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Gray arsenic (β-phase) has aroused great attention in photonics and electronics
applications, as a novel family member of two-dimensional (2D) elemental crystals of
group-VA. Here, β-phase arsenic (β-As) bulk crystals were synthesized via the chemical
vapor transport (CVT) method. Meanwhile, large-scale β-As nanoflake was transformed
using the polydimethylsiloxane (PDMS)-assisted dry transfer method and was placed on
the end cap of optical fiber with high coverage over the core area. Moreover, the β-As was
used as a saturable absorber in ytterbium-doped fiber ring cavity resonance, and we
demonstrated near-infrared ultrafast pulse fiber laser with the central wavelength,
repetition rate, and signal-to-noise ratio (SNR) of 1,037.3 nm, 0.6 MHz, and 67.7 dB,
respectively. This research demonstrates a 2D material small area deterministic transfer
method and promotes the potential application of group-VA crystals in near-infrared
ultrafast laser generation.
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INTRODUCTION

Two-dimensional (2D) materials have attracted various interests since the first discovery of
monolayer graphene in 2004 and have shown great potential in near-infrared ultrashort pulse
fiber laser generation. In the past decade, facing wide range application requirements of near-infrared
ultrashort pulse (Jackson, 2012; Geng et al., 2014), such as LIDAR (Tang et al., 2016), optical
communications (Moulton et al., 2009; Soref, 2015), material science (Salam et al., 2021; Shaodong
et al., 2021), mid-infrared laser sources (Pawliszewska et al., 2017; Tuo et al., 2018), spectroscopy
(Donodin et al., 2020; Xu N. et al., 2020), and biomedicine (Chen et al., 2019; Martov et al., 2020), a
series of 2D material SA have been realized for pulse fiber laser generation. The applications in
increasingly extensive fields demand the discovery of novel 2D material SA with particular
properties. During the past years, various novel 2D material SA have been used for pulse fiber
laser generation, including graphene (Martinez and Sun, 2013; Meng et al., 2015), topological
insulators (TI) (Bao et al., 2009; Lee et al., 2014; Liu et al., 2014; Wang et al., 2021), black phosphorus
(BP) (Ma et al., 2015; Hisyam et al., 2017), and transition metal dichalcogenides (TMDCs) (Gillen
and Maultzsch, 2017; Tuo et al., 2018) (Wang J. et al., 2019; Shi et al., 2019; Chen et al., 2021), for the
benefit of adjustable nonlinear absorption coefficient, short recovery time, and low optical lose.
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With the rapid development of novel 2D material
preparation, at the same time, arsenic compounds (gallium
arsenide, cadmium arsenide, and black arsenic phosphorus)
are rising in industry and scientific research (Yoon et al.,
2010; Zhang C. et al., 2019; Khalatpour et al., 2021). The raw
material arsenic is widely used in many fields due to its excellent
physical and chemical properties and has been thoroughly
studied and recognized as building blocks for future photons
and optoelectronic technologies. Along with the inspiration of
the research on few-layer phosphorous allotrope, the few-layer
arsenic allotrope is also concerned. They are both elemental
layered materials derived from group VA (phosphorus, arsenic,
antimony (Ji et al., 2016; Wu et al., 2017), and bismuth) (Zhang
S. et al., 2016; Zhang et al., 2018; Niu et al., 2019; Wu and Hao,
2020). BP shows high mobility of up to about 1,000 cm2 V−1 s−1

and is used in nano-electronic and photonic devices, while it is
very unstable and degrades rapidly in ambient conditions
(Wang et al., 2019b; Xu et al., 2020b). Purple phosphorus
with a pyrolysis temperature above 512°C is the most stable
phosphorus allotrope (Zhang L. et al., 2020), and for blue
phosphorus, an indirect band gap semiconductor (Zhang J. L.
et al., 2016; Zhang J. L. et al., 2020), the photoelectric response
can reach the ultraviolet region. The different properties of
materials corresponding to different structures have aroused
people’s interest in arsenic research. The research on few-layer
α-As (black arsenic) started in 2018 (Zhong et al., 2018). The
β-As (gray arsenic) thin film has also been developed in recent
years. It has the same structure as blue phosphorus, which
displays rhombohedral stacking of layers (Zhao et al., 2017).
The wide bandgap (0–1.71ev) with adjustable layers are

FIGURE 1 | β-phase arsenic crystals synthesis and characteristics. (A) Schematic illustration of the growth process of β-As crystals via the CVT method. (B) The
optical image of β-As single crystal besides a ruler. (C) SEM and (D) the energy dispersive X-ray (EDX) mapping of β-As crystal. (D) The optical image of the typical
exfoliated nanoflake after transferred on the SiO2/Si substrate. (E) X-ray diffraction (XRD) spectrum of β-As crystal. (F) A β-As nanoflake transferred on SiO2/Si substrate.
(G) AFM image and the corresponding height of β-As nanoflake. (H) Raman spectrum of the exfoliated β-As flake obtained with a 532 nm laser at about 300 K.
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predicted in some theoretical articles (Kamal and Ezawa, 2015;
Zhou et al., 2017). The higher carrier mobility in bulk gray
arsenic has also been observed in few-layer arsenic (Hu et al.,
2019). There are signs that β-As may become an excellent
contender for a new generation of 2D nano-electronic,
photonics devices. In addition, to obtain ultrashort pulse
laser with a high signal-to-noise ratio and long-term stability,
the quality of saturable absorber (SA) is a key component (Guo
et al., 2015; Hu et al., 2018; Wang et al., 2019c; Zhang M. et al.,
2019). Researchers are looking for reliable ways to place the
nanomaterials at the fiber core, such as a special platform with a
small area. The scotch tape–assisted approach, light-induced
deposition method, end-to-end self-assembly, and embedding
the layered materials in transparent polymer were reported (Lee
et al., 2016; Rusdi et al., 2016; Hu et al., 2017; Cuando-Espitia
et al., 2019). However, nanoflake accurate transfer is still a huge
challenge.

In this study, β-phase arsenic (β-As) bulk crystals were
synthesized via the CVT method, and the morphology and
structure were studied. With our PDMS-assisted accurate
positioning dry transfer method, the gray arsenic nanoflake
saturable absorber was prepared on the end cap of optical
fiber with 100% yield. The g-As nanoflake-based ytterbium-
doped fiber laser can realize a stable mode-locked pulse with
the central wavelength, repetition rate, and signal-to-noise ratio
(SNR) of 1,037.3 nm, 0.6 MHz, and 67.7 dB, respectively.

SAMPLE PREPARATION AND
CHARACTERIZATIONS

Growth Method
β-As crystalline bulks were synthesized by using the CVT
method (Xu et al., 2020c) in a furnace with two
temperature zones, as schematically shown in Figure 1A,
where the red area indicates the high temperature zone and
the green area indicates the low temperature zone. Growth
processes of β-As crystal are as follows: gray arsenic powders
were used as precursor. First of all, 15 mg gray arsenic powder
was put into a quartz tube (length of 120 mm, diameter of
20 mm) and subsequently sealed up under vacuum (<1 ×
10−2 Pa). Afterward, the as-sealed quartz tube was placed in
the furnace (OTF-1200X), and the temperature program of
high temperature zone was set as a program curve: heating up
to 500°C within 5 h, keeping at 500°C for 1 h, and then cooling
down to room temperature in 5 h. Finally, the product was
obtained at the low temperature zone.

Characterization Apparatus
The morphology of the samples was investigated by optical
microscopy (Nikon Eclipse LV100ND microscope) and atomic
force microscopy (AFM, Bruker Dimension Icon 3,100).
Scanning electron microscopy (SEM) and the corresponding
energy-dispersive X-ray spectroscopy (EDX) characterizations

FIGURE 2 |Crystal structure of the β-phase arsenic flakes. (A)Buckled honeycomb structure of β-As. (B) Top view of the buckled arsenene. (C) Themorphology of
β-As nanoflake at low magnification. (D) The selected area electron diffraction (SAED) pattern. (E) The high-resolution TEM (HRTEM) image of a representative β-As
nanoflake.
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were carried out on a SEM (Quanta FEG 250) instrument, with
an operating voltage of 30 kV and a spot line of 5.0. Raman
measurements were performed in a confocal Raman
spectrometer (Renishaw inVia), with an excitation laser of
532 nm wavelength and a ×100 objective lens. X-ray
diffraction (XRD) was performed with a powder X-ray
diffractometer (Bruker AXS D8 Advance) system with Cu Kα
irradiation (λ � 1.5406 Å). Transmission electron microscopy
(TEM) and selected area electron diffraction (SAED) were
performed on a TEM (Tecnai G2 F20 S-TWIN) instrument.

Characterization and Analysis
As shown in the optical image (Figure 1B), the β-As single
crystal is about 8 mm size, and obvious geometric corners are
found on it. Its luminal appearance indicates that thickness can
be reduced by mechanical stripping. SEM with EDX

measurements was conducted to observe the morphology and
analyze the chemical element of the β-As crystals. Figure 1C
shows a flake with regular edges and corners. The EDXmapping
verified the uniform distribution of unique arsenic element, as
shown in Figure 1D. The powder XRD was applied to judge the
crystal structure and the phase purity of the as-synthesized β-As
crystals. In Figure 1E, the peaks match with the rhombohedral
structure in space group R3�m (PDF # 05–0,632) (Hu et al.,
2019). The diffraction peak at about 25.28° and 52.04° can be
well-indexed to the (003) and (006) plane, respectively. What is
more, the XRD pattern demonstrates that the β-As crystals
present a highly preferred orientation along the (00L) direction.
Figure 1F shows a typical exfoliated β-As nanoflake after it was
transferred onto the SiO2/Si substrate. It can be seen that the
surface is uniform without impurities. The corresponding
atomic force microscopy (AFM) image is shown in

FIGURE 3 |Deterministic transfer of β-As nanoflake on fiber end cap. (A) The protocol of deterministic transfer: step 1, β-As bulk crystal mechanical exfoliation with
blue tape; step 2, β-As nanoflake adhere; step 3, β-As nanoflake lifted with PDMS; step 4, the selected β-As nanoflake alignment; step 5, PDMS peeled off; step 6,
deterministic transferred sample of β-As nanoflake. (B)Microscope digital image of the fiber end cap (diameter of red circle is 9 μm) before transfer. (C)Microscope digital
image of fiber end cap after deterministic transfer of β-As nanoflake.
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FIGURE 4 | Pulse generation from the Yb-doped fiber ring cavity based on the β-As SA. (A) Schematic of the all-fiber 1-μmpulse laser based on β-As SA. (B) Pulse
sequences at different pump powers. (C) Normalized emission spectra at different pump powers. (D)Central wavelength versus incident pump power. (E) Pulse interval
at 400 mw. (F) Radio frequency (RF) spectrum.
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Figure 1G. It has a regular angle of 120°, and its height is about
335 nm. It is relatively difficult to exfoliate the β-As bulk to very
thin flakes, which may result from a strong interlayer
interaction. Raman spectrum was carried out as fingerprint
authentication of materials. As shown in Figure 1H, two
characteristic peaks with frequencies of 195.3 and 254.5 cm−1

are corresponding to Eg (in-plane vibration) and A1g (out-of-
plane vibration) modes of β-As, respectively.

In order to further discuss the crystal structure, we
investigated β-As with a rhombohedral A7 structure (Zhu
et al., 2015). The crystal is a double-layered structure
composed of many interlocking six-membered rings. The
crystal structure model of the β-As was observed in different
views in Figures 2A,B. It is a kind of buckled 2D hexagonal
structure, with a lattice constant of a � 3.76 Å, c � 10.44 Å,
and As–As bond length of 2.5 Å. Afterward, the β-As
nanoflakes were transferred to the Cu grid for
transmission electron microscopy characterizations.
Figure 2B illustrates a hexagonal β-As nanoflake with an
angle of 120°. As shown in Figure 2C, the electron diffraction
pattern presents a refined hexagonal structure, which is
consistent with the XRD data (PDF # 05–0,632).
Figure 2D shows the high-resolution TEM (HRTEM)
characterization of the same β-As nanoflake with distinct
lattice fringes without obvious impurities. The lattice fringes
marked in the figure shows a fixed spacing, which is measured
as 1.88 Å. These crystal planes can be indexed to (110) and
(2–10), with the zone axis of [001] orientation.

Deterministic Transfer on Fiber End Face
β-As nanoflake was accurately transferred onto a fiber facet as
an SA by the homemade 3D transfer platform (Figure 3). The
protocol schematic of deterministic transfer was shown in
Figure 3A. The specific dry transfer process is described as
follows: First of all, the β-As bulk was thinned by mechanical
exfoliation with a blue tape. Homemade polydimethylsiloxane
(PDMS) stamp was used to adhere thinned β-As nanoflakes. As
the PDMS is transparent, the thickness and size of β-As
nanoflake can be roughly determined through it. When a
suitable flake has been identified, the underlying fiber end
face is fixed on the sample stage. The PDMS with target
nanoflake is then fixed to the three-axis cantilever with the
flakes facing the fiber core. When the PDMS and the fiber core
are close to the focal plane of the microscope, it is possible to
align the right flake toward the fiber core. Finally, the stamp is
pressed against the fiber end face and peeled off very slowly. As
shown in Figure 3B, the fiber core (diameter: 9 μm) was marked
by a red circle in the dark field optical microscope image. After
transfer, the fiber core was completely covered with a β-As
nanoflake (Figure 3C). In this way, the resulting nanoflakes
have no bulges or wrinkles.

PULSE GENERATION AND DISCUSSION

The sandwiched structure β-As-SA was installed into the laser
ring cavity. As illustrated in Figure 4A, the total length of the ring

cavity is about 351 m. A laser diode (LD) operating at 976 nm
wavelength was used to pump a 1.5-m-long ytterbium-doped
fiber (YDF) (6/125) through a 980/1,060 nm wavelength division
multiplexing (WDM). In order to realize unidirectional
waveguide of the laser, a polarization-independent isolator (PI-
ISO) was connected with the YDF. The SA device of sandwiched
structure was placed between the optical coupler (OC) and 300-m
single-mode fiber (SMF) (HI1060). We adopted two polarization
controllers (PC) to adjust the phase of the laser oscillation mode.
Besides, we used an OC of 20:80 ratio which has a 1 × 2 pigtail
structure. The 20% laser output was separated from the laser
cavity to measure the laser characteristics by the oscilloscope or
optical spectrum analyzer (OSA). The remaining 80% laser was
coupled into the laser cavity to form laser oscillation.

By increasing the pump power to 330 mW and adjusting the
PC appropriately, the mode-locked pulse phenomenon took
place. The state was not very stable at the beginning of the
startup, and the pulse splits slightly. However, it kept an
obvious pulse interval under 330–450 mW, as shown in
Figure 4B. The corresponding output spectrum is illustrated
in Figure 4C, with a slight change in the central wavelength of
around 1,037 nm (Figure 4D). The output pulse trace is shown in
Figure 4E, with a pulse interval of 1.7 μs under 400 mW. The
corresponding radio frequency (RF) spectrum is as shown in
Figure 4F. The signal-to-noise ratio (SNR) is about 58.5 dB, and
the repetition rate is 0.6 MHz. In the 3-day sampling period, the
pulse sequence and spectral output are basically stable.

CONCLUSION

In conclusion, high-quality β-As were successfully synthesized,
and an ytterbium-doped fiber mode-locked laser based on β-As-
SA has been realized for the first time. A relative stable 1-μm
pulsed laser was generated at a pump power ranging from 330 to
450 mW with an almost unchanged repetition rate of 0.6 MHz
and a central wavelength around 1,037 nm. This work
demonstrates a 2D material small area deterministic transfer
method and promotes the research of near-infrared pulsed
lasers based on 2D materials and also shows the great
potential of group VA crystals for nonlinear photonic
applications.
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