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Time-dependent responses of cracked concrete structures are complex, due to the
intertwined effects between creep, shrinkage, and cracking. There still lacks an effective
numerical model to accurately predict their nonlinear long-term deflections. To this end, a
computational framework is constructed, of which the aforementioned intertwined effects
are properly treated. The model inherits merits of gradient-enhanced damage (GED) model
and microprestress-solidification (MPS) theory. By incorporating higher order deformation
gradient, the proposed GED-MPS model circumvents damage localization and mesh-
sensitive problems encountered in classical continuum damage theory. Moreover, the
model reflects creep and shrinkage of concrete with respect to underlying moisture
transport and heat transfer. Residing on the Kelvin chain model, rate-type creep
formulation works fully compatible with the gradient nonlocal damage model. 1-D
illustration of the model reveals that the model could regularize mesh-sensitivity of
nonlinear concrete creep affected by cracking. Furthermore, the model depicts long-
term deflections and cracking evolutions of simply-supported reinforced concrete beams
in an agreed manner. It is noteworthy that the gradient nonlocal enhanced microprestress-
solidification theory is implemented in the general finite element software Abaqus/Standard
with the implicit solver, which renders the model suitable for large-scale creep-sensitive
structures.
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INTRODUCTION

Concrete creep is the deformation phenomenon developing over time under the load action
(Bažant and Li 2008). The current mechanical models are suitable for describing serviceability
limit states (Schlappal et al., 2020). Concrete creep deformation in the early stage mainly comes
from the viscoelasticity deformation (Mei and Wang 2020). Meanwhile, the long-term creep
behavior can affect the safety and serviceability limit state of concrete structures. Concrete
creep, intertwined with damage or cracking, gradually leads to damage evolution and stress
redistribution of structural components. One notorious engineering example is the
continuously vertical deflections of large-span prestressed concrete bridges (Yu et al., 2012;
Tong et al. 2016). Massive concrete cracks at box-shape segments′ bottom slabs and webs
appear phenomenally together, which indicates complex interactions between concrete creep
and cracking (Tong et al. 2016).
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As for concrete creep, microprestress-solidification (MPS)
theory successfully describes concrete creep considering the
processes of moisture transport and heat transfer (Boumakis
et al., 2018). With the MPS theory, the solidification theory
assumes the concrete aging as the volume growth of gels
related to a hydration degree (Rahimi-Aghdam et al.,
2019), and the microprestress theory assumes the
relaxation of self-equilibrated stresses in the solid
nanostructure of cement gels governing the long-term
creep, drying creep (Pickett effect), and transitional
thermal creep (Bažant et al., 1997a; Bažant et al., 1997b).
The MPS theory supersede empirical formulas in
specifications (i.e., ACI, B3/B4, and CEB-FIP models) in
terms of the multiphysics approach, which effectively
accounts for moisture transport and heat transfer.
Consequently, the effects of varying temperature or
humidity on concrete creep can be captured.

Accurate prediction of time-dependent responses of these
concrete structures necessitates a detailed analysis of
interactions between concrete creep and cracking. Some
contributions are made to take these interactions in numerical
analyses and they are comparatively presented in Table 1. To
name a few, the smeared crack approach was combined with the
viscoelastic behaviors for concrete in De Borst (1987). Concrete
creep subject to uniaxial compression was modeled in Mazzotti
and Savoia (2003) and Challamel et al. (2005) with an isotropic
damage law being taken into account. Moreover, the viscoelastic
behaviors of concrete, realized through a Maxwell chain, were
coupled to a microplane constitutive model in Di Luzio, (2009).
They further elaborated the concrete creep modeling with the
microprestress-solidification theory realized through Kelvin
chain (Di Luzio and Cusatis 2013). Recently, Luzio′s
continuum method was replaced with a discrete element
model in the work by Boumakis et al. (2018). Similar work
was also found in Abdellatef et al. (2019). Although exhibiting
sufficient accuracy, the lattice discrete particle model adopted in
Boumakis et al. and Abdellatef et al. (2019) essentially is not a
continuum model and is not suitable for structural analysis. Li
et al. (2019) realized the nonlinear time-dependent analysis of
prestressed concrete bridges considering cracking, creep, and
shrinkage within the framework of Abaqus/Standard. The
implicit solver was adopted in their study through viscous

regularization provided by Abaqus/Standard. More recently,
the coupled effects between creep, damage, and plasticity for
concrete were taken into account in Ren et al. (2020).
Unfortunately, the concrete damage plasticity model in Li
et al. (2019) and anisotropic damage model in Ren et al.
(2020) is still a local constitutive law without considering
nonlocal effect. Tong et al. (2021) tentatively coupled the
localizing gradient damage model to the extended
microprestress-solidification theory. The semi-implicit
algorithm was adopted and four-field evolutions made this
method difficult to be implemented within FE framework.

Although exhibiting apparent advantages, the above
literatures still have limitation in the numerical analyses, as
follows:

• Most of the above analyses are implemented with explicit
finite element (FE) solver, and the computational cost is
prohibitively high for long-term analyses of large-scale
structures.

• The softening behavior of concrete is not properly regularized,
and, therewith, it would lead to unrealistic results due to mesh-
sensitivity problem (Peerlings et al. 1996).

• Most of creep models in the above analyses adopt empirical
formulas in specifications and cannot reflect the real
environmental conditions, of which varying temperature
or humidity cannot be ignored.

It is acknowledged that the continuum-based constitutive law
is easy to implement and is appropriate for large-scale concrete
structures, especially with implicit finite element (FE) solver
(Tong et al., 2016). Nevertheless, coupling concrete cracking
with time-dependent behaviors is a nontrivial task. Strain
softening in quasibrittle materials is the dilemma that has to
been properly treated (Peerlings et al., 1996), which leads to loss
of ellipticity of the differential equations and also the so-called
mesh-dependent solutions upon element size. A series of
regularization methods are continuously proposed targeting
for mesh-objective simulations, i.e., the introduction of
nonlocality in the constitutive model in either integral forms
(Bažant et al., 1984), or gradient-enhanced damage (GED) forms
(Schreyer and Chen, 1986; Peerlings et al., 1998; Poh and Sun,
2017), and the so-called phase-field approach (Kou et al., 2019; Li

TABLE 1 | Existing researches for the time-dependent damage analyses of concrete structures.

Literatures Mechanical model Creep model Solver

De Borst (1987) Smeared crack model Viscoelasticity by Maxwell chain Explicit
Mazzotti and Savoia (2003) Isotropic damage model Solidification theory by Maxwell chain Explicit
Challamel et al. (2005) Isotropic damage model Viscoelasticity by Maxwell chain Explicit
Benboudjema and Torrenti (2008) Isotropic damage model (Mazars model) Viscoelasticity by Kelvin-Voigt chain Explicit
Di Luzio (2009) Microplane model Viscoelasticity by Maxwell chain Explicit
Di Luzio and Cusatis (2013) Microplane model Microprestress-solidification theory by Kelvin chain Explicit
Boumakis et al. (2018) Lattice discrete particle model Microprestress-solidification theory by Kelvin chain Explicit
Li et al. (2019) Concrete damage plasticity model Viscoelasticity by Kelvin-Voigt chain Implicit
Abdellatef et al. (2019) Lattice discrete particle model Microprestress-solidification theory by Kelvin chain Explicit
Ren et al. (2020) Anisotropic damage model Viscoelasticity by Kelvin-Voigt chain Explicit
Tong et al. (2021) Localizing gradient model Extended microprestress-solidification theory by Kelvin chain Semi-implicit
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et al., 2020), although the integral-type forms are the most
straightforward to implement the nonlocal theory in the FE
model. The difficulty in deriving the tangent modulus at the
element level prohibits the implicit FE solver and can only rely on
the explicit FE solver (Bažant et al., 1984). Among them, the
phase-field approach to the progressive events of brittle and
quasibrittle fracture is proven to capture all stages of fracture,
such as crack nucleation, initiation, propagation, and coalescence
(Tanne et al., 2017). However, the computational cost of the
phase field approach is prohibitively high and is not suitable for
structural analyses hitherto. In this study, the GED model
incorporating the high-order deformation terms is utilized. It
is admitted that many efforts are made continuously to improve
the original one proposed by Peerlings et al. (1996), i.e., the
localizing GED model (Poh and Sun 2017) and stress-based GED
model (Vandoren and Simone 2018). These improvements
effectively overcome the spurious damage growth of the
original GED model at large tensile strain. However, the
selection of GED models is out of the scope of this study. We
deliberatively select the original GED model in Peerlings et al.
(1996) as its FE implementation is more easy compared to other
GED models.

The proposed framework (termed as “GED-MPS” model
hereafter) integrates the GED model for concrete′s mechanical
behaviors with the MPS theory describing concrete’s creep
behaviors. The model is implemented within the general FE
software Abaqus/Standard with the implicit solver. In detail,
Sect-2 introduces the theoretical background and
computational framework of the GED-MPS model. Sect-3
illustrates the FE implementation of the model within Abaqus/
Standard with implicit solver. Sect-4 reveals that the model can
obtain mesh-objective solutions, not only for mechanical
responses but creep deformations intertwined with concrete
damage and cracking. Sect-5 validates the proposed model
with the experiments by Gilbert and Nejadi (2004), who
recorded the long-term deflections and cracking of a series of
simply-supported reinforced concrete beams. Finally,
conclusions are derived in Sect-6. To facilitate potential
researchers and users, parts of the code and the input file are
released at https://github.com/TengTongSEU/Coupled-creep-
damage.

CONSTITUTIVE MODELING
FRAMEWORKS
Thermo-Hydro-Mechanical Coupling for
Concrete
The GED-MPS model takes an engineering approach to the
coupled time-dependent and mechanical behaviors of concrete,
aiming to describe the most important aspects with sufficient
accuracy at an affordable computational cost. Complete
constitutive law of the GED-MPS model follows a rheological
representation, as shown in Figure 1, which consists of

• a nonaging spring unit representing instantaneous elastic
strain tensor εel;

• a damage unit with the strain tensor εdam;
• a solidifying kelvin chain unit with typically more than ten
elements in series representing the viscoelastic response
with aging effect εv ;

• a dashpot unit with viscosity dependent on microprestress S
for the long-term creep strain tensor εf ;

• a shrinkage unit for strain tensor εsh; and
• a thermal unit for strain tensor εT .

These units are connected in series, with the identical stress
tensor σ being transmitted (Yu et al., 2012; Tong et al., 2016). In
the absence of significant plastic and viscoelastic strains that may
arise at very high confining pressures, the total strain rate _εtot is
the sum of individual strain rates (Figure 1), as

_εtot � _εel + _εdam + _εv + _εf + _εsh + _εT . (1)

Concrete is interpreted as a composite material in which the
coarse aggregates are embedded as inclusions in cement paste. Aging
creep occurs exclusively in cement paste, whereas aggregates behave
elastically. To capture the mesoscale behaviors of concrete creep in a
more realistic manner, multiscale approaches and more
sophisticated micromechanical models are necessary, which
require more parameters and detailed information on the
individual phases (Pichler et al., 2007; Scheiner and Hellmich 2009).

Theoretically, time-dependent evolutions of all relevant
material properties should be taken into account to achieve an

FIGURE 1 | Rheological model for coupling in the GED-MPS model.
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accurate damage process, i.e., creep and mechanical properties.
Nevertheless, the loading of concrete structures at a very early-
stage is not the focus of this study. Therewith, the mechanical
properties of mature concrete are assumed to be constant,
i.e., tensile strength or fracture energy. Their changes with
concrete aging are ignored in this work. The multidecade
prediction will provide conservative estimations as the slight
increase in the mature concrete’s mechanical properties is not
considered. The local age-dependent fracture properties should
be enriched for the framework for concrete structures subject to
early-age loadings.

Creep Evaluation by
Microprestress-Solidification Theory
To predict creep deformations, semiempirical models are
generally adopted by the engineering community, i.e., ACI,
B3/B4, and CEB-FIP models. Numerous material properties
act as input variables for these models, i.e., compressive
strength, water to cement ratio, cement content, temperature,
humidity, etc. Afterward, these engineering creep models predict
the time-dependent deformation on a cross-sectional level in
accumulated form (Boumakis et al., 2018).

Concrete creep can be mainly categorized into the aging of
concrete, drying creep (Pickett effect), and transitional thermal
creep (Bažant and Jirásek 2018). Bažant et al. (1997a,b) and
assume that the continuous formation of C-S-H gels is
responsible for the aging of concrete, including short-term
chemical aging and long-term nonchemical aging. The first
two creep sources, namely concrete aging and drying creep,
can be formulated in the B4 model (Hubler et al., 2015), as
the compliance function J(t, t′):

J(t, t′) � q1 + Jb(t, t′) + Jd(t, t′), (2)

where t is the current time in days, t′ is the age in days when the
sustained stress is exerted, Jb(t, t′) is the basic compliance
function, Jd(t, t′) is the compliance function for drying creep,
and q1 is the instantaneous compliance function
(q1 � 0.4/E28 � 1/E0, E0 is the instantaneous elastic modulus
without any creep effect, and E28 is the 28-day Young’s modulus).

Note that all the empirical models often yield the predictions
far away from the measured responses, which can be attributed to
the intrinsic heterogeneity of concrete and the variability in mix
designs and environmental conditions. On the other hand, these
engineering models lack the capacity to accurately predict the
local point-wise response at varying stress/strain, local
temperature, moisture content, and curing degree. To this end,
the MPS theory is employed to describe the concrete’s time-
dependent behaviors.

Solidification Theory for Aging Viscoelasticity in a
Rate-Type Formulation
Concrete creep is found to follow the rules of aging linear
viscoelasticity (Bažant et al., 2012a; Bažant et al.,2012b), within
the service stress range (σ ≤ 0.4f ′c, and f ′c is the compressive
strength of concrete). As a consequence, Volterra integral

equation can be utilized to evaluate creep deformation under a
general stress history σ(t). Unfortunately, the compliance
function, which is not of a convolution type due to the
phenomenon of concrete aging, requires the history variables
in all previous time steps to be stored for the current time step
analysis. The computation is prohibitively expensive to predict
the long-term performance of large-scale structures. Alongside, it
is difficult to couple these memory-dependent variables with
other memory-independent phenomena, e.g., concrete
cracking, corrosion, and steel relaxation (Teng et al., 2017).

A rate-type formulation can overcome these obstacles. In the
rate-type approach, the previous history can be fully represented
by internal variables only in the last time step (Yu et al., 2012).
Rheological model is popularly adopted for rate-type concrete
creep (Jirásek and Havlásek 2014; Yu et al., 2012). To this end,
A K chain is employed herein, consisting of more than 10 K units,
of distinctive modulus Du (μ � 1, 2,/,N) and retardation time
τu (μ � 1, 2,/,N); see Figure 1 for details. If the τμ is arranged to
own an infinitely close spacing, the continuous retardation
spectrum forms (Bažant and Xi 1995). Widder proposed an
approximate inversion formula to uniquely identify the
continuous retardation spectrum (Widder 1971). The
analytical solution for a given compliance function yields

L(τu) � − lim
k→∞

(−kτu)k
(k − 1)! C

(k)(kτu), (3)

where C(k) is the k-th order derivative on time t of the creep part
of the compliance function. In this work C(t, t′) is chosen as

C(t, t′) � Jb(t, t′) � q2Q(t, t′) + q3In[1 + (t, t′)n], (4)

with q2 and q3 as the adjustable parameters for the viscoelasticity
based on the solidification theory,Q(t, t′) is a function that can be
referred to the B4mode, n � 0.1 is the fixed exponent, and t − t′ is
the duration since the load application t′ and is replaced with kτu
in Eq. 3. In the current application, the limit in Eq. 3 needs not to
be realized and it suffices to use k � 3 (Yu et al., 2012). A discrete
approximation of continuous spectrum gives the discrete
spectrum:

Aμ � L(τu) In10, (5)

which corresponds to a discrete Kelvin chain and is required for
numerical computations. The exponential algorithm is generally
adopted to quantify the time increment Δt, which would
effectively avoid the numerical instability problem frequently
occurring in the central or backward difference method or Runge-
Kutta method.

Utilizing the Kelvin units, one can express the effective
incremental modulus E″ of concrete at the current time step
tn, as

1
E″ � 1

E0
+∑N

μ�1
D−1

μ � 1
E0

+∑N
μ�1

Aμ(1 − λμ), (6)

where E0 is the instantaneous modulus, N is the total number of
Kelvin units (see Figure 1), and λμ is determined by the time
increment Δt and the retardation time τu, as
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λu � τu(1 − e−Δt/τu)/Δt. (7)

Finally, the solidifying Kelvin chain gives the short-term creep
strain tensor rate Δεv at the current time step tn, as

Δεv � ∑N
μ�1

(1 − e−Δt/τμ)c(n−1)μ , (8)

where γ(n−1)μ is a state variable at the last time step and it should be
updated for each Kelvin chain unit at the end of the current time
step for each integration point, as

c(n)μ � λuΔσD−1
μ + e−Δt/τuc(n−1)μ , (9)

with the rate-type formulation at hand, the values of cu, σ, and εv
in all the previous time steps (from 1 to n−1) need not be stored,
which are required in the conventional integral-type creep
analysis. These history variables can now be represented only
by the state variable c(n)μ in the current time step. The continuous
spectrum method and exponential algorithm enable the
implementation of the rate-type formulations for creep
analysis; for more details, refer to Yu et al. (2012).

Microprestress Theory for Viscous Flow
The rate of viscous strain tensor _εf originates in the slippage
between adsorbed water layers at the microscale level and can be
described by the microprestress theory. Effects of temperature
and humidity on the microstructure can be described by
introducing three transformed time variables: the equivalent
age te describing the degree of hydration, the reduced time tr
characterizing the changes in the rate of bond breakages and
restoration on the microstructural level, and the reduced
microprestress time ts.

Under standard conditions (i.e., room temperature and sealed
specimens), all the three time scales, namely te, tr , and ts, are equal
to the actual age of concrete t. For the general condition, the rates
of the transformed time are defined as the product of two
functions, which respectively characterizes the effects of
temperature and humidity histories. The derivatives of the
three transformation times with respect to the actual age of
concrete t are (Jirásek and Havlásek 2014)

dte
dt

� exp[Qe

R
( 1
T0

− 1
T
)] · 1

1 + [αe(1 − h)]4, (10)

dtr
dt

� exp[Qr

R
( 1
T0

− 1
T
)] · [αr + (1 − αr)h2], (11)

dts
dt

� exp[Qs

R
( 1
T0

− 1
T
)] · [αs + (1 − αs)h2], (12)

where T is the absolute temperature, h is the humidity, R is the
universal gas constant, and Qe, Qr , and Qs are active energies for
the hydration, viscous process, and microprestress relaxation,
respectively.

The bonds across the slip plane representing the nanopore
filled with hindered adsorbed water are subject to two stresses: the
macroscopic applied stress σ causing shear slip and the tensile
microprestress. The rate of flow strain tensor _εf is

_εf � dtr
dt

1
η(S) σ, (13)

where the effective viscosity η is a decreasing function of S.
The source of _εf lies in the relaxation of disjoining pressure and

the rupture of atomic bonds and is formulated by microprestress S.
The concept ofmicroprestress is useful for the theoretical justification
of evolving viscosity η.With the temperatureT and humidity h being
taken into account, the drying creep effect and transitional thermal
creep can be reflected in the viscous flow strain rate _εf . However, the
microprestress cannot be directly measured and the calibration of
microprestress relaxation is difficult. To this end, by some
manipulations and rearrangements, Jirásek and Havlásek (2014)
obtain the evolution of the viscous dashpot, as

_η + 1
μST0

∣∣∣∣∣∣∣∣∣T _h
h
− κT _T

∣∣∣∣∣∣∣∣∣(μSη)p/(p−1) � dts
dt

1
q4
, (14)

with

μS � c0T
P−1
0 kP−11 q4(p − 1)p (15)

in which c0 and k1 are the constant parameters and P is an
exponent usually set equal to 2. The internal variable κT was
introduced to keep track of the previously obtained maximum
temperature and to adjust the temperature variation on creep and
is defined as

κT � { κTm if T � Tmax and ΔT > 0
κTc if T <Tmax or ΔT > 0 , (16)

where κTm and κTc are material parameters and κTm � 0.017 and
κTc � 0.001 are recommended in Jirásek and Havlásek (2014). For
a standard choice p � 2, the above equations are simplified to

_η + 1
μST0

∣∣∣∣ _T In(h) − κT _T
∣∣∣∣(μSη)2 � ψs

q4
, (17)

μS � c0T0k1q4. (18)

By assuming that the evolution of viscosity should be the same
as in model B4, the initial condition for differential Eq. 17 can be
simply postulated as

η(t0) � t0
q4
, (19)

where q4 is the variable governing the long-term creep in the
B4 model.

Damage Evaluation by Gradient-Enhanced
Damage Model
Local Damage Model
With the assistance of the effective stress concept (Rokhgireh and
Nayebi 2019), the stress-strain relation of quasibrittle materials
can be expressed as

σ � (1 − d)De: ε′, (20)

where σ is the second-order Cauchy stress tensor, d is the scalar
damage variable (0≤ d ≤ 1), De is the fourth-order elastic stiffness
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tensor, and ε′ is the second-order elastodamage strain tensor. The
ε′ is the sum of the elastic strain tensor εel and damage strain
tensor εdam. It can be written in the rate form as

_ε′ � _εel + _εdam � _εtot − _εv − _εf − _εsh − _εT . (21)

To describe the damage evolution, the local scalar-valued
equivalent strain ε̃ is adopted to evaluate the elastodamage
strain tensor ε′. The details expression of ε̃(ε′) would be given
in Eq. 29. For strain-based damage models, a history variable κ is
defined as the maximum ε̃ ever obtained in the previous time
steps to guarantee the damage irreversibility as

κ(t) � max{ε̃(τ)|0≤ τ ≤ t}. (22)

The loading function f (ε̃, κ) is introduced to complement the
stress-strain relation in Eq. 20, as

f (ε, κ) � ε − κ. (23)

The loading function f (ε̃, κ) and the rate of the history
variable, Δκ, have to satisfy the discrete Kuhn-Tucker loading-
unloading conditions:

f ≤ 0      Δκ≥ 0      Δκ · f � 0. (24)

The history variable κ describes the damage variable d(κ) and
damage irreversibility is automatically satisfied. The κ starts at a
damage threshold level κ0 and is updated by the requirement
during the damage growth f � 0 (De Borst and Verhoosel, 2016).

Nonlocal Gradient-Enhanced Formulations
In a conventional local damage model, κ is related to the local
scalar measure of the strain tensor ε̃. Nevertheless, in a nonlocal
generalization, the (local) equivalent scalar strain ε̃ is replaced by
a spatially averaged (nonlocal) equivalent strain ε, which is
computed in each material point approximately by the
differential form (Peerlings et al., 1996):

ε − c∇2ε � ε̃, (25)

where ∇2 denotes the Laplacian operator and c is a positive
gradient parameter of the dimension length squared. The
parameter c follows a specific form of the weight function and
averaging volume and provides the internal length scale which is
needed to regularize the damage localization. Hereafter this
parameter is treated as an intrinsic material property and
should be carefully calibrated to characterize the material’s
meso- or microstructure.

By integrating the averaging partial differential equation Eq.
25 over the entire domain and adopting Gauss’ divergence
theorem on the term c∫

Ω
∇2ε dΩ, we can obtain

∫
Ω
ε dΩ − c∫

Γ
∇ε · n dΓ � ∫

Ω
ε̃ dΩ, (26)

where n is the unit directional vector perpendicular to the
boundary.

To guarantee that the average of ε over the entire domain
equals that of ε̃, the natural boundary condition

∇ε · n � 0 (27)

is adopted, resulting in the vanishment of the second term in the
left-hand side of Eq. 26.

Damage Evolution
Two relations should be well defined to characterize the
macroscopic stress-strain behavior: the evolution law of
damage d(κ) and the local equivalent strain ε̃. The
evolution of the damage variable d(κ) is critical to govern
the postpeak softening behavior and the degree of brittleness.
The damage law proposed in Peerlings et al. (1996) is adopted
for simplicity:

d(κ) �
⎧⎪⎨⎪⎩ 0 κ≤ κ0

1 − κ0
κ
[(1 − α) + α exp(− β(κ − κ0))] κ> κ0

, (28)

where κ0 is the threshold to initiate the damage and α and β are
material constants governing the softening behavior.

The local equivalent strain ε̃ adopts the modified von Mises
equivalent strain, which originates from plasticity models for
polymers and proposed (Vogler et al., 2013), resulting in

ε̃(ε′) � k − 1
2k(1 − 2v)I1 +

1
2k

�������������������
(k − 1)2
(1 − 2v)2I

2
1 +

2k

(1 + v)2J2
√

, (29)

where ε′ represent the summation of elastic and damage strain
tensors in Eq. 21, I1 is the first invariant of strain tensor ε′, J2 is the
second invariant of deviatoric strain tensor ε′, and v is the
Poisson’s ratio. An important feature of this definition of local
equivalent scalar strain is the parameter k which is defined as the
ratio of the compressive strength fc to the tensile strength ft of the
material, k � fc/ft . Compressive failure would vanish as k goes to
infinity.

Coupling Damage and Creep
To describe the nonlinear concrete time-dependent behavior, a
stress-strain law based on the rate independent isotropic damage
model is formulated in Eq. 20, which can be interpreted as
Hooke’s law linking the strain to the effective stress tensor
σ(Bažant and Jirásek 2018):

σ � σ

1 − d
. (30)

The above equation indicates the stress transmitted by
the undamaged continuous solid material, which would be σ,
rather than σ with defects being excluded. Considering that
the creep stress is much lower than the cracking threshold,
this nonlinear creep model is only suitable for the
undamaged concrete, not for a cracked body. Thus, the
creep strain calculation, similar to the plastic strain, is
based on the effective stress tensor σ, rather than the
nominal stress tensor σ. As a consequence, the short-term
creep strain tensor εv and the long-term creep
strain tensor εf , obtained in sections Solidification Theory
for Aging Viscoelasticity in a Rate-Type Formulation
and Microprestress Theory for Viscous Flow based on
nominal stress tensor σ, should be amplified by the factor
1/(1 − d).
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FINITE ELEMENT FORMULATION

Governing Equations and FE Discretization
The model presented in this work is discretized using
a Galerkin FE approach. Strong forms of governing
equations for the GED-MPS model for quasistatic
problems are

∇ · σ + b � 0 inΩ, (31)

ε − c∇2ε � ε̃ inΩ, (32)

where b represents an external load vector. The two unknown
fields to be calculated are the displacement field u(x, t) and the so-
called nonlocal equivalent strain field ε(x, t).

These equations are supplemented by the following Neumann
and Dirichlet boundary conditions:

σ · n � t* ∇ε · n � 0 on zΩt

u(x, t) � up on zΩu, (33)

where t* and up are prescribed force and displacement at the
boundary. Integrating Eqs 31, 32 over the domainΩ andweighting
withwu andwε respectively yields the weak form after applying the
divergence theorem and the boundary conditions:

∫
Ω
∇wT

uσ dΩ � ∫
Ω
wT

u b dΩ + ∫
Γ
wT

u t
* dΓ, (34)

∫
Ω
w T

ε ε dΩ + ∫
Ω
∇wT

ε c∇ε dΩ � ∫
Ω
wT

ε ε̃ dΩ (35)

In the FE implementation, the displacement field u and
nonlocal equivalent strain field ε at an arbitrary point is
interpolated by their nodal values (Sarkar et al., 2019):

u � Nu u˜ and ε � Nε ε˜ (36)

ε � Bu u˜ and ∇ε � Bε ε˜, (37)

with ṵ and ε˜ being the nodal degrees of freedom, Nu and Nε

represent the shape functions, and Bu and Bε are their partial
derivatives with respect to the spatial coordinates. According to the
Bubnov-Galerkin method, the corresponding weight functions wu

and wε can be discretized analogously. Consequently, the
discretized equilibrium equations of Eqs 34, 35 reduce to

∫
Ω
BT
uσ dΩ � ∫

Ω
NT

u b dΩ + ∫
Γ
NT

u t
* dΓ, (38)

∫
Ω
(NT

ε Nε + B T
ε cBε)ε dΩ � ∫

Ω
N T

ε ε̃ dΩ. (39)

To construct a consistent incremental-iterative Newton-
Raphson solution procedure, Eqs 38, 39 have to be linearized.
The linearization at iteration i with respect to the previous
iteration i − 1 is outlined as

[Kuu
i−1 Kuε

i−1
Kεu
i−1 Kεε

i−1
]⎧⎪⎨⎪⎩ d u

∼

d ε˜
⎫⎪⎬⎪⎭ � [ f uext

f εext
] − [ f uint, i−1

f εint, i−1
]. (40)

Of special attention is that the components in the stiffness
matrix and the right-hand side vector depend on the ε′ in Eq. 21.
The submatrices are defined as

Kuu
i−1 � ∫

Ω
BT
u(1 − di−1)DeBu dΩ, (41)

Kεε
i−1 � ∫

Ω
(NT

ε Nε + BT
ε cBε) dΩ, (42)

Kuε
i−1 � ∫

Ω
BT
u

zd
zκ
Deε′i−1Nε dΩ, (43)

Kεu
i−1 � − ∫

Ω
NT

ε ( zε̃

zε′)i−1
BuD

e dΩ, (44)

and the subvectors in the right-hand sides are defined as

f uext � ∫
Ω
NT

u b dΩ + ∫
Γ
NT

u t
* dΓ, (45)

f εint, i−1 � ∫
Ω
BT
uσ i−1dΩ, (46)

f εext � 0, (47)

f εint, i−1 � ∫
Ω
[(NT

ε Nε + BT
ε cBε)εi−1 − NT

ε ε′i−1] dΩ. (48)

Note that the element stiffness matrix becomes nonsymmetric
since Kuε

i−1 is not equal to the transpose of Kεu
i−1. The implicit solver

with Newton-Raphson algorithm could guarantee the quadratic
rate of convergence, even if the nonsymmetric tangential stiffness
matrix in Eq. 40 is utilized (Peerlings et al., 1996).

Creep Strain Tensors
The key parameter in implementing the GED-MPS model is
to obtain the local equivalent strain field ε̃(ε′), which is a function
of the strain tensor ε′. To this end, now we turn our attention to
the numerical treatments of increments of creep strain tensors,
namely the aging viscoelasticity Δεv and the viscous flow Δεf .

The aforementioned rate-type formulation can be used for the
basic creep compliance Jb(t, t′), as presented in Eq. 4. Taking
derivative of Jb(t, t′) with respect to time gives

_Jb(t, t′) � 1
v[te(t)]Φ[tr(t) − t′r(t)], (49)

where reduced time te(t) and tr(t) are introduced to account for
general temperature and humidity conditions, v(t) describes the
volume growth function with the solidification process, and
Φ(t, t′) is the strain in nonaging solidified matter whose
material properties are assumed to be invariable with time.
The v(t) and Φ(t, t′) are defined as

1
v(t) �

�
1
t

√
+ q3
q2
, (50)

Φ(t − t′) � q2
n(t − t′)n−1
1 + (t − t′)n. (51)

As a consequence, the exponential algorithm following the
procedures can be implemented to obtain the increment of aging
viscoelasticity Δεv :
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1) At t � t0, where t0 indicates the time with the external load
being applied, initialize the internal variables γ(0)μ . Select
τu � 10−7+u, with u � 1, 2, 3,. . ., 14.

2) Let ξ � t − t′, and the continuous spectrum is calculated as

L(τu) � q2
(3τu)3

2
· d

3Φ
dξ3

, (52)

with

d3Φ
dξ3

� 2n3ξ3n−3(1 + ξn)3 − 3n2(n − 1)ξ2n−3(1 + ξn)2 + n(n − 1)(n − 2)ξn−3(1 + ξn) . (53)

3) Discretize the spectrum using

A(τu) � ⎛⎝ ����
1

tn−1/2

√
+ q3
q2
⎞⎠L(τu)In10. (54)

4) Calculate λu according to Eq. 7, and calculate E″ according
to Eq. 6.

5) Obtain increment of aging viscoelasticity Δεv , according
to Eq. 8.

6) After retrieving the stress increment Δσ by the GED model,
update the internal variable c(n)μ ; refer to Eq. 9.

7) Begin the next time step.

Now we turn to the increment of viscous flow Δεf , which
needs the viscosity Eq. 17 with initial condition Eq. 19. Suppose
that the value of viscosity ηn−1 at time tn−1 is known from the
previous time step or from the initial condition, we wish to
obtain the value of viscosity ηn � ηn−1 + Δη at time
tn � tn−1 + Δt. The exponential algorithm (Bažant 1971)
following the procedures is implemented to obtain the
increment of viscous flow Δεf .

1) The temperature and humidity of the previous time step Tn−1
and hn−1 are known, as well as their increments ΔT and Δh,
from the external heat transfer and moisture transport
analyses. The viscosity ηn at the current time step is
explicitly evaluated as for arbitrary large Δt, as

ηn �
B
A
· B(1 − ẽ) + Aηn−1(1 − ẽ)
B(1 + ẽ) + Aηn−1(1 − ẽ), (55)

with

A �
����������
μS|Δ(TInh)|

T0Δt

√
, (56)

B � ψs

q4
, (57)

ẽ � e−2ABΔt . (58)

2) Suppose
∣∣∣∣Δη̃∣∣∣∣≪ η̃n, the increment of viscous flow Δεf is

evaluated as

Δεf � Δt
η̃n

[σn−1(1 − Δη̃
2η̃n−1

) + Δσ(1
2
− Δη̃
3η̃n−1

)]. (59)

For the creep deformation coupled with concrete damage or
cracking, the nominal stress tensor σ or its increment Δσ should
be replaced by their effective counterparts σ and Δσ, respectively,
to evaluate Δεv and Δεf . Afterwards, the increment of strain
tensor Δε′ can be obtained by subtracting Δεv and Δεf from the
increment of total strain tensor Δεtot , as well as the increments of
hygral and thermal strain tensors (Δεsh and ΔεT ). The Δε′ is

FIGURE 2 | Degrees of freedom of 2D element for the GED-MPSmodel.

FIGURE 3 | Layered system of the FE elements and data flow in Abaqus
with UEL and UMAT.
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subsequently adopted to obtain the stress tensor σn and damage
indicator dn at the current step time tn.

Implementation Aspects in Abaqus
The system of equations above is highly nonlinear. To implement
the model with implicit FE solver, the general FE software
Abaqus/Standard is selected for its built-in implicit
incremental-iterative Newton-Raphson algorithm and
automatic time-step-ping schemes. The user-defined element
(UEL) subroutine enables us to define the element, of which
computation of element tangent stiffness and nodal force vectors
is realized.

Plane stress is taken into account in the following simulations.
To guarantee the consistency requirements, the shape functions
and their derivatives for the displacement field u(x, t) are defined
over 2D quadrilateral element of eight nodes, whereas these terms

are defined over 2D quadrilateral element of four nodes for
nonlocal equivalent strain field ε(x, t) (Sarkar et al., 2019).
These two element types share the same nodes at the four
corners; see Figure 2 for details. Consequently, the nodal
displacement vector u

∼
and nodal nonlocal equivalent strain

vector ε
∼
are expressed as

u
∼
� [u1

1, u
1
2, u

2
1, u

2
2, ...u

8
1, u

8
2]T

ε
∼
� [ε1, ε2, ε3, ε4]T . (60)

The corresponding shape functions and their derivatives are

Nu � [N1 0 ... N8 0
0 N1 ... 0 N8

] Nε � [N1 N2 N3 N4 ]
(61)

and

FIGURE 4 | Damage and normalized stress-strain curves for the simulations of different c.
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Bu �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zN1

zx
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zx
0

0
zN1

zy
... 0

zN8

zy

zN1
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zN1

zx
...

zN8
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zx
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Bε �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
zN1

zx
...

zN4

zx

zN1

zy
...

zN4

zy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(62)

It is noteworthy that the analysis with UEL subroutine is
inconvenient in the postprocessing and visualization of the
results. Because shape functions are defined by users in the
UEL subroutine, the Abaqus cannot extrapolate variables from
Gauss points to the element nodes, automatically. To this end, an
auxiliary dummy mesh is adopted, consisting of standard Abaqus

elements that resemble the UEL elements in terms of number of
nodes and integration points. The material response at each
integration point in the auxiliary mesh is defined using a user
material subroutine (UMAT), which enables the user to define
the constitutive matrix and stresses from the strain values.

In this auxiliary mesh, the stress components are deliberatively
set as zero so as not to influence the global solution. The data from
the UEL for each time increment we want to observe in Abaqus/
Viewer is stored as built-in array SVARS, which allows
transferring to the UMAT subroutine by the built-in array
STATEV for each corresponding element and integration
point. Transferring of values from SVARS array to STATEV
array is accomplished by making use of the common statement
(Msekh et al., 2015). Figure 3 shows the technique to implement
the visualization of the analyses with the UEL subroutines.

FIGURE 5 | Damage and normalized stress-strain curves for the simulations of different element size.
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ILLUSTRATION OF GED-MPS MODEL

A 100 mm long bar is taken for an illustration, which is subject
to uniaxial tensile loading. The Young’s modulus is
deliberatively reduced by 5% in a 10 mm wide zone in the
middle of the bar to trigger localization of deformation.
The following mechanical parameters are set for this
illustration, with E28 � 40 GPa, v � 0.2, κ0 � 0.000075,
β � 300, α � 0.99, and k� 10. The bar is discretized with 40,
80, and 160 elements, respectively. Moreover, three different
values of gradient parameter c are selected, with c � 1, 5, and
15 mm2, respectively.

The first group of analyses embraces the bar discretized with
80 elements, but with three different values of gradient parameter
c. Profiles of the damage indicator d corresponding to different c
are depicted in Figures 4A,B. For the case with c � 1 mm2, a clear
narrowing of the localization zone is observed, in terms of d. This
indicates that the case with c � 1 mm2 is very close to the local
damage model, which is effective for brittle materials, but
quasibrittle materials. On the other hand, profiles of damage
indicator d are different for the other two cases with c � 1 and
5 mm2, as nonlocality is clearly depicted as the damage
overflowing the 10 mm imperfection zone. The value of
gradient parameters c clearly affects the width of damage zone

FIGURE 6 | Simulations of creep behaviors intertwined with damage with different c.

TABLE 2 | Concrete properties at different ages.

Compressive strength (MPa) Tensile strength (MPa) Young’s modulus (GPa)

7-day 12.90 — 21.09
14-day 18.30 2.00 22.82
28-day 24.80 2.80 24.95
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in the middle of the bar. Alongside, the effects of gradient
parameters c on the force-displacement relations of the bar are
also revealed as the normalized stress-strain curves in Figure 4C.
Obviously, with the increase of c, the bar behaves more ductile
and the load-carrying capacity also increases slightly.

The second group of analyses embraces the bar discretized with
different element size, but with identical gradient parameter c �
5mm2. Profiles of the damage indicator d corresponding to
different element size are depicted in Figures 5A,B. Clearly,
although with different element size, all the three cases converge
to an identical result, indicating that the GED model satisfactorily
eliminates the mesh-sensitive problem frequently encountered in
the softening region of quasibrittle materials. Nonlocality is clearly
demonstrated with nearly the same three damage zones with the
width bigger than the 10mm imperfection zone. Alongside, effects
of element size on the force-displacement relations of the bar are
also revealed as the normalized stress-strain curves in Figure 5C.
Only a slight difference is observed for the three cases.

Figure 5 clearly shows that mesh-dependent solutions of
mechanical responses of quasibrittle materials are regularized by
the GED model, without creep deformation. However, limited
literatures report themesh-sensitivity problem in the time-dependent
analyses of quasibrittle materials, especially when coupled with
cracking, according to the authors’ knowledge. Intuitively, mesh-
sensitivity solution is a concern, as the creep depends on the stress
tensor and the damage state at each material point.

To this end, the proposed GED-MPS model is applied to the
same bar. The external loading is applied at the bar’s right end at the
day of t′ � 10. The external displacement is set as 0.08 m and the
loading is finished within 0.01 day, and it is kept constant for
another 1 day. Loading rate effect, aging effect, shrinkage, and
thermal strains are not considered for simplicity. The following
parameters are selected: q1 � 25 × 10–6 MPa−1, q2 � 200 × 10–6

MPa−1, q3 � 20 × 10–6MPa−1, q4 � 0MPa−1, T � 293K, and h � 1.
Similarly, the first group of analyses embraces the bar

discretized with identical 80 elements, but with different
gradient parameters as c � 1, 5 and 15mm2. Profiles of creep
strain ε′ in the horizontal direction for the three cases are

illustrated in Figure 6A, with effects of damage being involved.
For the case with c � 1 mm2 which approaches local damage
analysis, the localized creep-induced strain, with peak value of ε′ �
3.53 × 10–2 is observed. For the other two cases, with c � 5 and
15mm2, nonlocality is clearly captured for the creep strain ε′,
which overflows the 10mm imperfection zone. Nevertheless, the
peak value of ε′ decreases to 1.08× 10–2 for the case with c � 5 mm2

and 0.28 × 10–2 for the case with c � 15mm2, respectively.
Alongside, effects of gradient parameters c on the relationship

between time and normalized stress are revealed in Figure 6B.
The time from day 10.0 to day 10.1is the loading time and various
strain-softening responses are captured, with analogy to the
phenomenon revealed in Figure 4C. Moreover, relaxations of
normalized stresses are illustrated from day 10.1 to day 11.1 in
Figure 6C, with effects of c. Interestingly, apparent mesh-
sensitivity is witnessed for the three cases. Although with the
peak value of creep strain ε′ � 3.53 × 10–2, the relaxation of
normalized stress is not significant for the case with c � 1 mm2. It
looks like that the localization of creep strain does not
significantly affect the relaxation of normalized stress. On the
other hand, the loss of normalized stress approaches 0.29 MPa for
the case with c � 5 mm2 and 0.75 MPa for the case with c �
5 mm2; see Figure 6C. Obviously, the gradient parameter c
smears the damage into the neighboring zone, so as for the
creep strain intertwined with damage or cracking.

CALIBRATION WITH TESTS OF
SIMPLY-SUPPORTED CONCRETE BEAMS

Engineering community concerns more about long-term deflections
of reinforced concrete or prestressed concrete structures, coupled to
concrete cracking. In this section, the capability of the GED-MPS
model is further extended to the reinforced concrete structures. Long-
term tests of simply-supported reinforced concrete beams in Gilbert
and Nejadi (2004) are simulated.

Although totally 6 beams and 6 slabs were reported, this paper
selected two typical specimens for simulations, namely specimens

FIGURE 7 | Experimental data and numerical fitting for concrete shrinkage and creep.
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FIGURE 8 | Experimental and numerical crack profiles.
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B2-a and B2-b. These two specimens owned a 250 × 340
rectangular cross-section and 3,500 mm in length. The concrete
cover thickness is 25mm. Two 16mm diameter rebars were
arranged as the flexural reinforcement. During the test, these
two specimens were loaded to 50% (specimen B2-a) and 30%
(specimen B2-b) of their flexural strengths, respectively. A constant
external loading was applied on the concrete specimens. This
loading test began at 14 days and lasted for around 400 days.
Concrete properties were measured at different ages and they
are summarized in Table 2.

Creep Calibrations
The concrete creep and shrinkage tests were provided in Gilbert
and Nejadi (2004), which begun at the 14-day concrete age. No
data is provided regarding temperature and humidity, and they are
set as T � 293 K and h � 0.6, respectively. The values are

FIGURE 9 | Experimental and numerical deflections of specimen B2-a
with different c.

FIGURE 10 | Experimental and numerical deflections w/wo concrete cracking.

FIGURE 11 | Mid-span deflection curves at various temperatures.
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appropriate since they fit the measured shrinkage strain in an
agreed manner (see Figure 7A), with the employment of the
shrinkage model in ACI code (ACI 2009).

With respect to parameters for concrete creep, the following
creep parameters are selected to fit the experimental creep data,
with q1 � 47.4 × 10–6 MPa−1, q2 � 200 × 10–6 MPa−1, q3 � 20 ×
10–6 MPa−1, andq4 � 46 × 10–6 MPa−1; see Figure 7B. In addition,
the following fracture parameters are adopted according to
Table 2, with E28 � 22.8 GPa, v � 0.18, κ0 � 0.000122 (ft �
2.8 MPa), β � 300, α� 0.99, and k � 24.8/2.8 � 8.5. The E0 is the
Young’s modulus at concrete age of 14 days, and it would rise
according to data in Table 2 concerning concrete aging effect.

Long-Term Deflections and Cracking
Distributions
The GED-MPS model is verified with experimental data of
specimens B2-a and B2-b, which were subject to external
loading of 18.6 and 11.7 kN, respectively. The identical
calibrated parameters listed in Sect-5.1 are utilized without any
modification. Some artificial defects were deliberatively introduced
at the bottoms of FE models to trigger the cracks.

ffects of different gradient parameter c � 4 and 14 mm2 on the
long-term behaviors are investigated with the other parameters
being the same. Comparisons of FE and experimental crack
profiles for specimens B2-a and B-2b are illustrated in Figures
8A,B, respectively. For the FE results with c � 4 mm2, crack
patterns correspond well with the test in height, region, and
spacing of cracks. On the other hand, cracking profile for the case
with c � 14 mm2 yields less accurate prediction in the cracking
height. Absent data are provided in the report regarding the
cracking profiles at the commencement of the test.

Long-term vertical deflections of Specimen B2-a with different
c are compared with experimental data in Figure 9. Both
simulation results yield satisfactory agreements. Interestingly,
little difference is observed for the deflections with different c.
Possible reasons are attributed to the following two reasons.
Shrinkage deformation plays a dominant role over creep

deformation for the specimen, as merely 50% peak strength is
applied and the stress level is low. Another possible reason is that
although higher c reduces the damage height, it broadens the
damage zone with respect to the case with lower c.

Furthermore, conventional linear viscoelastic analysis
considering only creep and shrinkage deformations, without
intertwined effect with concrete damage and cracking (termed
as MPS in Figure 10), is compared to the GED-MPS model in
Figure 10A for specimens B2-a and Figure 10B for specimen B2-
b. Clearly, conventional linear viscoelastic analysis
underestimates their long-term vertical deflections, which can
be satisfactorily remedied by the GED-MPS model.

Considering the effect of different temperatures on the long-term
deflection of these specimens, four different temperatures are selected,
and they are T � 0.1°C (273.1 K), 20°C (293.1 K), 40°C (313.1 K), and
60°C (333.1 K). The long-term deflections subject to different
temperatures of specimens B2-a and B2-b are presented in
Figure 11, while all the other parameters are kept constant.

The effects of different humidity on long-term deflection of
specimens B2-a and B2-b are further revealed in Figure 12, with
different humidity of h � 0.6, 0.8, and 1.0, whilst all other parameters
are fixed. It is noteworthy that h � 1.0 illustrates the effect of creep on
the long-term deflection only, without shrinkage effect.

CONCLUSION

The GED-MPSmodel is proposed and implemented with implicit
FE software Abaqus/Standard. The model integrates the GED
model capable of circumventing the mesh-sensitivity in the
conventional mechanical analyses for quasibrittle materials
exhibiting strain softening behaviors, and the MPS theory
capable of predicting point-wise creep responses.

The GED-MPS model anchors at the rate-type formulation,
and, therefore, is capable of incorporating other memory-
dependent processes. After being enriched with continuous
spectrum method and exponential algorithm, the model is
efficient and stable for large-scale structural analysis. The model

FIGURE 12 | Mid-span deflection curves at various humidity.
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successfully regularizes the mesh-sensitivity problem, which is
already concerned with mechanical analyses of materials
exhibiting softening, but less with the nonlinear creep
intertwined with cracking. The GED-MPS model is applied to
simply supported reinforced concrete beams. It is proven that the
proposed model is capable of capturing not only the long-term
vertical deflection trends, but also the time-dependent cracking
propagations affected by creep and shrinkage.

Further improvements to polish the model could be
conducted, i.e., implementing more accurate anisotropic
constitutive model for concrete, instead of the isotropic one,
replacing the current GED model with stress-based GED model
to address the issue of spurious damage growth. With the GED-
MPS model being implemented in the implicit FE algorithm,
authors are expected to extend this model to accurately predict
long-term behaviors of real large-scale creep-sensitive structures.
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NOMENCLATURE

De: Elastic stiffness tensor (fourth-order)

σ: Cauchy stress tensor

σ: Effective stress tensor

εtot : Total strain tensor

εel: Elastic strain tensor

εdam: Damage strain tensor

εv: Short-term viscoelastic strain tensor

εf : Long-term viscous creep strain tensor

εsh: Shrinkage strain tensor

εT : Thermal strain tensor

ε’: Elastodamage strain tensor

α, β: Material constants governing the softening behavior

c: Gradient parameter

d: Scalar damage variable

Du: Distinctive modulus of u-th Kelvin unit

τu: Retardation time of u-th Kelvin unit

L(τu): Continuous spectrum of u-th Kelvin unit

cu: State variable of u-th Kelvin unit

N: Total number of Kelvin units

C(k): k-th order derivative on time t of the creep compliance function

ε̃: Local scalar equivalent strain

ε: Nonlocal scalar equivalent strain

E0: Instantaneous elastic modulus without any creep effect

E28: 28-day Young’s modulus

E@: The effective incremental modulus of concrete at the current time step

v: Poisson’s ratio

t: Current time in days

t9: The concrete age in days when the sustained stress is exerted

te: Equivalent age describing degree of hydration

tr : Reduced time characterizing changes in rate of bond breakages and
restoration on microstructural level

ts: Reduced microprestress time

tn: The current time step in FE analysis

Δt: Time increment in FE analysis

Qe,Qr,Qs: Active energies for hydration, viscous process, and
microprestress relaxation

f 9c: Compressive strength

ft : Tensile strength

J(t, t9): Creep compliance function

Jb(t, t9): Basic creep compliance function

Jd(t, t9): Drying creep compliance function

η: Effective viscosity

f (ε̃, κ): Loading function

q1,q2,q3,q4: Creep coefficient in the B4 model

R: Universal gas constant

S: Microprestress

T: Absolute temperature

h: Humidity

∇2: Laplacian operator

κ0: The threshold to initiate the damage

κ: The maximum ε̃ ever obtained in the previous time

v(t): Volume growth function with solidification process.
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