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Metasurfaces, a kind of two-dimensional artificially engineered surfaces consist of
subwavelength unit cells, have recently attracted tremendous attention, owing to their
exotic abilities for tailoring electromagnetic responses. With active lump elements
incorporated into the design of metasurfaces, dynamic reconfigurabilities enabled by
external stimuli could be realized, offering opportunities for the dynamic manipulation of
electromagnetic waves. In this mini review, we present a brief review on the recent
progress of electrically reconfigurable metasurfaces at microwave frequencies. A brief
discussion will also be given with our outlook on future development direction and possible
challenges in this interesting field.
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1 INTRODUCTION

Metamaterials (Liu and Zhang, 2011; Zheludev and Kivshar, 2012), a kind of artificial
electromagnetic media constructed with sub-wavelength units, have attended considerably
increasing interests in both scientific and engineering communities. Metasurfaces (Yu et al.,
2011; Sun et al., 2012; Chen et al., 2016; Sun et al., 2019; Akram et al., 2020) are the two-
dimensional equivalents of metamaterials, formed by periodic or non-periodic arrangement of sub-
wavelength elements in an ultrathin film, which possess flexible capability to control the amplitude,
phase, and polarization state of electromagnetic(EM) waves. Versatile functionalities, such as perfect
absorption, anomalous reflection, and focusing, can be realized with the help of metasurfaces (Akram
et al., 2019; Shao et al., 2019). While metasurfaces could be artificially designed with various
functionalities, the particular functionality is typically fixed after the design of the metasurface (Li Z.
et al., 2020). The functionalities of metasurfaces are able be adjusted by loading active elements
into the designs (Cui et al., 2014; Luo et al., 2016; Zhang et al., 2020a). On account of the
possibilities to independently control each meta-atom by the embedded active lumped element,
these meta-atoms can be assembled to form electrically reconfigurable metasurfaces with tunable
amplitude/phase profiles. For example, it is suitable for reconfigurable metasurfaces to be
constructed with meta-atoms incorporated with voltage-driven elements (such as PIN diodes
(Ghosh and Srivastava, 2016), varactors (Wang et al., 2019), graphene (Zhang et al., 2020b)), so
that electromagnetic characteristics can be dramatically tuned through varying applied voltages.
By accurately determining the voltages applied on different meta-atoms, these meta-devices can
realize desired functions for dynamical wave manipulation. In this mini review, we briefly review
the major achievements in electrically reconfigurable microwave metasurfaces with different
loaded active lump elements. We will also give a brief discussion with our perspectives on future
developments and challenges in this area.
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2 METASURFACES WITH PIN DIODES

2.1 Uniformly Tuning With PIN Diodes
The tunablity of microwave metasurfaces can be enabled by
incorporating PIN diodes in the structure design. A tunable
circuit analog absorber whose equivalent thickness is
electronically changed by employing PIN diodes to control the
RF signal path, which results in absorbing frequency switching
between 0.85–1.88 and 2.66–5.23 GHz (Qi et al., 2012). Xu et al.
demonstrated a tunable metamaterial absorber, whose reflection
responses can be adjusted over 2–18 GHz frequency range by

changing the bias voltage on the PIN diode array (Xu et al., 2012).
Recently, switchable perfect absorber/reflectors with a PIN diode
integrated active frequency selective surface have attracted
enormous interest (Yoo and Lim, 2014; Ghosh and Srivastava,
2016). In 2019, Zhao et al. proposed an electrically reconfigurable
metasurface that can be switched between reflection and
absorption modes by loading PIN diodes (Zhao et al., 2019).
Perfect absorption occurs when the impedance of the dielectric
substrate matches well with the free-space impedance while total
reflection occurs when they mismatch. Similarly, switchable
transmissive/absorptive metasurfaces have also been reported

FIGURE 1 | (A) Active metasurface for reconfigurable transmissions/reflections and cross polarization conversions. Reproduced from Tao et al. (2017) with
permission from AIP Publishing. (B) Reconfigurable metasurface for polarization and propagation Manipulation. Reproduced from Li Y. et al. (2019) with permission from
IEEE. (C) Reprogrammable coding metasurface holograms. Reproduced from Li et al. (2017) with permission from Spring Nature. (D) Reconfigurable water-based
metasurface integrated with PIN diodes. Reproduced from Chen et al. (2019a) with permission from AIP Publishing. (E) Transmissive programmable metasurface
for multimode OAM generation. Reproduced from Bai et al. (2020) with permission from John Wiley and Sons.
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(Li Y. et al., 2020). Li et al. designed a tunable metadevice based on
coupled-mode theory, which can be switched from perfect
transparency to perfect absorption under the control of an
external voltage applied to the PIN diode. In addition, flexible
structures of unit cell offer another straightforward way to realize
reconfigurable metadevices. Metasurfaces have shown powerful
abilities in controlling the reflections, transmissions, and
polarizations of EM waves, independently. A reconfigurable
polarization converter is proposed, which based on an active-
element-controlled metasurface without extra bias network (Li
et al., 2016). It achieves circular-linear polarization conversion
when the PIN diodes are switched to OFF. Flexible structures of
unit cell offer another straightforward way to realize
reconfigurable metadevices. Metasurfaces have shown great
abilities in controlling the reflections, transmissions, and
polarizations of EM waves, independently. As shown in
Figure 1A, Tao et al. (2017) proposed a single active
metasurface which is exploited to reconfigure propagating
states of EM waves. By switching the status of PIN diodes
embeded in each unit cell, the metadevice can not only switch
its EM properties between the reflection and transmission mode,
but also realize cross linearized polarization conversion. Very
recently, Li Y. et al. (2019) demonstrated a multi-functional
reconfigurable metasurface, which can control both the
propagation and the polarization of EM wave. By controlling
the bias voltage, it can switch its function among the reflection-
type converter, the transmission-type converter and the
transparent structure (Figure 1B).

2.2 Non-uniformly Tuning With PIN Diodes
In order to achieve more elaborate functionalities, the locally
applied uniformly tuning voltages are allowed to be different for
each unit cell in the electrically reconfigurable metasurface. It
enables more tunable applications to be achieved, such as multi-
beam generation (Huang et al., 2017a), tunable reflection (Wan
et al., 2016; Yang et al., 2016), beam diffusion (Yang et al., 2016;
Huang et al., 2017a), beam focusing (Yang et al., 2016) and
hologram (Li et al., 2017). In recent years, Cui et al. proposed the
concept of reprogrammable coding metasurfaces, which can be
dynamically controlled in microwave regimes (Cui et al., 2014; Li
et al., 2017). Controlling the bias voltage applied across the PIN
diode loaded on the top of the meta-atom can yield two different
reflection phases, i.e., 0 and π to mimic “0” and “1” states,
respectively. Then, the phase distribution encoded on the
whole metadevice can be controlled by directly
reprogramming the bias voltages applied on these meta-atoms
using field-programmable gate arrays (FPGA) directly. Therefore,
real-time controllable digital beam steering (Cui et al., 2014; Wan
et al., 2016) and dynamically switched holographic images can be
realized (Li et al., 2017) (Figure 1C).

Although these digital reconfigurable metasurfaces can realize
various functions, their beam steering ability is greatly limited
because of 1-bit digital coding. Compared with them, the beam
manipulation capability of 2-bit digital metasurface with two PIN
diodes loaded on each meta-atom is obviously enhanced (Huang
et al., 2017a). In 2017, Huang et al. proposed a 2-bit digitally
controlled coding metasurface, which can dynamically switch

between different scattering modes through a programmable
electric source, such as beam deflection, multi beam and beam
diffusion (Huang et al., 2017a). Moreover, a few recent works
show the possibility to load switchable PIN diodes on
Pancharatnam-Berry(PB) metasurface (Xu et al., 2016a) and
water-based metasurface (Chen et al., 2019a). Xu et al.
designed a tunable PB metasurface with frequency
reconfigurability. By controlling the external voltages applied
to the diodes, the operation band with 180° phase difference
between orthogonal reflection coefficients can be dynamically
controlled. Therefore, when PIN diodes are “ON” state, the PB
metasurface composed of these meta-atoms with orderly rotation
angle exhibits a broadband photonic spin hall effect with nearly
100% conversion efficiency, when PIN diodes are “OFF” state, it
switches to dual well-separated bands (Xu et al., 2016a). As for
reconfigurable water-based metasurface integrated with PIN
diodes, the EM wave reflected by the metasurface can be
modulated by both the degree of salinity and the diode
pattern. Through these two manipulating methods, the
metasurface is able to control the amplitude of the scattered
beams and the beam deflection angles, which provides a more
flexible and economical way for wavefront manipulation (Chen
et al., 2019a) (Figure 1D). With the deepening of the research, the
manipulation of the transmitted electromagnetic wave by the
reconfigurable metasurface is realized. Bai et al. (2020) proposed a
transmissive reconfigurable metasurface for the generation of
multi-mode convergent OAM beams with high efficiency
(Figure 1E). Liu et al. (2020) demonstrated a dual-band real-
time reconfigurable meta-atom with polarization-independent
manipulation of reflection and transmission wavefronts.

3 METASURFACES WITH VARACTORS

3.1 Uniformly Tuning With Varactors
Thanks to its variable capacitance with more flexibility than
PIN diode, varactor diode, a different electrically sensitive
element, is an alternative excellent candidate for reconfigurable
metasurfaces in microwave regime. The meta-atom could
integrate a varactor diode to manipulate the electromagnetic
response, where the capacitance of the varactor diode can be
adjusted in a continuous way. In the simplest case, all varactors
are controlled by the same voltage, which effectively provides
frequency tunability for the metasurface (Mias and Yap, 2007;
Zhu et al., 2013; Dincer, 2015). The most widely investigated
functionality is tunable perfect absorption.By adjusting the
reverse bias voltage loaded on the varactor diode, the
absorption frequency of the designed unit can be controlled
continuously (Zhao et al., 2013; Lin et al., 2014; Zhu et al.,
2015). For instance, in 2016, Luo and coworkers (Luo et al.,
2016) experimentally demonstrated an electrically tunable
metasurface absorber in the GHz regime based on dissipating
behavior of embedded varactors (Figure 2A). Due to the
varactors and biasing circuits embedded in the unit structure,
the absorptivity can be tuned with a wide range by changing DC
biasing voltage. In addition, employing varactors on metasurfaces
enables tunable frequency and phase properties (Zhu et al., 2013).
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In this case, the meta-atom, a multiple resonance structure
with two resonance poles and one resonance zero, is capable of
providing full 2π reflection phase variation, active tuning in finite
frequency and linear reflection phase tuning (Figure 2B). Zhu et al.
(2010) demonstrated a tunable metamaterial reflector/absorber for
polarization modulation, which is made of ELC resonators with
varactor diodes. The EM reflections for orthogonal polarized
incident waves can be tuned independently by adjusting the
bias voltages on the corresponding diodes. Because of this
characteristic, the reflected waves can be electrically controlled
to a linear polarization with polarizaiton azimuth angle tunable
from 0° to 90° at the resonant frequency. When off the resonant
frequency, an elliptical polarization with tunable azimuth angle of
the major axis can be generated.

3.2 Non-Uniformly Tuning With Varactors
The locally applied tuning voltages could be different for each
unit cell of the metasurface with non-uniformly tuning varactors.
Nearly 20 years ago, Sievenpiper and coworkers (Sievenpiper

et al., 2003) proposed an electrically steerable reflector based
on a resonant textured surface loaded with varactor diodes in the
microwave regime. Researchers demonstrated that by
programming the reflective phase gradient on the meta-device,
the reflected beam can be electrically controlled over ±40° for both
polarizations. Inspired by this work, many other microwave
metasurfaces were proposed to perform different
functionalities, such as tunable frequency and phase properties
(Burokur et al., 2010; Dai et al., 2018), beam scanning (Ratni et al.,
2018a), beam focusing (Xu et al., 2016c; Lv et al., 2019; Wang
et al., 2019), hologram (Zhang K. et al., 2018), pre-designed
scattering field generation (Huang et al., 2018; Li T. et al., 2019)
and vortex beam generation (Guo et al., 2020). Xu et al. (2016b)
established a tunable scheme to overcome the dispersion-induced
issues in microwave metasurfaces. By adding tunable elements to
our meta-atoms, the phase response of each meta-atom can be
precisely controlled via external knobs, so as to correct the
inevitable phase distortion at any frequency (Figure 2C). Ratni
et al. (2018a) experimentally demonstrated an active metasurface

FIGURE 2 | (A) Electrically tunable metasurface absorber with embedded varactors. Reproduced from Luo et al. (2016) with permission from AIP Publishing. (B)
Active metasurface with full 360° reflection phase tuning. Reproduced from Zhu et al. (2013) with permission from Spring Nature. (C) Tunable microwave metasurfaces
with dynamical switch. Reproduced from Xu et al. (2016b) with permission from Spring Nature. (D) Reconfigurable Huygens’ metalens. Reproduced from Chen et al.
(2017) with permission from John Wiley and Sons.
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for reconfigurable reflectors, which can produce anomalous
reflection properties within a broad frequency range and scan
the direction of the reflected beam in a certain angle range. In
addition, this kind of reconfigurable planar metasurface is of
frequency agility and can realize beam focusing (Ratni et al.,
2018b).

The above active meta-devices work in reflection mode.
Reflection mode is relatively easy to implement, but sometimes
it is not conducive to some applications. In order to achieve
tunable/reconfigurable meta-devices in transmission mode, it is
necessary to precisely control the phase and amplitude of the
locally transmitted wave through each meta-atom. So far,
reconfigurable pixel metasurfaces in transmission mode are
already available in some areas, such as vortex beam
generation (Shi et al., 2019), dynamical focusing (Chen et al.,
2017) and so on. In 2017, Chen et al. (2017) experimentally
presented a tunable microwave Huygens’ metasurface with
dynamically controllable focal point (Figure 2D). Shi et al.
proposed an active metasurface for multiple vortex beams (l �
+1, 0, −1) generation (Shi et al., 2019). Different modes vortex
beams generation can be realized by changing the transmission
phase distribution on the metasurface aperture. Beyond that,
Masud et al. proposed a dual-band compact tunable metasurface
for EM interference shielding (Masud et al., 2012). By loading
varactor diodes on the metasurface, the lower shielding band can
be tuned without affecting the resonant frequency of the upper
shielding band. The measurement results show that the center
frequency of the lower shielding band can be tuned by 80 MHz.

In recent years, the research of tunable devices with inverse
design by deep learning has become a hot spot. Yoya et al. (2019)
proposed a self-adaptive invisibility metasurface cloak driven by
deep learning. At microwave frequency, the reflection
characteristics of each meta-atom inside the tunable
metasurface can be changed independently by applying
different DC bias on the loaded varactor diode. By introducing
an embedded pre-trained artificial neural network, the
metasurface cloak is capable of responding rapidly to the fast-
changing incident wave and surrounding background.

4 DISCUSSION

In this mini review, we have briefly summarized the recent
progress on electrically reconfigurable microwave metasurfaces
tuned uniformly and non-uniformly by different types of active
lumped elements. The tuning mechanism and potential
applications of the reconfigurable microwave metasurface were
introduced. It is worth noting that a more comprehensive way for
designing electrically reconfigurable metasurfaces is to combine
multiple tunable elements (e.g. PIN diode and varactor), which

provides the possibility to achieve multiple EM functionalities
and real-time reconfigurability in one design simultaneously (Wu
et al., 2013; Huang et al., 2017b). For example, Wu et al. (2013)
presented and experimentally characterized a microwave active
absorber which has dual-ability of simultaneous but dividable
modulation on absorbing frequency and intensity. Huang et al.
(2017b) reported a reconfigurable metasurface for multi-
functional control of EM waves. By controlling tunable
elements, the proposed metasurface can dynamically change
its local phase distribution to generate pre-designed EM
responses. Recently, there are many researches on the
application of using tunable devices in antenna area (Yoya
et al., 2019; Esmaeili and Laurin, 2020). For instance, in 2020,
Esmaeili and Laurin (2020) proposed a cylindrical dielectric
resonator antenna, which are able to switch between linear
horizontal, linear vertical and circular polarizations.
Futhermore, active amplifiers provide another option for
continuously tunable pixel reconfigurable metasurfaces (Chen
et al., 2019b). A spatial-energy digital-coding metasurface with
active amplifiers is proposed to realize arbitrary editing of the
energy of spatial propagating waves in the microwave frequency
range. Meanwhile, the concept of space-time metasurface, which
characterized by spatially and temporally variant properties, has
been proposed (Zhang L. et al., 2018; Zhang C. et al., 2020;
Castaldi et al., 2021). It is meaningful to exploit the temporal
dimension by applying a dynamic switching of the coding
sequence. Most recently, graphene, a famous electrically
sensitive material, has been utilized for designing electrically
reconfigurable metasurfaces at microwave frequencies (Zhang
et al., 2019; Zhang et al., 2021). However, due to the limited scope
of this mini review, we do not summary such types of
reconfigurable metasurfaces in this mini review.

The rapid development of reconfigurable metasurfaces from
both global and local tuning significantly expands the ability of
electromagnetic wave manipulations. The electrically
reconfigurable metasurfaces have the potential to automatically
adapt to environmental changes. We believe new ideas and new
designs will surely emerge in the near future with various new
applications, in addition to those described in this review.
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