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In monolithic UMo fuels, the interaction between the Al cladding and large gas bubble
volumetric swelling causes both elastic-plastic and creep deformation. In this work, a
phase-field model of gas bubble evolution in polycrystalline UMo under elastic-plastic
deformation was developed for studying the dynamic interaction between evolving gas
bubble/voids and deformation. A crystal plasticity model, which assumes that the plastic
strain rate is proportional to resolved shear stresses of dislocation slip systems on their slip
planes, was used to describe plastic deformation in polycrystalline UMo. Xe diffusion and
gas bubble evolution are driven by the minimization of chemical and deformation energies
in the phase-field model, while evolving gas bubble structure was used to update the
mechanical properties in the crystal plasticity model. With the developed model, we
simulated the effect of gas bubble structures (different volume fractions and internal gas
pressures) on stress-strain curves and the effect of local stresses on gas bubble evolution.
The results show that 1) the effective Young’s modulus and yield stress decrease with the
increase of gas bubble volume fraction; 2) the hardening coefficient increases with the
increase of gas bubble volume fraction, especially for gas bubbles with higher internal
pressure; and 3) the pressure dependence of Xe thermodynamic and kinetic properties in
addition to the local stress state determine gas bubble growth or shrinkage. The simulated
results can serve as a guide to improve material property models for macroscale fuel
performance modeling.
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INTRODUCTION

Themeasured thickness increase of a UMo fuel meat in monolithic UMo plate-type fuel as a function
of the local fission density is shown in Figure 1. The profile of an irradiated UMo fuel plate and gas
bubble structures at different fission densities are also shown in Figure 1. Irradiation results in a
nonuniform thickness of the UMo fuel meart and large changes in the gas bubble structure with
respect to fission density. The interaction between gas bubble volumetric swelling of the UMo fuel
meat and the Al cladding in monolithic UMo fuels results in a non-uniform stress field in both the
UMo fuel meat and Al cladding, which drives elastic-plastic and/or creep deformation, defect

Edited by:
Shiyu Du,

Ningbo Institute of Materials
Technology & Engineering

(CAS), China

Reviewed by:
Yaolin Guo,

Ningbo Institute of Materials
Technology & Engineering

(CAS), China
Shurong Ding,

Fudan University, China

*Correspondence:
Shenyang Hu

shenyang.hu@pnnl.gov

Specialty section:
This article was submitted to

Structural Materials,
a section of the journal
Frontiers in Materials

Received: 18 March 2021
Accepted: 04 May 2021
Published: 07 June 2021

Citation:
Hu S and Beeler B (2021) Gas Bubble
Evolution in Polycrystalline UMo Fuels
Under Elastic-Plastic Deformation: A

Phase-Field Model With Crystal-
Plasticity.

Front. Mater. 8:682667.
doi: 10.3389/fmats.2021.682667

Frontiers in Materials | www.frontiersin.org June 2021 | Volume 8 | Article 6826671

ORIGINAL RESEARCH
published: 07 June 2021

doi: 10.3389/fmats.2021.682667

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2021.682667&domain=pdf&date_stamp=2021-06-07
https://www.frontiersin.org/articles/10.3389/fmats.2021.682667/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.682667/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.682667/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.682667/full
https://www.frontiersin.org/articles/10.3389/fmats.2021.682667/full
http://creativecommons.org/licenses/by/4.0/
mailto:shenyang.hu@pnnl.gov
https://doi.org/10.3389/fmats.2021.682667
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2021.682667


diffusion, and microstructure evolution (Kim et al., 2013; Meyer
et al., 2014; Meyer et al., 2017; Ozaltun and Rabin, 2017;
Medvedev et al., 2018). The fission product induced swelling
generates high stresses within both the fuel and the cladding,
leading to plasticity and creep. The interaction of gas bubble
swelling with this induced mechanical deformation will
subsequently affect the nature of gas bubble evolution, due to
accommodation of stress. On the other hand, since the gas
bubbles have different thermo-mechanical properties from
UMo matrix, the evolution of gas bubbles impacts the thermo-
mechanical properties of the entire fuel system. Therefore, to
predict the fuel performance including mechanical integrity,
geometric stability, and stable irradiation behavior, it is crucial
to validate the correlation among deformation, gas bubble
evolution, and material properties, and develop physics-based
constitutive equations of swelling, elastic-plastic deformation,
and creep.

The existing constitutive models for swelling, elastic-plastic
deformation, and creep utilized in monolithic UMo fuel
performance modeling (Miller et al., 2010; Ozaltun and Rabin,
2017; Medvedev et al., 2018; Yan et al., 2019) are empirical and
developed primarily by fitting experimental data (Burkes et al.,
2010; Burkes and Wachs, 2010; Kim et al., 2013) and secondarily
to fit the results of finite element analyses. The mechanisms of
deformations such as plastic and creep deformation and the
coupling of gas bubble structure, stress, and property evolution
are not sufficiently considered, which limits the predictive
capability of the existing models.

In the absence of irradiation damage, a number of
microstructure-dependent plastic and creep deformation models
have been developed (Deutchman et al., 2012; Cottura et al., 2016;
Wu and Sandfeld, 2017; Yang et al., 2018). A homogenized crystal
plasticity FEMModel (Deutchman et al., 2012), which uses crystal
plasticity parameters (such as activation energy, passing stress and
activation volume) provided by a dislocation-density based crystal
plasticity modeling, was developed to study the effect of various
microstructures (precipitate shape and volume fraction, and
channel width) on plastic deformation in Ni based superalloys.
An empirical constitutive model-based phase-field model

(Tsukada et al., 2011), which uses the von Mises yield criterion
for plastic deformation and a simple creep evolution equation, was
developed to study the evolution of microstructure and inelastic
(plastic and creep) deformation during high temperature creep in
nickel-based superalloys. Yang et al. (2018) developed a phase-field
model combining a simple creep damage model (Vladimirov et al.,
2009) and a dislocation dynamics model (Wu and Sandfeld, 2017)
for studying the evolution of c′/c phases during creep in nickel-
based single crystal superalloys. Phase-field models of diffusive
transformations with dislocation density based plastic deformation
(Cottura et al., 2016), grain boundary sliding with crystal plasticity
deformation (Cheng et al., 2019), and continuum dislocation
dynamic-based crystal plasticity (Koslowski et al., 2002;
Koslowski and Ortiz, 2004; Zeng et al., 2016), in addition to
continuum dislocation dynamics-based crystal plasticity
(Hochrainer et al., 2014; Hochrainer et al., 2016), have also
been developed to study dislocation structure evolution during
deformation. These models strengthen the simulation capability in
studying the interaction between phase separation, dislocation
structure evolution, and plastic deformation. Previously, the
authors have developed a number of microstructure evolution
models in UMo fuels including gas bubble superlattice formation
(Hu et al., 2016), radiation-induced recrystallization (Hu et al.,
2017), and defect clustering with non-equilibrium gas bubble
association growth (Hu et al., 2020). In this work, we leverage
the existing computational capability of gas bubble evolution and
crystal plasticity to develop a phase-field model of gas bubble
evolution in polycrystalline UMo fuels under elastic-plastic
deformation to study the effect of gas bubble structures, such as
volume fraction and internal pressures, on mechanical properties
as well as the effect of local stress on gas bubble evolution.

PHASE-FIELD MODEL OF GAS BUBBLE
EVOLUTION IN POLYCRYSTALLINE UMO
UNDER ELASTIC-PLASTIC DEFORMATION
We consider gas bubble evolution in a representative volume of
polycrystalline UMo in monolithic UMo fuels as shown in

FIGURE 1 | Experimental results reproduced from references (Kim et al., 2013; Meyer et al., 2017). (A) UMo fuel meat thickness change vs. fission density (Meyer
et al., 2017), (B) profile of radiated UMo fuel meat, and (C) evolution of recrystallized grains and gas bubbles in UMo fuel meat (Kim et al., 2013).

Frontiers in Materials | www.frontiersin.org June 2021 | Volume 8 | Article 6826672

Hu and Beeler Gas Bubble Evolution in UMo

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Figure 2. The axes xyz denote the global coordinate while xβyβzβ
is the local coordinate of grain β. The orientation of grain β in the
global coordinate is described by the Euler angle (ϕβ, θβ,ψβ). The
volumetric swelling associated with fission gas bubbles in a UMo
fuel meat is constrained by the Al cladding, which produce
stresses, and both plastic and creep deformation. The
interaction between gas bubble swelling and inelastic
deformation affects gas bubble growth as well as stress and
strain, and hence, fuel performance. To describe the gas
bubble evolution in the polycrystalline UMo under irradiation
and inelastic (plastic plus creep) deformation, two sets of field
variables are used to describe the microstructure. One set is the
order parameters ηβ(r, t) and χ(r, t). ηβ (r, t) describes the grain
orientations and χ(r, t) describes the gas bubbles. ηβ (r, t) is equal
to 1 inside grain β, 0 outside the grain β, and varies from 0 to 1
across the grain boundaries. The order parameter χ(r, t) is equal
to 1 inside gas bubbles, 0 outside gas bubbles, and varies from 0 to
1 across the interface between gas bubble and matrix. The other
set of field variables includes defect concentrations cli (n, r, t) and
cXe(r, t). cli (n, r, t), describes the concentrations of vacancy and
interstitial clusters; where li denotes a cluster with defect i which
could be vacancy or interstitial, while lmeans cluster or loop, and
n is the number of defect i in the cluster li. cXe(r, t) describes the
concentration of fission gas atoms, here treated as Xe, and r, t are
global coordinate and time, respectively.

A phase-field model of grain growth (Chen, 2002) is used to
generate polycrystalline structures. The grain boundaries are
defined by a shape function η(r, t) � 2∑β0

β�1(1 − ηβ)2, which
has the value of 0 inside the grains and continuously varies to
1 at the center of grain boundaries, and β0 is the total number of
grains in the simulation cell. Grain boundaries and gas bubbles
are structural defects, which are sinks for vacancies and
interstitials. The spatial distribution of sinks can be defined by
θ(r, t) � η(r, t) + χ2(r, t).

In UMo fuels, 235U fission generates high-energy neutrons
and fission fragments that cause radiation damage. A cluster
dynamics model (Mansur, 1994; Kohnert and Wirth, 2015;
Brimbal et al., 2016; Kohnert et al., 2018) is used to describe the
evolution of vacancies, interstitials, and their clusters in
polycrystalline structures with distributed gas bubbles. The
generation of gas atoms, vacancies, and interstitials are
calculated with the fission product yields and the kinetic
energy distribution of the fission products. Grain
boundaries, gas bubbles, and dislocations are treated as sink
and emission sites of defects. The description of the cluster
dynamics model of defect evolution is given in (Hu et al.,
2020). In this work, we focused on the static or dynamic
interaction between elastic-plastic deformation and gas
bubbles. For simplicity, we assumed that interstitial
concentration is low and fission gas Xe atoms occupy the
vacancy or vacancy cluster sites. For a given Xe concentration,
the vacancy concentration affects thermodynamic and kinetic
properties such as lattice mismatch and diffusivity. So only Xe
concentration cXe(r, t) is taken into account in this work.

The KKS model (Kim et al., 1999) is used to describe the gas
bubble evolution in polycrystalline UMo. The total free energy G
of the system is formulated as a functional of the order parameter
field χ(r, t) and concentration field cXe(r, t) as
G � ∫

V
[{1 − h(χ)}fm(cm) + h(χ)fb(cb) + wg(χ) + κ

2
(∇χ)2

+ fdef ]dv (1)

where V is the material volume of the simulation cell, cm and cb
are the Xe concentration in matrix and as bubble phases,
respectively, fm(cm) and fb(cb) are the free energy density of
matrix and gas bubble, respectively, h(χ) is a shape function
having values between 0 and 1, g(χ) is the double-well potential,

FIGURE 2 | Illustration of polycrystalline UMo with distributed gas bubbles, where F is the applied force.
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w is the double-well potential height, κ is the gradient energy
coefficient, and fdef is the deformation energy density. The shape
function h(χ) and the double-well potential are selected as:

h(χ) � χ3(10 − 15χ + 6χ2) (2)

g(χ) � χ2(1 − χ)2 (3)

For simplicity, the free-energy densities are approximated as
quadratic functions of concentrations:

fm(cm) � f0[A1m + A2mcm + A3mc
2
m] (4)

fb(cb) � f0[A1b + A2bcb + A3bc
2
b] (5)

where Aim and Aib, (i � 1, 2, 3) are free energy coefficients and f0
is a parameter which scales the chemical driving force, which is
related to the deformation energy driving force of Xe diffusion in
the matrix.

The KKS model assumes that 1) at any material point the
chemical potentials of the matrix and gas bubble phases are the
same; and 2) Xe concentration is conserved. These two
assumptions are described as:

zfm
zcm

∣∣∣∣∣∣∣
cm�cpm

� zfb
zcb

∣∣∣∣∣∣∣
cb�cpb

, (6)

cXe(r, t) � cpm(r, t) [1 − h(χ)] + cpb(r, t)h(χ), (7)

From Eqs 6, 7, we obtain a single solution of cpm(r, t) and cpb(r, t).
The temporal evolution of the field variables are given by

Allen-Cahn (Cahn and Allen, 1977) and Cahn-Hilliard (Cahn,
1961) equations:

zcXe(r, t)
zt

� ∇
D(χ, ηm )
fcXecXe

· ∇[zf (cXe)
zcXe

+ zfdef
zcXe

], (8)

zχ(r, t)
zt

� L

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− z

zχ
(κ
2

∣∣∣∣∇χ∣∣∣∣2) + h′(χ)[fm(cpm) − fb(cpb) − (cpm − cpb) zfm(cpm)zcpm
]

−wg ′(χ) − zfdef
zχ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭,

(9)

where D(χ, ηm ) is the diffusion of Xe, the order parameters χ and
ηm are used to describe an inhomogeneous Xe diffusivity, L is the
interfacial mobility coefficient, and f (cXe) � {1 − h(χ)}fm(cm) +
h(χ)fb(cb) is the total free energy density.

There are three unknown model parameters in the evolution
Eqs 8, 9, i.e., w, κ, and L. These parameters can be determined by
material properties including interface thickness 2λ, interface
energy c, and interface mobility ]. Analyzing the equilibrium
properties of the kinetic Eqs 8, 9 via thin interface limit analysis
(Kim et al., 1999; Hu et al., 2007), the relationships can be
obtained:

c �
���
κw

√
3

�
2

√ , (10)

2λ � α

���
2κ
w
,

√
(11)

where α is a coefficient that depends on the definition of the interface
and is set to α � 2.2, and the parameter L can be obtained from thin

interface analysis (Hu et al., 2020). But for a diffusion-controlled
process like the gas bubble evolution in this work, L can be chosen to
be a large value to ensure a stable solution. The deformation energy
density, fdef , in Eq. 2 depends on the local elastic-plastic energy. The
calculation methods incorporating elastic-plastic energy will be
described in Elastic-Plastic Deformation Under Crystal Plasticity
Framework and Material Properties of UMo.

ELASTIC-PLASTIC DEFORMATION UNDER
CRYSTAL PLASTICITY FRAMEWORK

With the assumption of small deformation, the deformation
energy density can be calculated by:

fdef � 1
2
Cijkl(r)εeijεekl − σapplij εij, (12)

where Cijkl(r) is the elastic constant tensor, εeij is the elastic strain,
σapplij is the applied stress tensor, and εkl is the average strain
tensor.

The elastic strain is expressed as

εeij � εij − εpij, (13)

where εij is the total strain and εpij is the total eigenstrain associated
with lattice mismatch between the matrix and the pressured gas
bubble and plastic deformation. The eigenstrain is defined as

εpij(r, t) � ε0(cXe)δijh(χ) + εpij(r, t), (14)

where ε0(cXe) is the eigenstrain of gas bubbles which can be
estimated by the equation of state of Xe gas phase inside the gas
bubble, δij is the Kronecker delta function, and εpij(r, t) is the
plastic strain which is calculated from crystal plasticity theory.

According to crystal plasticity theory, the plastic strain rate at
the point r inside grain β can be generally calculated as (Ma and
Roters, 2004; Ma et al., 2006):

_εβp(r) � ∑N
s�1

ms(r) _cs(r)

� _c0 ∑N
s�1

ms(r)(|ms(r) : σ(r)|
τs0(r) )n

sgn(ms(r) : σ ′(r)), (15)

where _cs(r), τs0(r), andms(r), are the shear strain rate, the critical
resolved shear stress, and the Schmid tensor, respectively. The
superscript s denotes the slip system s at material point r, andN is
the total number of the slip systems of the crystal at material point
r. _c0 is a normalization factor and n is the stress exponent (inverse
of the rate-sensitivity exponent). σ ′(r) is the deviatoric stress
tensor. The Schmid tensor is a dyadic tensor and is calculated
using:

ms � 1
2b

(bs⊗ns + ns⊗bs), (16)

where bs and ns are the Burger’s vector and the normal direction
of slip system s at point r inside grain β. Then, the total plastic
strain rate is calculated as
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_εp(r) � ∑
β�1,...,β0

_εβp(r)ηβ(r), (17)

We use Aβ � (aβij) denoting the rotation matrix of the local
coordinate of grain β. The coordinate transfer of the second order
tensor ε, such as stress, strain and diffusivity tensors, from local
coordinate to global can be written as

εglobal � AβεlocalA
T
β , (18)

where AT
β is the transpose of Aβ. With the Euler angles of grain β,

the components of the rotation matrix are given as

Aβ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ a

β
11 aβ12 aβ13
aβ21 aβ22 aβ23
aβ31 aβ32 aβ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosψβ cosφβ cos θβ − sinφβ sin θβ −cosψβ cosφβ cos θβ − sinφβ cos θβ sinψβ cosφβ

cosψβ cosφβ cos θβ + cosφβ sin θβ −cosψβ sinφβ sin θβ + cosφβ cos θβ sinψβ sinφβ

−sinψβ cos θβ sinψβ sin θβ cosψβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(19)

Assuming that gas bubble phase has isotropic elastic constants Cb
ijkl

and the single crystal UMo has anisotropic elastic constant CM
ijkl , the

elastic constant tensor in the global coordinate, can be described as

Cijkl(r) � ∑
β�1,β0

CM
pqsta

β
ipa

β
jqa

β
ksa

β
ltηβ(r, t) + Cb

ijklχ(r, t), (20)

To calculate deformation energy density in Eq. 12, we need to
solve the shear strain rate _cs(r) from Eq. 15. In this work, a
formulation based on FFTs (Lebensohn et al., 2012) is employed
to solve for the shear strain rate _cs(r).

Here we summarize the method as follows. At time t + Δt, the
total strain includes elastic strains and plastic strains at a material
point r:

εt+Δt(r) � εe,t+Δt(r) + εp,t(r) + _εp,t+Δt(r)Δt, (21)

where ε(r) represents the total strain tensor, εe(r) is the elastic
strain tensor, εp(r) is the viscoplastic strain tensor, and _εp(r) is
the viscoplastic strain rate tensor. The viscoplastic strain rate
_εp(r) is constitutively related to the local deviatoric stress,
σ ′(r) � σ(r) − p(r)I, where p(r) � (1/3)[σ11(r) + σ22(r) +
σ33(r)] and I being the hydrostatic stresses and a unit matrix,
respectively, via a sum over the N active slip systems described by
Eq. 15.

The Euler implicit time discretization scheme is used to solve
the solution of Eq. 21. The expression, in small strains, of the
stress tensor at material point r at t + Δt is given by

σ t+Δt(r) � c(r) : εe,t+Δt(r) � c(r)
: [εt+Δt(r) − εp,t(r) − _εp,t+Δt(r)Δt], (22)

where σ(r) is the Cauchy stress tensor, and c(r) � {cijkl(r)} is the
elastic stiffness tensor. The stresses must satisfy the stress
equilibrium equation

σ t+Δt
ij,j (r) � 0 (23)

and associated boundary conditions.

For known plastic deformation strain εp,t(r) at step t, the stress
σt+Δt(r), strain εt+Δt(r), and plastic strain rate _εp,t+Δt(r) at time
step t + Δt can be obtained by the following two steps:

Step 1. Seek solutions of τt+Δt(r) and et+Δt(r) for the following
equations

τt+Δt(r) � c(r) : [et+Δt(r) − εp,t(r)],
or
τ(r) � c(r) : [e(r) − εp,t(r)], (24)

by removing the superscript t + Δt, and keep the previous time
step superscript t. The stress, τ(r), satisfies the equilibrium
Eq. 23:

τij,j(r) � 0 (25)

The strains, e(x), are related to the displacements, u(r), as
follows:

eii � ui,i, eij � 1
2
(ui,j + uj,i), i≠ j, (26)

Combining Eqs 24, 25, we have

τij(r) � cijkl(r)(ekl(r) − εp,tkl (r)) � cijkl(r)(uk,l(r) − εp,tkl (r)), (27)

We use iteration and FFT to solve Eqs 25, 27 and let the
obtained stresses and displacements satisfy the given boundary
condition. The boundary condition is satisfied in the concept of
average values. For example,

(1) For a polycrystal under uniaxial tensile stress along the x1-
axis with a strain rate of _ε11, the boundary condition is given
by e11 � εt11 + _ε11Δt and τ22 � τ33 � τ23 � τ13 � τ12 � 0
where εt11 is the average value of εt11 from the previous
step t and is known for the current step.

(2) For a polycrystal under a constant pressure stress σ0 along the
x1-axis with a shear strain rate _ε12 and a fixed side-boundary
condition to mimic billet material inside a die chamber, the
boundary condition can be expressed as τ11 � σ0, e22 � e33 �
e23 � e13 � 0 and e12 � εt12 + _ε12Δt, where εt12 is known for the
current step, similar to εt11.

Stresses, τij(r), and strains, eij(r), can be obtained through an
iteration procedure (Hu and Chen, 2001).

Step 2. To get the final solutions of σt+Δt(r), εt+Δt(r), and
_εp,t+Δt(r), or σ(r), ε(r), and _εp(r)without the superscript t+Δt for
Eqs 21, 22 under given boundary conditions, a residual function
Rij(r) is introduced (Lebensohn et al., 2012):

Rij(r) � σ ij(r) − τij(r) + c0ijkl[εkl(r) − ekl(r)], (28)

where τij(r) and eij(r), have been obtained from Step 1, and σ ij(r)
and εij(r) will be solved through nullification of Rij(r) coupled
with Eqs. 15, 22. The nullification of Eq. 15 is solved using a
Newton-Raphson (N-R) scheme, i.e.,

σ(l+1)
ij (r) � σ(l)ij (r) − [(zRij

zσ ij
)− 1](l)

R(l)
ij (r), (29)
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where the superscript l denotes the l-th iteration step. The
iteration is stopped when

∣∣∣∣Rij

∣∣∣∣ is less than a predetermined
value. Through this step, we can finally get σ ij(r), εij(r), and
_εpij(r) for the given boundary condition and time step.

For materials with strength hardening, τs0(r) varies with _cs(r).
For example, linear strength hardening can be expressed by Δτs0 �
H∑N

s�1 _c
s(r)Δt with H being a constant. In such a case, τs0(r) in

Eq. 16 is replaced by

τs,t+Δt0 (r) � τs,t0 (r) + Δτs0 � τs,t0 (r) +H∑N
s�1

_cs,t(r)Δt, (30)

Through Steps 1 and 2, σ ij(r), εij(r), and, _εpij(r) are obtained.
With a known strength hardening law such as Eq. 30, the shear
strain rate _cs(r) can be obtained from Eq. 15.

MATERIAL PROPERTIES OF UMO

The thermal and mechanical properties of UMo that depend on
temperature and neutron fluence (Medvedev et al., 2018) have
been assessed by experiments (Farrell and King, 1979;
Polkinghorne and Lacy, 1991; Kaufman, 1999; Farrell; Meyer
et al., 2016). The temperature dependence of Young’s modulus E
(GPa) is expressed as (Beghi, 1968),

E(T) � 110.84 − 72.926 × 10− 3T − 1.8718 × 10− 5T2,

294≤T ≤ 873K
(31)

where T is the temperature (K).
The Poisson’s ratio was adapted from (Burkes et al., 2010) and

it is constant 0.324. The temperature dependence of yield strength
σy is expressed as (Klein),

σy � −1.2727 × 10− 6T3 + 2.430 × 10− 3T2 − 2.4285T + 1478.6,

300≤T≤ 866K,
(32)

Since we do not have the yield stress of single crystal UMo, Eq.
32 is used to estimate the critical resolved stress in the crystal
plasticity model. Formation energy and migration energy of Xe
are calculated by atomistic simulations (Smirnova et al., 2012;
Smirnova et al., 2013; Smirnova et al., 2015).

Both experiments and atomistic simulations show that gamma
UMo has isotropic elastic properties. Thus, two of the three elastic
moduli, i.e., Young’s modulus E, Shear modulus G, and Poisson’s
ratio v, can describe the elastic properties of UMo. In this work,
the temperature is set to be 500 K, which is approximately the
operation temperature of UMo fuels in high performance
research reactors (Meyer et al., 2016). From Eqs 30, 32, E is
70 GPa and the yield strength σy is 0.718 GPa at T � 500 K. The
constantH in Eq. 30 is set to be 5.0 × 106 Pa. γ−UMo has a body-
centered cubic (bcc) structure, where 24 slip systems are often
activated during deformation; 12 · {110}111 and 12 · {211}111
systems. The crystal plasticity model is general and can
consider all the slip systems. For model validation, only 12 ·
{110}111 slip systems are considered in the simulations. In

addition, the evolution of radiation defects such as vacancies,
interstitials, and their clusters are not considered in the current
phase-field model, whereas only Xe diffusion and Xe gas bubble
evolution are taken into account. Table 1 lists the model
parameters in the simulations.

RESULTS

Figure 2 illustrates the simulation cell with dimensions of
128l0 × 32l0 × 128l0, cylindrical grains along y-direction, and
distributed gas bubbles. The average grain size in the xz plane
is about 340 nm, which is on the order of the typical grain size
observed in recrystallized grains in UMo fuels. Periodic
boundaries conditions are applied in the x-, y-, and z-
directions and a strain along the z-direction is applied to
perform tensile or compressive deformation. In this work, the
developed model was applied to: 1) study the effect of gas bubble
structures on mechanical response; and 2) study the effect of
stresses and stress-dependent thermodynamic and kinetic
properties on gas bubble evolution.

Effect of Gas Bubble Structures on
Mechanical Properties
Three gas bubble structures with gas bubble volume fractions (Vf �
3.5%, 6.7%, and 9.7% ) are generated with a phase-field model of
gas bubble evolution in polycrystalline structures. Gas bubbles,
which have an average gas bubble size of 100 nm in diameter
are randomly distributed in the simulation cell. It is assumed that
bubbles are pressurized and that the pressure is associated with the
lattice mismatch between the gas phase and the matrix UMo phase.
The lattice mismatch is described by an eigenstrain tensor
εgbpij � εb0δijcpb(r, t)h(χ), where cpb(r, t) is the Xe concentration
inside the gas bubble, h(χ) is the shape function defined by Eq.
3, δij is the Kronecker-Delta function, and εb0 is the mismatch
strain. For the first order approximation, if the bulk modulus,
pressure, and Xe equilibrium concentration inside the gas bubble
are Bgb, pgb and ceqb , respectively, the mismatch strain can be

TABLE 1 | Model parameters of crystal plasticity and phase-field model of gas
bubble evolution for UMo crystals.

Parameter Value Parameter Value

T 500K dt 0.1 s
cm11 101.5GPa cb11 90E0 GPa
cm12 48.7GPa cb12 30E0 GPa
cm44 26.4GPa cb44 30E0 GPa
DXe 1.2 × 10−19 m2/s ceqm 1.0 × 10− 6

σy 718MPa ceqb 0.6
b 0.248 nm A1m 2.02 × 1012 J/m3

l0 10 nm A2m −8.77 × 1012 J/m3

w 1.0 J/m2 A3m 5.71 × 1012 J/m3

λ 1.5 l0 A1b −1.18 × 1010 J/m3

slip systems 1/2111{110} A2b −1.91 × 1012 J/m3

Ω 1.4 × 10−5 m3/mol A3b 1.92 × 1012 J/m3

L 5 × 10− 10 m3/Js f0 40
mismatch strain εb0 0.05 E0 0.01,0.1, 0.3, 0.6
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estimated by εb0 � (pgb/Bgb c
eq
b ). In principle, the equation of state

(EOS) of Xe gas phase (Harrison, 1969; Hu et al., 2017; Beeler et al.,
2020) can be used to estimate the bulk modulus Bgb and the
equilibrium Xe concentration for given a pressure, hence, the
mismatch strain ε0. From the EOS (Beeler et al., 2020), when
the internal pressure is about 2 GPa the bulk modulus is about
30 GPa. Here, we assigned the elastic constants of the gas phase to
be cb11 � 90E0 GPa, cb12 � 30E0 GPa and cb44 � 30E0 GPa, the bulk
modulus Bgb is 50E0 GPa, and the Poisson’s ratio is 0.125, where E0
is a parameter which depends on the pressure pgb and the
concentration ceqb inside the gas bubble. Pressure, equilibrium
concentration, and lattice mismatch inside gas bubbles change
with the local stresses and chemistry (local vacancy and Xe
concentrations) in UMo fuels in service. For evolving gas
bubbles, the molar volume is calculated by the Xe concentration
inside the gas bubble.With themolar volume, the pressure and bulk
modulus can be calculated with the EOS. To study the effect of
steady state gas bubble structures on mechanical response, we can
prescribe fixed values of ceqb and ε0, which are listed in Table 1, and
vary E0 to describe the pressure inside the gas bubbles.

Stress Field Around Pressured Gas Bubbles
In the elastic-plastic deformation model, the iteration approach
(Hu and Chen, 2001) is used to solve the mechanical equilibrium
equations and the stress field in an elastic inhomogeneous material
with a distribution of stress-free strains as described in Eq. 15. The
stress field around gas bubbles with average radius of 50 nm and
different internal pressures ((Pgb � 0.07, 0.60, 1.2 and 2.1GPa))
under elastic deformation is calculated. Stress fields on the
middle plane around gas bubbles are presented in Figure 3.

The light black lines denote the grain boundary while the white
circles show the interfaces between gas bubble and matrix. It is
found that the pressure (P � −(σ11 + σ22 + σ33)/3) inside the gas
bubbles is uniform which is in agreement with Eshelby’s solution
(Eshelby, 1957), and the shear stress (σ13) around the gas bubble is
larger than the yield stress of UMo (0.718GPa) when the internal
pressure is larger than 1 GPa. The internal pressure inside nano-
sized gas bubbles may reach a few GPa according to MD
simulations (Xiao and Long, 2014; Hu et al., 2017; Beeler et al.,
2020), but with the increase of gas bubble size, the pressure
decreases. In addition, a stress field associated with the cladding
constraint in UMo monolithic fuels might increase the stresses in
the matrix. Therefore, the internal pressure and the cladding
constraint may result in plastic deformation in UMo under service.

Effect of Gas Bubble Structures on Stress-Strain
Curves
Gas bubble structures with different volume fractions (Vf �
3.5%, 6.7%, and 9.7%) and different initial internal pressures
(Pgb � 0.07, and 1.2GPa) are used to study the effect of gas
bubble structures on stress-strain curves under elastic-plastic
deformation. In the simulations, a strain rate of dε33/dt � 3 ×
10− 4 (1/s) (the other strain components are zero, εij � 0 ) is
applied in z-direction for tensile deformation while dε33/dt � −3 ×
10− 4 (1/s) is applied for compressive deformation. Xe concentration
in the matrix is set to be 5 × 10− 5 and the stress-free strain
associated with Xe induced lattice change in the matrix is set to
be 0.1. Figure 4A,B presents the effect of gas bubble structures on
stress-strain curves under tensile and compress deformation. The
black curves are the stress-strain curves in polycrystalline structures

FIGURE 3 | Pressure (P) and shear stress (σ13) distributions on the plane S for gas bubbles with internal pressures of (A) 0.07 GPa and (B) 2.1 GPa. The units of
pressure and stress is GPa.

Frontiers in Materials | www.frontiersin.org June 2021 | Volume 8 | Article 6826677

Hu and Beeler Gas Bubble Evolution in UMo

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


with Xe concentration of 5 × 10− 5, but without gas bubbles. The
results in Figure 4A are stress strain curves for gas bubbles with a
low initial internal pressure of Pgb � 0.07GPa, while the results in
Figure 4B are for gas bubbles with a higher initial internal pressure
of Pgb � 1.2GPa. Because of the lattice mismatch associated with
distributed Xe in the matrix and the internal pressure inside gas
bubbles, a residual stress field is present. The residual stress, which is
a compressive stress field due to a positive stress-free strain, shifts
the total stress at applied strain of zero to a negative value. The
negative stress value is marked by the small circle in the stress-strain
curves. It can be seen that the effect of gas bubble volume fraction on
the stress shift at an applied strain of ε33 � 0 is small, especially for
the case of gas bubbles with a low internal pressure Pgb � 0.07GPa.
For gas bubbles with high pressure, the stress shift increases with the
increase of gas bubble volume fraction which can be seen by
zooming in on the stress-strain curves at ε33 � 0 in Figure 4B.
For the simulation conditions, the residual stress is mainly
determined by the distributed Xe (its concentration and stress-
free strain) in the matrix. If the matrix vacancy is rich, the
distributed vacancies and Xe results in the reduction of UMo
lattice constant, and the stress-free strain is negative. It is
expected that the residual stress is a tensile stress field due to a
negative stress-free strain, and the stress-strain curves shift to a
positive value at ε33 � 0.

Comparing the results in Figure 4, we can conclude that 1) for
all the cases the effective Young’s modulus, which is the slope at the
linear part of the stress-strain curves, decreases with the increase of
gas bubble volume fraction. This is expected because the gas phase
has a lower Young’s modulus than that of the matrix UMo phase.
2) The Young’s modulus depends on both gas bubble structure (gas
bubble volume fraction and internal pressure) and applied stress
(tensile or compress). 3) the yield stress decreases with the increase
of gas bubble volume fraction. The yield stress has a similar
dependence on gas bubble structure and applied stress as that
of the Young’s modulus; and 4) the hardening coefficient increases
with the increase of gas bubble volume fraction, especially for gas
bubbles with higher internal pressures, which is indicated by the
slop of stress-strain curves in the plastic deformation stage.

The strain hardening is determined by the plastic strain rate. The
distributions of plastic strain εp13 on the center plane S in

polycrystalline structures with gas bubble volume fraction 9.7% at
different applied strain ε33 are shown in Figure 5. The results in
Figures 5A,B are for gas bubbles with pressure of Pgb � 0.07GPa
and Pgb � 1.2GPa under tensile deformation, respectively. Before
the applied strain reaches ε33 � 0.02, the deformation is elastic and
the plastic strain is zero as shown in Figure 5. It is observed that
plastic deformation first takes place near the gas bubble interface,
particularly at the interface region of two nearby gas bubbles as
shown ε33 � 0.054, where the stress concentration is higher than
that at the interface of an isolate gas bubble, as shown in Figure 3A.
With the increase of applied strain, plastic strain increases. The
plastic strain in regions with yellow color has a positive sign while the
plastic strain in regions with green color has a negative sign. The
flaky pattern of plastic strain (εp13) distribution at ε33 � 0.1 indicates
the formation of shear bands where shear strain has a uniform and
high value. Figure 6 plots the distributions of the shear stress
component σ13 on the center plane S at ε33 � 0.1. The white
lines show the <101> directions. From the results in Figure 6,
we can see that 1) most bands of shear stress σ13 align along the
<101> directions while the effect of grain orientation on shear stress
σ13 is minor. The isotropic elastic properties of UMo, which has the
Zener ratio (2C44/(C11 − C12)) of 1, can explains the grain
orientation independence of shear stresses, and 2) the alignment
of gas bubbles along the <101> direction enhances the shear stress
bands for both cases of gas bubbles (with low and high initial
pressures). Compared with the shear stress, the bands of shear plastic
strain (εp13) shown in Figure 5 does not well align along the <101>
directions. This is because dislocation sliding depends not only on
the resolved shear stress but also grain orientations. The red and blue
of the color bar in Figures 5, 6 present the maximum andminimum
values of shear strain (or stress) in the simulation cell during
deformation for a given gas bubble structure with low (or high)
pressure. Comparing the maximum values in the color bars in
Figures 5, 6 we can see that both the maximum plastic strain and
shear stress for gas bubbles with low pressure are larger but more
localized near the gas bubbles than that for gas bubbles with high
pressure. In other words, the shear stress and strain fields around gas
bubbles with a low gas pressure is more inhomogeneous than those
around gas bubbles with a high gas pressure. We also calculated the
evolution of total shear plastic strain in the simulation cell during the

FIGURE 4 | Effect of gas bubble volume fraction and internal pressure on stress strain curves. Results shown are for gas bubbles with a pressure of (A)
Pgb � 0.07GPa, (B) Pgb � 1.2GPa. Both tensile and compressive stresses are applied.
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deformation. The results show that the total plastic strain for a
systemwith low pressure gas bubbles is higher than that for a system
with high pressure gas bubbles. Therefore, we can conclude that the
more inhomogeneous a stress field is, the less strain hardening is.
And the gas bubble dependence of hardening behavior showed in
Figure 4 is attributed to the inhomogeneous stress induced
inhomogeneous plastic deformation.

For a given gas bubble structure, the average pressures (P �
(σ11 + σ22 + σ33)/3) in the matrix and inside gas bubbles are
calculated during deformation. Figure 7 shows the average
pressure in terms of applied strain. The circle on the curves
presents the pressure associated with the residual stress at
applied strain ε33 � 0.0. Under tensile deformation the pressure
P in the matrix changes from negative to positive. This means that
the average volume of atoms in matrix increases. As a result, the

formation energies of defects with positive latticemisfit such as large
solutes and self-interstitials should decrease, and their migration
energy should decrease. In contrast, under compressive
deformation, the pressure P in the matrix simply becomes more
negative. This causes the formation energies and migration energy
of defects with positive lattice misfit (such as Xe substitutionals or
interstitials) to increase. The average pressure inside the gas bubbles
also depends on the applied strain. Based on the equation of state of
the gas phase, which describes the correlation between gas atom
concentration and pressure, the gas concentration inside gas
bubbles should decrease with a pressure decrease. Therefore, the
average pressure changes in the matrix and inside the gas bubble
affect the thermodynamic and kinetic properties of diffusive defects
in the matrix and inside gas bubbles, as well as the gas bubble
evolution.

FIGURE 5 | Distributions of plastic strain εp13 on the plane S in polycrystalline structures with gas bubble volume fraction 9.7% at different applied strains
(ε33 � 0.02, 0.054, and 0.10). (A) gas bubbles with initial pressure Pgb � 0.07GPa and (B) gas bubbles with initial pressure Pgb � 1.2GPa.

FIGURE 6 | Distribution of shear stress σ13 at ε33 � 0.1. (A) gas bubble with initial internal pressure Pgb � 0.07GPa, and (B) gas bubble with initial internal pressure
Pgb � 1.2GPa.
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Effect of Elastic-Plastic Deformation on Gas
Bubble Evolution
The gas bubble evolution model presented in Section Phase-Field
Model of Gas Bubble Evolution in Polycrystalline UMo Under
Elastic-Plastic Deformation requires thermodynamic and kinetic
properties including diffusivities and the equilibrium
concentration of Xe in the matrix and inside gas bubbles. We
describe the diffusivity and equilibrium concentration as a function
of average pressure in the matrix and inside gas bubbles. In
principle, these thermodynamic and kinetic properties can be
obtained from atomic simulations (Valikova and Nazarov, 2008;
Sueoka et al., 2012). For instance, the equation of state of Xe gas
phase can be used to determine the correlation between the
equilibrium Xe concentration and pressure inside gas bubbles.
The pressure dependent formation energy of Xe in the matrix can
be used to develop the chemical free energy of Xe in the matrix
phase, and the pressure dependent migration energy can be used to
assess the correlation between Xe diffusivity and pressure. Since we
don’t have the data for UMo, a linear correlation of the
thermodynamic and kinetic properties in terms of pressure near
the equilibrium state are used to validate the effect of elastic-plastic
deformation on gas bubbles.

In the simulations, an initial Xe concentration of 0.005 and
distributed gas bubbles with a volume fraction 3.5% and initial
pressure 2.1 GPa are introduced into polycrystalline UMo. The
stress-free strain, ε0, of Xe in the matrix is assumed to be 0.1 or
−0.1. The positive ε0 describes a state which is Xe-rich in the matrix,
causing a compressive lattice environment, while the negative ε0
describes a vacancy-rich state in the matrix, causing a tensile lattice
environment. For a given initial structure, the pressure of the residual
stress is chosen as the equilibrium state. The equilibrium Xe
concentrations in the matrix and gas phase are calculated by
ceqi (Pi) � (ceqi (Pi0) + ωi(Pi − Pi0)ceqi (Pi0))/(Pi,max − Pi0). Pi0 is
the pressure of the residual stress at the equilibrium state. Pi,max

is the maximum pressure in different gas bubble structures for a give
applied strain, i � b orm, which denote the gas bubble and the
matrix, respectively. ωi is a coefficient which is set to be 0.3, allowing
a maximum 30% change of equilibrium concentration for the
pressure changes. The pressure Pi,max is estimated from the data
in Figure 7. For simplicity, the pressure dependence of Xe diffusivity
assumes that the diffusivity of Xe in a vacancy-rich environment,
i.e., ε0 � −0.1, is one order magnitude larger than that in a Xe-rich
environment, ε0 � 0.1. The rest of the model parameters of the
phase-field model are listed in Table 1.

FIGURE 7 | Average pressure vs applied strain in matrix and inside gas bubbles in UMowith gas bubbles, (A) for gas bubbles with initial internal pressure 0.07 GPa,
and (B) for gas bubbles with initial internal pressure 1.2 GPa.
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The simulations are carried out in three steps: 1) apply a strain
rate, dε33/dt � 3 × 10− 4(1/s) or dε33/dt � −3 × 10− 4(1/s), up to a
total applied strain of ε33 � 0.05 for a tensile stress state, or ε33 �
−0.05 for a compressive stress state; 2) update the diffusivity and
equilibrium concentrations in the matrix and inside gas bubbles
based on the average pressures; 3) simulate the gas bubble evolution
with the phase-field model, update gas bubble structures, elastic and
plastic properties; update the elastic-plastic solution every 1,000

diffusion time steps, and return to step 2) to simulate the
dynamic interaction between elastic deformation and gas bubble
evolution. Figure 8 shows the final gas bubble structures at time
t � 240 h for four simulation cases, and Figure 9 plots the evolution
of gas bubble volume fraction. The circle at t � 0 shows the volume
fraction of initial gas bubbles. The solid lines present the gas bubble
evolution under tensile stress states while the dashed lines denote the
cases under compressive stress states. The results demonstrate that 1) a
tensile stress state leads to gas bubble growth, while a compressive stress
states causes a slight shrinkof gas bubbles; 2) a vacancy rich environment
promotes gas bubble growth under a tensile stress state while it prevents
gas bubble from shrinking under a compressive stress state.

Figure 10 shows the Xe concentration distribution on the center
plane S at time t � 240 h for the four simulation cases. From the color
bar it can be seen that under a compressive stress state the Xe
concentration inside the gas bubble, which is shown in Figures
10A, C, is about 0.75, which is an increase from 0.6 at the initial
state due to the increase of internal pressure. The Xe concentration
inside the gas bubble under a tensile stress state, which is shown in
Figures 10B, D, changes from 0.6 at the initial state to around 0.4 due
to the reduction of internal pressure inside gas bubbles. The white lines
show the contour of the order parameter, χ, in the phase-field model
which is equal to 0.5, representing the interface of gas bubbles and
matrix. It is interesting to find that the gas bubbles no longer have a
spherical shape. The gas bubble shape change can be explained by the
fact that an inhomogeneous stress field around the gas bubble results in
an inhomogeneous plastic deformation, pressure, and non-uniform
equilibrium concentration, hence, different interface evolution kinetics.
Experimental data also show the gas bubbles have an irregular shape
(Miller et al., 2015; Gan et al., 2017). Beside the factor of elastic-plastic
deformation, the solid fission phase precipitation on the interior of the

FIGURE 8 | Gas bubble structures at time t � 240 h. (A) Xe rich ε0 � 0.1 under compressive stress state ε33 � −0.05, (B) Xe rich ε0 � 0.1 under tensile stress state
ε33 � 0.05, (C) vacancy rich ε0 � −0.1 under compressive stress state ε33 � −0.05, (D) vacancy rich ε0 � −0.1 under tensile stress state ε33 � 0.05.

FIGURE 9 | Effect of local stress state and thermodynamic and kinetic
properties of defects on gas bubble evolution.
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gas bubble surface can also affects the gas bubble interface evolution
kinetics, hence, the gas bubble shape.

CONCLUSION

In this work we developed a phase-field model of gas bubble evolution
in polycrystalline UMo under elastic-plastic deformation. Plastic strain
rate-based crystal plasticity is employed to describe the elastic-plastic
deformation. The effect of local pressure on the thermodynamic and
kinetic properties of Xe is taken into account. With the developed
model, we simulated the effect of gas bubble structures (different
volume fraction and internal pressure) on stress-strain curves and the
effect of local stressfields on gas bubble evolution. The results show that
1) the effective Young’s modulus decreases with the increase of gas
bubble volume fraction; 2) the yield stress decreaseswith the increase of
gas bubble volume fraction; 3) the hardening coefficient increases with
the increase of gas bubble volume fraction, especially for gas bubbles
with higher internal pressure; 4) a tensile stress state leads to gas bubble
growth while a compressive stress states causes a slight shrink of gas
bubbles; 5) a vacancy rich environment promotes gas bubble growth
under a tensile stress state while preventing gas bubble shrinkage under
a compressive stress state; and 6) an inhomogeneous stressfield around
the gas bubble results in an inhomogeneous plastic deformation,
pressure, and non-uniform equilibrium concentration, hence, an
irregular gas bubble shape. The results demonstrate that the
developed model is capable of studying the effect of gas bubble

structures on mechanical properties and studying the dynamic
interaction between elastic-plastic deformation and evolving gas
bubbles. However, additional thermodynamic and kinetic properties,
such as the effect of pressure on chemical free energy and mobility of
Xe in matrix and gas phases, are required for more quantitative
simulations. The model also needs to be extended to take radiation
defect accumulation and potential creep deformation into account.
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