction of the cell and basis encodings would
then reflect in better accuracies in cell parameters, atomic
positions, and element types. Furthermore, while we suggested
several novel 2D photocatalysts for water splitting reaction by
sampling from thermodynamically stable class of non-metals, this
screening has been entirely based on bandgap and band edge
positions. In addition to these necessary conditions, low aqueous
solubility, small exciton binding energies and recombination
rates, and favorable surface reaction kinetics are some of the
other necessary conditions for a viable 2D water splitting
photocatalyst (Singh et al., 2015). Our study, as also other
reports based on high-throughput screening, do not currently
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incorporate these properties, primarily owing to the exorbitant cost
associated with computing some of these quantities. Finally, any
material designed in-silico gains relevance only when it is realized
experimentally and displays anticipated properties. In the current era
of big data, this calls for automated laboratories that could rapidly
synthesize (or show otherwise) and characterize newmaterials. Such
high-throughput experimentation when combined with data-based
predictive models can significantly accelerate the discovery of novel
functional materials. For instance, one could imagine a scenario in
which our own generative modeling framework is trained in an
active learning fashion by integrating with automated
experimentation (via orchestration software such as ChemOS
(Roch et al., 2018)). The generated materials could be rapidly
evaluated in experiments and the outcome could be fed back to
the training set so that the model can be improved iteratively. In our
view, implementation of such frameworks could significantly help us
move closer to realizing the vision of truly inverse design of
materials.
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