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Functionally graded material (FGM) arches may be subjected to a locally radial load and
have different material distributions leading to different nonlinear in-plane buckling
behavior. Little studies is presented about effects of the type of material distributions
on the nonlinear in-plane buckling of FGM arches under a locally radial load in the literature
insofar. This paper focuses on investigating the nonlinear in-plane buckling behavior of
fixed FGM arches under a locally uniformly distributed radial load and incorporating effects
of the type of material distributions. New theoretical solutions for the limit point buckling
load and bifurcation buckling loads and nonlinear equilibrium path of the fixed FGM arches
under a locally uniformly distributed radial load that are subjected to three different types of
material distributions are derived. The comparisons between theoretical and ANSYS
results indicate that the theoretical solutions are accurate. In addition, the critical
modified geometric slendernesses of FGM arches related to the switches of buckling
modes are also derived. It is found that the type of material distributions of the fixed FGM
arches affects the limit point buckling loads and bifurcation buckling loads as well as the
nonlinear equilibrium path significantly. It is also found that the limit point buckling load and
bifurcation buckling load increase with an increase of the modified geometric slenderness,
the localized parameter and the proportional coefficient of homogeneous ceramic layer as
well as a decrease of the power-law index p of material distributions of the FGM arches.

Keywords: functionally graded material, fixed arch, limit point buckling, bifurcation buckling, critical modified
geometric slenderness

INTRODUCTION

Arch structure has been widely used in the practice, because of the unique characteristics about
aesthetics and safety. Arch structure is often subjected to different forms of load and different
boundary constraints in practical engineering, which may lead to structural damage of arches.
(Timoshenko et al., 1962), (Schreyer, 1972) and (Plaut and Raymond, 1990) started the research of
arches early. Then, (Bradford et al., 2002) researched the in-plane buckling behavior of symmetrical
cross-section arches under a central point load. (Pi et al., 2002) used an energy method to build the
nonlinear equilibrium equation and the buckling equilibrium equation of arches, and the analytical
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result of nonlinear buckling was obtained. (Pi et al., 2008) also
presented a theoretical research on the nonlinear in-plane
buckling of pin-ended circular arches subjected to a central
point load with rotational restraints elastic end. (Pi and
Bradford, 2009) developed the virtual work approach was used
to establish post-buckling equilibrium differential equation and
the nonlinear buckling, and the exact solution of the nonlinear
bifurcations. (Cai and Feng, 2010) carried out the in-plane
buckling of parabolic arches whose rotational stiffness of
supports increases according to loaded. (Cai et al., 2012)
carried out the buckling equations and nonlinear equilibrium
by virtual work principal method. (Cai et al., 2013) also analyzed
the buckling equilibrium path according to the bistable strut by
using fixed arches subjected to a central point load. According to
the principle of virtual work, (Han et al., 2016) studied the in-
plane nonlinear buckling behavior of circular arches with elastic
horizontal supports under a uniform radial load. (Yan et al., 2017)
made an analytical study about the non-uniform shallow arch
subjected to a central point load. (Pi et al., 2017) revealed in-plane
buckling of fixed shallow circular arches with the arbitrary radial
point load. (Lu et al., 2018) explored the nonlinear in-plane
buckling and post-buckling behavior of the fixed arches subjected
to a localized uniform radial load. (Lu et al., 2020) also explored
effects of movement and rotation of supports on nonlinear
instability of fixed shallow arches under a localized uniform
radial load. (Hu et al., 2021) presented an analytical
investigates for nonlinear buckling of pin-ended arch-beam
structures. In addition to the optimization of the cross section
can make the stability of the structure better (Chen and Young,
2021; Chen et al., 2021), the improvement of material engineering
technology also can make the stability of the structure better.

Most of the arches studied in the above literatures are
homogeneous solid materials, however, functionally graded
material (FGM) has been widely used because their mechanical
properties are better than those of homogeneous materials in
recent years. FGM arches are usually composed of two or more
materials, which can contribute to the superior performance of

each material, but the stress and buckling of FGM arches
become complicated. (Bateni and Eslami, 2015) conducted
nonlinear buckling behavior of FG circular arches under the
uniformly radial load using an analytical method. (Simsek,
2016) assumed the material properties of the beam vary as the
power-law form in both axial and thickness directions. (Al-
shujairi and Mollamahmutoğlu, 2018) concerned with the
sandwich FG micro-beams is made of the ceramic-metal FG
skin and homogenous ceramic core, based on the classical rule
and the Mori-Tanaka homogenization scheme of composite
material properties of the part of the FG sandwich size
according to beam changes continuously by the thickness of
the beam. For different boundary condition analysis, (Bateni
and Eslami, 2014) explored the nonlinear in-plane buckling
behavior of FGMs arches. Simply supported–simply supported
and clamped–clamped boundary conditions are considered as
two types of well-known symmetric boundary conditions for
this analysis. (Simsek, 2016) investigated first two-dimensional
FGM to research the buckling of beams with different
boundary conditions, using adding auxiliary functions the
boundary conditions are met. For different load form
analysis, (Rastgo et al., 2005) explored the spatial buckling
of pinned FGM arches being subjected to a thermal loading for
using the Galerkin method. (Song and Li, 2008) using
Kirchhoff” s assumption conducted nonlinear governing
equations of FG arches under thermal and mechanical
loads. (Asgari et al., 2014) focused the nonlinear thermo-
elastic behavior of pin-ended FGM arches. The stability
equation of the nonlinear primary equilibrium path was
developed using adjacent equilibrium criterion. (Moita et al.,
2018) studied the discrete model of the structural by the theory
of high order shear deformation, and the finite element
formulation is carried out to meet general FGM plate-shell
type structures. (Yang et al., 2020a; Yang et al., 2020b; Yang
et al., 2020c; Yang et al., 2021a; Yang et al., 2021b) have
published a series of papers on in-plane buckling and free
vibrations of functionally graded composite arches with

FIGURE 1 | FGM arch under a locally uniformly distributed radial load.

Frontiers in Materials | www.frontiersin.org August 2021 | Volume 8 | Article 7316272

Lu et al. FGM Arches Under Local Loads

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


graphene reinforcements. However, FGM arches may be
subjected to a locally radial load and have different material
distributions leading to different nonlinear in-plane buckling
behavior. Little studies is presented about effects of the type of
material distributions on the nonlinear in-plane buckling of
FGM arches under a locally radial load in the literature.

This paper, therefore, aims at studying the in-plane buckling of a
fixed functionally graded material arch under a locally uniformly
distributed radial load incorporating effects of the type of material
distributions. To illustrate the nonlinear in-plane buckling behavior
of FGM arches, three types of material distributions containing
functionally graded material layer and homogeneous material layer
are considered. Theoretical solutions for the limit point buckling
load and bifurcation buckling loads and nonlinear equilibrium path
of the fixed FGM arches under a locally uniformly distributed radial
load that are subjected to three different types of material
distributions are derived. Comparisons with the ANSYS results
present the theoretical solutions are enough accurate. The critical
modified geometric slendernesses of FGM arches that are switches of
buckling modes are also derived. In addition, the effects of the
proportional coefficient of homogeneous ceramic layer, the type and
power-law index p of material distributions on the buckling load and
critical modified geometric slendernesses are discussed and
examined.

MATERIAL DISTRIBUTION OF
FUNCTIONALLY GRADED MATERIAL
ARCHES
The FGM shallow arches under a locally uniformly distributed
radial load qwith a central angle 2Θ, and radius R and length S are
made from ceramic Al2O3 and metal Al, as shown in Figure 1. In
addition, 2c represents the subtended angle of the arch segment
where the locally uniformly distributed radial load acts, also as
shown in Figure 1. The total cross-sectional thickness and width
are h and b, respectively.

In this research, the metal-ceramic material Al-Al2O3 is
adopted. According to power-law function, the FGM arch
through the thickness are graded continuously as

Ξ � ΞmVm + ΞcVc, (1)

where Ξc and Ξm are the properties of ceramic and metal,
respectively. Vc and Vm is the volume fraction of ceramic and
metal, and they meet the following conditions as

Vm + Vc � 1. (2)

In order to illustrate the nonlinear in-plane buckling behavior of
FGM arches, three types of material distributions containing
functionally graded material layer and homogeneous material layer
are considered, including Type A, Type B, and Type C as shown in
Figure 2. The cross-section of Type A represents that the top layer is
the metal layer with the thickness αh and the material distributions of
bottom layer is that the weight fraction of metal increase from the top
surface to the bottom and theweight fraction of ceramic decrease from
the top surface to the bottom surface. The cross-section of Type B have
three layers, the middle layer of Type B is the metal layer with the
thickness αh, the top and bottom layers of Type B is symmetric about
the midline of the cross-section, and the material distributions of
bottom layer of Type B is same to the bottom layer of Type A. The
cross-section of Type C have four layers, the top and the bottom layers
of Type C is the metal layer with the thickness αh/2, the second and
third layers of Type B is symmetric about the midline of the cross-
section, and the material distributions of the second layer of Type C is
same to the bottom layer of Type A.

The volume fractions Vc for three distribution modes that are
shown in Figure 2 are expressed as

Type A :Vc �
⎧⎪⎪⎨⎪⎪⎩ [z + 0.5h

(1 − α)h]p

−0.5h≤ z ≤ (0.5 − α)h
,

1 (0.5 − α)h≤ z ≤ 0.5h
(3)

Type B : Vc �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
[ z + 0.5h
0.5(1 − α)h]p

−0.5h≤ z ≤ − 0.5αh
,

1 −0.5αh≤ z ≤ 0.5αh[ −z + 0.5h
0.5(1 − α)h]p

0.5αh≤ z ≤ 0.5h

(4)

and

Type C : Vc �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −0.5h≤ z ≤ − 0.5(1 − α)h[ − z
0.5(1 − α)h]p

−0.5(1 − α)h≤ z ≤ 0
,[ z

0.5(1 − α)h]p

0≤ z ≤ 0.5(1 − α)h

1 0.5(1 − α)h≤ z ≤ 0.5h
(5)

FIGURE 2 | Type A, Type B and Type C of material distributions of FGM arch.
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where p is the power-law index of material distributions and α is
the proportional coefficient of homogeneous ceramic layer.
According to Eq. 1, the elastic modulus of FGM arch can be
expressed as (Bateni and Eslami, 2015).

E(z) � Em(1 − Vc) + EcVc (6)

where Ec and Em are the elastic modulus of ceramic and metal,
respectively.

NONLINEAR EQUILIBRIUM

The nonlinear in-plane buckling behavior of a fixed FGM arch
subjected to a locally uniformly distributed radial load is
investigated, which is shown in Figure 1. The potential energy
Π of the FGM arch can then be given by

Π � 1
2
∫Φ

−Φ
Rb∫h/2

−h/2
E(z)ε2dzdϕ − R2 ∫Φ

−Φ
qṽH1(ϕ, c)dϕ (7)

with the function H1(ϕ, c) being given by

H1(ϕ, c) � Heaviside(ϕ + c) −Heaviside(ϕ − c), (8)

where Heaviside() represents Heaviside function. The
longitudinal strain of an arbitrary point at the cross-section
can be expressed as

ε � εm + εb (9)

where εm and εb are the membrane and bending strains of the
FGM arch, respectively, which are given by

εm � −ṽ + 1
2
ṽ′2 + w̃′, (10)

εb � −zṽ″
R

(11)

with w̃ � w/R and ṽ � v/R, where ( )′ ≡ d( )/dϕ, z is
the coordinate of the point P0 at the cross-sectional axis
oz, w and v are the axial and radial displacements
respectively.

For nonlinear equilibrium of FGM arch using the principle of
minimum total potential energy, the variation of the total potential
energy obtained from Eq. 7 should vanish as

δΠ � ∫Θ

−Θ
Rb∫h/2

−h/2
E(z)εδεdzdϕ − R2 ∫Θ

−Θ
qδṽH1(ϕ, c)dϕ � 0

(12)

By substituting Eqs 10, 11 into Eq. 12, the Eq. 12 can then be
rewritten as

δΠ � ∫Θ

−Θ
[ − NR(δw̃′ − δṽ + ṽ′δṽ′) −Mδṽ″]dϕ

− R2 ∫Θ

−Θ
qδṽH1(ϕ, c)dϕ � 0

(13)

where N and M are the axial and bending actions of the FGM
arch, respectively, which can be given by

N � −Ak(w̃′ − ṽ + ṽ′2

2
) + Bk

R
ṽ″ (14)

M � Bk(w̃′ − ṽ + ṽ′2

2
) − Dk

R
ṽ″ (15)

with Ak, Bk, and Dk being the stiffness components of the FGM
arch, respectively, which are defined as

{AkBkDk} � b∫0.5h

−0.5h
E(z){1zz2}dz. (16)

When material distributions of the FGM arch is subjected to
Type A, the stiffness components of the FGM arch Ak, Bk, and Dk

can be given by

Ak � bh{[(Ec − Em)α + Em]p + Ec}
p + 1

(17)

Bk � bh2p(1 − α)(Ec − Em)(αp + α + 1)
2p2 + 6p + 4

(18)

Dk � bh3p2{(Ec − Em)[(4α3 − 6α2 + 3α − 1)p + 12α3 − 12α2 + 3α − 3] + Ec(6 + p)}
12(p3 + 6p2 + 11p + 6)

+ bh
3{[(8α3 − 6α2 + 6α − 8)(Ec − Em) + 11Ec]p + 6Ec}

12(p3 + 6p2 + 11p + 6)
(19)

When material distributions of the FGM arch is subjected to
Type B, the stiffness components of the FGM arch Ak, Bk, and Dk

can be given by

Ak � bh{[(Ec − Em)α + Em]p + Ec}
p + 1

(20)

Bk � 0 (21)

Dk � bh3p2{(Ec − Em)[p(α3 − 1) + 3α3 + 3α2 − 6] + Ec(6 + p)}
12(p3 + 6p2 + 11p + 6)

+ bh
3[(2α3 + 3α2 + 6α − 11)(Ec − Em)p + Ec(11p + 6)]

12(p3 + 6p2 + 11p + 6)
(22)

When material distributions of the FGM arch is subjected to
Type C, the stiffness components of the FGM arch Ak, Bk, and Dk

can be given by

Ak � bh{[(Ec − Em)α + Em]p + Ec}
p + 1

(23)

Bk � 0 (24)

Dk � bh3[(Ec − Em)(α3 − 3α2 + 3α)p + Emp + 3Ec]
12p + 36

(25)

Integrating Eq. 13 by parts, the differential equilibrium
equations of a FGM arch under a locally uniformly distributed
radial load can be derived as

(NR)′ � 0 (26)

NR + (NRṽ′)′ −M″ − qR2Η1(ϕ, c) � 0 (27)
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By Substituting Eq. 14 into Eq. 15, the bending action of the
FGM arch can be given by

M � −(Dk − B2
k

Ak
) ṽ″

R
− Bk

Ak
N (28)

By Substituting Eqs. 26, 28 into Eq. 27, Eq. 27 can then be
rewritten as

ṽiv

ϖ2
+ ṽ″ � qRΗ1(ϕ, c)

N
− 1 (29)

whereϖ is non-dimensional axial force parameter, which is given by

ϖ2 � NR2

κ
(30)

with κ being the equivalent stiffness of the FGM arch, which is
defined as

κ � Dk − B2
k

Ak
(31)

Meanwhile, the essential boundary conditions at the both ends
of FGM arch

ṽ � 0, w̃ � 0, and ṽ′ � 0 at ϕ � ±Θ (32)

also need to be satisfied. The non-dimensional radial
displacement ṽ of a FGM arch can be determined by solving
Eq. 29 under the boundary conditions obtained from Eq. 32.

ṽ � P[cos (ϖϕ)(β2 − cos β1 sin β2) − β2(β1 sin β1 + cos β1) + sin β2]
ϖ2 sin β1

+ β21 − μ2ϕ2

2ϖ2

+ β1[cos β1 − cos (ϖϕ)]
ϖ2 sin β1

+ PΗ1(ϕ, c)[2 cos β2 cos (ϖϕ) + β22 + (ϖϕ)2 − 2]
2ϖ2

−PΗ2(ϕ, c)[sin (ϖϕ) sin β2 − ϖϕβ2]
ϖ2

(33)

where β1 � μΘ and β2 � μc � ηβ1 with η � c/Θ, the non-
dimensional locally uniformly distributed radial load P is expressed as

P � Q
2cN

with Q � 2cqR, (34)

and the H2(ϕ, c) is expressed as

H2(ϕ, c) � −1 + Heaviside(−c + ϕ) +Heaviside(−c + ϕ). (35)

Equation 33 indicates that the non-dimensional radial
displacement ṽ is dependent on P and ϖ, and so it is necessary
to calculate the relationship of the axial force with the locally
uniformly distributed radial load.

Therefore, substituting Eq. 33 into Eq. 14, and integrating it
along the arch length results in

2ΦN � ∫Θ

−Θ
[ − Ak(w̃′ − ṽ + ṽ′2

2
) + Bk

R
ṽ″]dϕ

� ∫Θ

−Θ
−Ak( − ṽ + ṽ′2

2
)dϕ − ∫Θ

−Θ
Ak(w̃′)dϕ + ∫Θ

−Θ
Bk

R
ṽ″dϕ,

� ∫Θ

−Θ
−Ak( − ṽ + ṽ′2

2
)dϕ − w̃|Θ−Θ + (Bk

R
ṽ′)∣∣∣∣∣∣∣Θ−Θ

(36)

Considering the essential boundary conditions obtained from
Eq. 32, the Eq. 36 can be rewritten as

2ΦN � ∫Θ

−Θ
−Ak( − ṽ + ṽ′2

2
)dϕ0∫Θ

−Θ
(ṽ − ṽ′2

2
)dϕ + 2ΦN

Ak
� 0,

(37)

Subsequently, Calculating Eq. 37 leads to a quadratic
equilibrium equation, as

A1P
2 + B1P + C1 � 0, (38)

where the coefficients A1, B1 and C1 are expressed as

A1 �
[3β22 + 5 sin2β2 − β2 sin (2β2)] cos β1 + 2β2(β2 cos β2 − 4 sin β2)

4β31 sin β1
− 5 sin (2β2)

8β31

+ β
2
2(2 sin2β1 + 1) + sin2β2 − 2β2 sin β2 cos β1

4β21 sin
2β1

+ 6 cos2β2 + 9 − 4β21
12β31

,

(39)

B1 � 2 sin β2 − β2(cos β1 + cos β2)
2β21 sin β1

+ sin β2 cos β1 − β2
2β1 sin

2β1
, (40)

C1 � 2 cos2β1 + 1
12 sin2β1

− cos β1
4β1 sin β1

+ κβ21
Ak(λsh)2 (41)

with λs being the modified geometric slenderness of the FGM
arch, respectively, which can be express as

λs � SΘ
2h

(42)

By solving Eq. 38, the relationship of the axial force with the
locally uniformly distributed radial load can be obtained.
Then, by substituting those relationship into Eq. 33, the
non-dimensional radial displacement ṽ can be obtained.
Finally, the relationship of the locally uniformly distributed
radial load with the non-dimensional radial displacement can
be established, and the nonlinear instability behavior of FGM
arches can be analyzed.

BUCKLING ANALYSIS

Limit Point Buckling and Bifurcation
Buckling
The FGM arches under the locally uniformly distributed radial
load may buckle in a limit point mode. According to the theory
of (Lu et al., 2018) for an arches under the locally uniformly
distributed radial load, the upper and lower limit point buckling
loads can be derived using routine calculus, and the equation of
equilibrium between β1 and P at the upper and lower limit
points can be expressed as

A2P
2 + B2P + B2 � 0 (43)

where

A2 � β1zA1

zβ1
− 4A1,B2 � β1zB1

zβ1
− 2B1,C2 � β1zC1

zβ1
(44)
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Therefore, the upper and lower limit point buckling loads can
be obtained by solving Eqs 38, 43 simultaneously.

It can be found that the Eq. 43 for equilibrium of limit point
buckling mode of the FGM arches are the same as those for the
homogeneous arches (Lu et al., 2018). Similarly, refer to limit
point buckling theory of the homogeneous arches under the
locally uniformly distributed radial load, the axial force
parameter βb1 and the axial force N in the FGM arch during
lowest possible limit point buckling are respectively given by

βb1 � π andN � π2κ

(S/2)2 � NE1 (45)

In addition, also refer to the above theory of homogeneous
arch, the central displacement ṽsc corresponding to the lowest
buckling load of the FGM arch as

ṽsc � Θ2

2
− 2Θ2

2π2(β2 + sin β2) [β2(π2 − 2) + π(1 − cos β2)
−2 sin β2 −

β22π

2
] ± 2Θ2

�������������������
1

π2 ( Bπ2 +
5
3
) − 4κ

Ak(λsh)2
√

(46)

with

B � (5π − 6β2) cos β2 − 6β2
β2 + sin β2

+ β22 + 9 + 2(π − β2)2( 1
β2 + sin β2

− 1)
+ β2(cos β2 + 1)(2β2 − 5π) − β22(9π2 − 10πβ2 + 3β22)(β2 + sin β2)2

(47)

The Eq. 46 has a real solution only when

1
π2

( B
π2

+ 5
3
) − 4κ

Ak(λsh)2 ≥ 0 (48)

from which the modified geometric slenderness λs of the lowest
buckling load of the FGM arch can be obtained once the type of
the cross section and the locally uniformly distributed radial load
are given.

The FGM arches under the locally uniformly distributed
radial load may buckle in a bifurcation mode. The equation
of equilibrium of the FGM arch in the primary equilibrium
path is obtained from Eq. 29. Similarly, the differential
equation of equilibrium of the FGM arch in the case of
infinitely close to the bifurcation equilibrium path can be
given by

FIGURE 3 | ANSYS model of material distributions of FGM arch (A) Type A (B) Type B (C) Type C (D) ANSYS model with boundary conditions.
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ṽiv + ṽivb
ϖ2

+ ṽ″ + ṽ″b � PH1(ϕ, c) − 1 (49)

Therefore, the equation for equilibrium of bifurcation mode of
the FGM arches can be built by substituting Eq. 29 into Eq. 49 as

ṽivb
ϖ2

+ ṽ″b � 0 (50)

It’s can be found that the equation for equilibrium of bifurcation
mode of the FGM arches are the same as those for the homogeneous
arches (Lu et al., 2018). Similarly, refer to bifurcation buckling theory
of the homogeneous arches, the axial force parameter βb1 and the
axial force N in the arch during bifurcation are respectively given by

βb1 � 1.4303π andN � (1.4303π)2κ
(S/2)2 � NE2 (51)

In addition, the parameter βb2 for bifurcation mode can then be
expressed as

βb2 � 1.4303π
c
Θ (52)

By substituting Eqs 51, 52 into Eq. 39, the equation of
equilibrium between βb1 and P at the upper and lower
bifurcation points can be expressed as

A3P
2 + B3P + C3 � 0 (53)

where

A3 � 5 sin2βb2 − βb2 sin (2βb2)
4β4b1

+ 4βb2 cos
2βb2 − 5 sin (2βb2)

8β3b1

+ 3η(η + 1)
4β2b1

+ η2(3 − 2η)
6

+ η(βb2 cos βb2 − 5 sin βb2)
2β2b1 sin βb1

+ β2b2 + sin2βb2
4β2b1 sin

2βb1
(54)

FIGURE 4 | Comparisons of the theoretical solutions for the limit point buckling with the corresponding ANSYS results (A) Type A (B) Type B (C) Type C.
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B3 � 3 sin βb2 − βb2 cos βb2
2β2b1 sin βb1

− η

βb1
(1
2
− 1
βb1

) (55)

C3 � 1
12 sin2β1

− 1

12β21
+ κβ2b1
Ak(λsh)2 (56)

with

η � c
Θ (57)

The bifurcation buckling load of a FGM arch under a locally
uniformly distributed radial load can be obtained once the
localized parameter η is given.

Comparisons of Theoretical Solutions with
ANSYS Results
According to Donnell’s shallow shell theory, in the ANSYS
models of FGM arch, the geometry of the rectangular section

was, the width b � 0.14 m, the total thickness h � 0.07 m, the
power-law index p � 1 and the proportional coefficient of
homogeneous ceramic layer α� 0.2. In addition, the geometric
slenderness of the FGM arch S/h � 100. The Young’s modulus of
the metal-ceramic material Al-Al2O3 are 70GPa and 380GPa,
respectively.

When a multilayer for metal-ceramic material Al-Al2O3 is
used to simulate a continuous gradient properties, the
accuracy of the FGM arch model increases with an increase
of the number of layers of metal-ceramic material Al-Al2O3. As
demonstrated in Figure 3, when material distributions of the
FGM arch is subjected to Type A (Figure 3A), the cross-
section of the FGM arch have 101 layers, the first layer is a
homogeneous ceramic layer, and the second to the 101st layers
are gradient layers from ceramic to metal. When material
distributions of the FGM arch is subjected to Type B
(Figure 3B), the cross-section of the FGM arch have 201
layers, the first to the 100st layers are gradient layers from

FIGURE 5 | Comparisons of the theoretical solutions for the bifurcation buckling with the corresponding ANSYS results (A) Type A (B) Type B (C) Type C.
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metal to ceramic, the 101st is a homogeneous ceramic layer,
and the 102st to the 201st layers are gradient layers from
ceramic to metal. When material distributions of the FGM
arch is subjected to Type C (Figure 3C), the cross-section of
the FGM arch have 202 layers, the first layer is a
homogeneous ceramic layer, the second to the 101st layers
are gradient layers from ceramic to metal, the 102st to the
201st layers are gradient layers from metal to ceramic, the
101st is a homogeneous ceramic layer, and the last layer is a
homogeneous ceramic layer.

In addition, the proposed theoretical solution of the buckling
equilibrium path, the limit point and bifurcation buckling load
for the FGM arches under the locally uniformly distributed
radial load are validated by ANSYS finite element results.
Convergence researches for using the shell element shell181
of ANSYS show that 80 elements can produce convergent

results. Therefore, 80 shell181 elements are chosen to
simulate the FGM arches (Figure 3D).

Comparisons of the theoretical solutions of Eqs. 33, 38 for the
limit point buckling equilibrium path and the limit point buckling
load of the FGM arches with the corresponding ANSYS results
are plotted in Figure 4. The variation curves of the dimensionless
locally uniformly distributed radial load Q/(2NEc2Θ) with the
dimensionless central displacement vc/f are plotted in Figure 4A
for material distributions of the FGM arch being subjected to
Type A, in Figure 4B for material distributions of the FGM arch
being subjected to Type B, and in Figure 4C for material
distributions of the FGM arch being subjected to Type C,
where the locally uniformly distributed radial load with
η � 0.5, the modified geometric slenderness λs � 4 and
NEc2 � (1.4303π)2Ecbh3/[12(S/2)

2]. It can be seen from Figures
4A–C that the theoretical solutions for the limit point buckling

FIGURE 6 | Limit point buckling equilibrium path for FGM arches having different localized parameter (A) vc/f vs Q/(2NEc2Θ) (B) N/NEc2 vs Q/(2NEc2Θ).

FIGURE 7 | Limit point buckling equilibrium path for FGM arches having different type of material distributions (A) vc/f vs Q/(2NEc2Θ) (B) N/NEc2 vs Q/(2NEc2Θ).
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equilibrium path and the limit point buckling load of the FGM
arches are highly consistent with the corresponding ANSYS
results.

Comparisons of the theoretical solutions of Eqs 33, 53 for
bifurcation buckling equilibrium path and the bifurcation
buckling load of the FGM arches with the corresponding
ANSYS results are plotted in Figure 5. The variation curves
of the dimensionless locally uniformly distributed radial
load Q/(2NEc2Θ) with the dimensionless central
displacement vc/f are plotted in Figure 5A for material
distributions of the FGM arch being subjected to Type A,
in Figure 5B for material distributions of the FGM arch
being subjected to Type B, and in Figure 5C for material
distributions of the FGM arch being subjected to Type C,
where the locally uniformly distributed radial load with
η � 0.75, the modified geometric slenderness λs � 8. It can
be seen from Figures 5A–C that the theoretical solutions for
bifurcation buckling equilibrium path and the bifurcation
buckling load of the FGM arches are highly consistent with
the corresponding ANSYS results.

Hence, the theoretical solutions of Eqs 33, 38, 53 can be used
to predict the buckling equilibrium path, the limit point and
bifurcation buckling load for the FGM arches under the locally
uniformly distributed radial load.

Limit Point Buckling Analysis
This section investigates the effects of the localized parameter η
of locally uniformly distributed radial load, the type and the
power-law index p of material distributions of the FGM arch on
the limit point buckling equilibrium path and the limit point
buckling load for FGM arches under a locally uniformly
distributed radial load.

Under the locally uniformly distributed radial load, the limit
point buckling equilibrium path obtained from Eqs 33, 38 for
FGM arches having different localized parameter η are plotted
in Figure 6A with the variation curves of vc/f vs Q/(2NEc2Θ),

and in Figure 6B with the variation curves of N/NEc2 vs Q/
(2NEc2Θ), where the modified geometric slenderness λs � 4, the
power-law index p � 1, the proportional coefficient of
homogeneous ceramic layer α� 0.2, the geometric
slenderness S/h � 100 and the material distributions of FGM
arches are subjected to Type A. Also plotted in Figure 6 are the
limit points given by Eqs 38, 43. In Figure 6, when the upper
limit point is reached, the load system and limit point buckling
equilibrium path of FGM arches snaps through to the remote
equilibrium branch, and the displacement become very large.
Therefore, the upper limit point is the limit point buckling load.
It can also be seen from Figure 6 that the localized parameter η
has a significant effect on the limit point buckling equilibrium
path and the limit point buckling load, the limit point buckling
load increases with an increase of localized parameter η, which
indicates that FGM arches having a larger length of the locally
uniformly distributed radial loading segment are more prone to
limit point buckling.

In addition, the limit point buckling equilibrium path obtained
from Eqs 33, 38 for FGM arches having different type of material
distributions are plotted in Figure 7A with the variation curves of
vc/f vs Q/(2NEc2Θ), and in Figure 7B with the variation curves of
N/NEc2 vs Q/(2NEc2Θ), where λs � 4, η � 0.5, α� 0.2, S/h � 100, p �
1. It can be seen from Figure 7 that the type of material
distributions has a significant effect on the limit point
buckling equilibrium path and the limit point buckling load,
Type C has a largest limit point buckling load among Type A,
Type B and Type C, which indicates that under the same
proportion of metal and ceramic materials, the distribution of
ceramics on the upper and lower surfaces of the cross-section can
greatly improve the stability of the FGM arch.

Similarly, Figure 8A plots the variation curves of vc/f vs Q/
(2NEc2Θ) and Figure 8B plots the variation curves ofN/NEc2 vs Q/
(2NEc2Θ) for FGM arches having different power-law index p,
where λs � 4, η � 0.5, α� 0.2, S/h � 100 and the material
distributions of FGM arches are subjected to Type A. It can

FIGURE 8 | Limit point buckling equilibrium path for FGM arches having different power-law index of material distributions (A) vc/f vs Q/(2NEc2Θ) (B) N/NEc2 vs
Q/(2NEc2Θ).
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also be seen from Figure 8 that the power-law index p has a
significant effect on the limit point buckling equilibrium path and
the limit point buckling load, the limit point buckling load
increases with a decrease of the power-law index p, which
indicates that FGM arches having a smaller power-law index p
of material distributions are more prone to limit point buckling.

Furthermore, the influences of the modified geometric
slenderness λs, the type and the power-law index p of
material distributions of the FGM arch, the proportional
coefficient of homogeneous ceramic layer α and the
localized parameter η of the locally uniformly distributed
radial load on the limit point buckling load of the FGM
arch are studied in detail as well. The variation curves of η
vs Q/(2NEc2Θ) are plotted in Figure 9A for a FGM arch having
different modified geometric slenderness λs, in Figure 9B for a
FGM arch having different type of material distributions, in
Figure 9C for a FGM arch having different power-law index p
of material distributions and in Figure 9D for a FGM arch

having different proportional coefficient of homogeneous
ceramic layer α. It can be seen again from Figure 9 that the
limit point buckling load increases with an increase of
localized parameter η. It can be seen from Figure 9A that
the limit point buckling load increases with an increase of
modified geometric slenderness λs. It can be seen again from
Figure 9B that Type C has a largest limit point buckling load
among Type A, Type B and Type C. In addition, because the
composition proportion of ceramics increases with an increase
of the proportional coefficient of homogeneous ceramic layer α
and a decrease of the power-law index p of material
distributions of the FGM arch. Therefore, Figures 9C,D
show the limit point buckling load increases with an
increase of the proportional coefficient of homogeneous
ceramic layer α and a decrease of the power-law index p of
material distributions of the FGM arch, and the power-law
index p has a more obvious effect on the limit point
buckling load.

FIGURE 9 | η vs Q/(2NEc2Θ) (A) different modified geometric slenderness (B) different type of material distributions (C) different power-law index p of material
distributions (D) different proportional coefficient of homogeneous ceramic layer.
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Bifurcation Buckling Analysis
This section investigates the effects of the localized parameter η of
locally uniformly distributed radial load, the type of material
distributions of the FGM arch on the bifurcation buckling
equilibrium path and the bifurcation buckling load for FGM
arches under a locally uniformly distributed radial load.

Under the locally uniformly distributed radial load, the
bifurcation buckling equilibrium path obtained from Eqs 33,
53 for FGM arches having different localized parameter η are
plotted in Figure 10A with the variation curves of vc/f vs Q/
(2NEc2Θ), and in Figure 6B with the variation curves of N/NEc2

vs Q/(2NEc2Θ), where the modified geometric slenderness
λs � 8, the power-law index p � 1, the proportional
coefficient of homogeneous ceramic layer α� 0.2, the
geometric slenderness S/h � 100 and the material
distributions of FGM arches are subjected to Type A. Also

plotted in Figure 10 are the bifurcation buckling points given
by Eq. 53. In Figure 10, the upper bifurcation buckling point
is on the primary equilibrium path and bifurcation buckling
equilibrium path, when this point is reached, the load
decreases with an increase of the central displacement, and
the dimensionless axial force parameter axial force N/NEc2

still unchanged during this moment. When lower bifurcation
buckling point is reached, the equilibrium path of the FGM
arch returns from the bifurcation buckling equilibrium path
back to the primary equilibrium path.

It can also be seen from Figure 10 that the localized
parameter η has a significant effect on the bifurcation
buckling equilibrium path and the bifurcation buckling
load, the bifurcation buckling load increases with an
increase of localized parameter η, which indicates that FGM
arches having a larger length of the locally uniformly

FIGURE 10 | Bifurcation equilibrium path for FGM arches having different localized parameter (A) vc/f vs Q/(2NEc2Θ) (B) N/NEc2 vs Q/(2NEc2Θ).

FIGURE 11 | Bifurcation equilibrium path for FGM arches having different type of material distributions (A) vc/f vs Q/(2NEc2Θ) (B) N/NEc2 vs Q/(2NEc2Θ).

Frontiers in Materials | www.frontiersin.org August 2021 | Volume 8 | Article 73162712

Lu et al. FGM Arches Under Local Loads

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


distributed radial loading segment are more prone to
bifurcation buckling.

In addition, the bifurcation buckling equilibrium path
obtained from Eqs 33, 53 for FGM arches having different
type of material distributions are plotted in Figure 11A with
the variation curves of vc/f vs Q/(2NEc2Θ), and in Figure 11Bwith
the variation curves of N/NEc2 vs Q/(2NEc2Θ), where λs � 8, η �
0.5, α� 0.2, S/h � 100, p � 1. It can be seen from Figure 11 that the
type of material distributions has a significant effect on the
bifurcation buckling equilibrium path and the limit point
buckling load, Type C has a largest bifurcation buckling load
among Type A, Type B and Type C, which indicates again that
under the same proportion of metal and ceramic materials, the
distribution of ceramics on the upper and lower surfaces of the
cross-section can greatly improve the stability of the FGM arch.

Furthermore, the influences of the localized parameter η of
locally uniformly distributed radial load, the type of material
distributions and the modified geometric slenderness λs of the
FGM arch on the limit point buckling load and bifurcation
buckling load of the FGM arch are studied in detail as well.

The variation curves of λs vs Q/(2NEc2Φ) are plotted in
Figure 12A for a Type A FGM arch having different localized
parameter η, in Figure 12B for a Type B FGM arch having
different localized parameter η and in Figure 12C for a Type C
FGM arch having different localized parameter η. It can be seen
from Figure 12 that the limit point buckling load and bifurcation
buckling load increase with an increase of the modified geometric
slenderness λs and the localized parameter η. It can also be seen
from Figure 12 that Type C has a largest limit point buckling load
and bifurcation buckling load among Type A, Type B and Type C.
In addition, Figure 12 shows that the limit point buckling loads
are initially larger than the bifurcation buckling loads, and then
smaller than the bifurcation buckling loads while the modified
geometric slenderness λs reaches a certain value. However, when
η � 0.25, the limit point buckling loads are larger than the
bifurcation buckling loads with any modified geometric
slenderness λs. Therefore, the modified geometric slenderness
λs that is a switches of bifurcation buckling domination and limit
point buckling dominationmay not exist within a certain range of
the localized parameter η.

FIGURE 12 | Limit point buckling load and bifurcation buckling load of the FGM arch (A) Type A (B) Type B (C) Type C.
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CRITERIA FOR SWITCHES OF BUCKLING
MODE OF FUNCTIONALLY GRADED
MATERIAL ARCH
It can be seen from the above research that fixed FGM arches
under a locally uniformly distributed radial load may buckle
in a limit point buckling mode or in a bifurcation buckling
mode. The buckling equilibrium path for FGM arches having
different modified geometric slenderness are plotted in
Figure 13 with the variation curves of vc/f vs Q/(2NEc2Θ),
where η � 0.75, α� 0.2, S/h � 100, p � 1 and the material
distributions of FGM arches are subjected to Type A.

Figure 13A shows that when λs � 2.586, the buckling
equilibrium path is in the lowest limit point buckling
mode, which only has a inflection point, this mode is a
switches of limit point buckling and no limit point
buckling. Figure 13B shows when λs � 4, the buckling
equilibrium path is in the limit point buckling mode,
which has two limit point. Figure 13C shows when
λs � 4.67, the buckling equilibrium path is in the lowest
bifurcation buckling mode, which only has a bifurcation
buckling point, this mode is a switches of bifurcation
buckling and limit point buckling. Figure 13D shows when
λs � 5, the buckling equilibrium path is in the bifurcation

FIGURE 13 | Buckling equilibrium path for FGM arches having different modified geometric slenderness (A) λs � 2.586 (B) λs � 4 (C) λs � 4.67 (D) λs � 5 (E)
λs � 5.45 (F) λs � 8.
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buckling mode, which has two bifurcation buckling point.
Figure 13E shows when λs � 5.45, the buckling equilibrium
path is in the lowest bifurcation buckling dominant mode,
which has the same upper limit point and upper bifurcation
buckling point, this mode is a switches of bifurcation buckling
domination and limit point buckling domination. Figure 13F
shows when λs � 8, the buckling equilibrium path is in the
bifurcation buckling dominant mode. Therefore, the modified
geometric slenderness λs of a fixed FGM arch play an
important role in determining its buckling mode.

The modified geometric slenderness λs obtained from Eq. 48
can make fixed FGM arches lose its stability in the lowest limit
buckling mode. This modified geometric slenderness λsl can be
expressed as

λs ≥ λsl � 2π
h

��������
κπ

Ak( B
π2 + 5

3)
√

(58)

The modified geometric slenderness λs obtained from Eq. 53
can make fixed FGM arches lose its stability in the lowest
bifurcation buckling mode. This modified geometric
slenderness λsb1 can be expressed as

λs ≥ λsb1 � 1
h

�������������������
κβ2b1

Ak( B23
4A3

− 1
12 sin2βb1

+ 1
12β2b1

)
√√

, (59)

When the fixed FGM arches lose its stability in the lowest
bifurcation buckling dominant mode, the modified geometric
slenderness λsb2 corresponding to this mode can be obtained by
equaling the upper bifurcation instability load to the upper limit
point buckling load.

Typical variation curves of the localized parameter η vs the
modified geometric slenderness λs are shown in Figure 14A for
FGM arches having different type of material distributions, in
Figure 14B for FGM arches having different power-law index p of

FIGURE 14 | Localized parameter η vsModified geometric slenderness λsl, λsb1, and λsb2 (A) different type of material distributions (B) different power-law index p
of material distributions (C) different proportional coefficient of homogeneous ceramic layer.
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material distributions and in Figure 14C for FGM arches having
different proportional coefficient of homogeneous ceramic layer
α, where S/h � 100. It can be seen from Figure 14 that the
localized parameter η has a significant effect on the modified
geometric slenderness λsb1, λsb2, and a slightly effect on the
modified geometric slenderness λsl, the modified geometric
slenderness λsl, λsb1, and λsb2 increase with a decrease of the
localized parameter η of the locally uniformly distributed radial
load. Figure 14 defines four regions, region I corresponding to
FGM arches with λs < λsl is subjected to the no buckling mode,
region II corresponding to FGM arches with λsl < λs < λsb1 is
subjected to the limit point buckling mode, region III
corresponding to FGM arches with λsb1 < λs < λsb2 is
subjected to the bifurcation buckling mode, region IV
corresponding to FGM arches with λs > λsb2 is subjected to
the bifurcation buckling dominant mode. In addition, it can
be seen from Figure 14A that the type of material
distributions has a significant effect on the modified geometric
slenderness λsl, λsb1 and λsb2, Type C has largest modified
geometric slenderness λsl, λsb1 and λsb2 among Type A, Type B
and Type C, Figures 14B,C shows the modified geometric
slenderness λsl, λsb1 and λsb2 increase with an decrease of the
power-law index p of material distributions and the proportional
coefficient of homogeneous ceramic layer α.

CONCLUSION

Theoretical studies of the nonlinear in-plane buckling of a fixed
circular functionally graded material (FGM) arches under a locally
uniformly distributed radial load have been explored in this paper. It
was found that fixed FGM arches under a locally uniformly
distributed radial load may buckle in a limit point buckling mode
or in a bifurcation buckling mode. Theoretical solutions for the limit
point buckling load and bifurcation buckling loads and nonlinear
equilibrium path of the fixed FGM arches that are subjected to three
different types of material distributions were obtained. It was found
that the type of material distributions of the fixed FGM arches slight
the limit point buckling loads and bifurcation buckling loads as well
as the nonlinear equilibrium path significantly. Type C had a largest
limit point buckling load and a largest bifurcation buckling load
among Type A, Type B and Type C, it indicated that under the same
proportion of metal and ceramic materials, the distribution of
ceramics on the upper and lower surfaces of the cross-section
can greatly improve the stability of the FGM arch. In addition,
the limit point buckling load and bifurcation buckling load also
increase with an increase of the modified geometric slenderness λs
and the localized parameter η and the proportional coefficient of
homogeneous ceramic layer α as well as a decrease of the power-law
index p of material distributions of the FGM arch.

The critical modified geometric slendernesses λsl, λsb1, and λsb2
that are switches of buckling modes were also derived. The
localized parameter η has a significant effect on the modified
geometric slenderness λsb1, λsb2, and limited effect on the
modified geometric slenderness λsl, the modified geometric
slenderness λsl, λsb1, and λsb2 increase with a decrease of the
localized parameter η of the locally uniformly distributed radial
load. It was found that Region I corresponding to FGM arches
with λs < λsl is subjected to the no buckling mode, region II
corresponding to FGM arches with λsl < λs < λsb1 is subjected
to the limit point buckling mode, region III corresponding to
FGM arches with λsb1 < λs < λsb2 is subjected to the bifurcation
buckling mode, region IV corresponding to FGM arches with
λs > λsb2 is subjected to the bifurcation buckling dominant
mode. In addition, it was also found that the type of material
distributions has a significant effect on the modified
geometric slenderness λsl, λsb1 and λsb2, Type C has the
largest modified geometric slenderness λsl, λsb1 and λsb2
among Type A, Type B and Type C, and the modified
geometric slenderness λsl, λsb1 and λsb2 increase with an
decrease of the power-law index p of material distributions
and the proportional coefficient of homogeneous ceramic
layer α. Theoretical solutions for FGM arches under a locally
uniformly distributed radial load derived in this paper would
be useful as a reference for the design of buckling of the FGM
arches in the future.
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