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Raman spectra play a significant role in the study of polar materials. Herein, we report the
influence of strain and interlayer shift on vibration responses in bulk and few-layer
ferrovalley material GeSe in different polarization states (ferroelectric/FE and
antiferroelectric/AFE) based on density functional theory and density functional
perturbation theory calculations. We find Ag

1 mode shifts by about 10 cm−1 from
monolayer to bilayer and trilayer due to the interlayer coupling. The Ag

3 mode on
behalf of FE mode is observed that is consistent with the experiments in bulk and few-
layer GeSe. Meanwhile, in our calculations, with the transition between AFE and FE state in
the bilayer and trilayer, the Raman frequency of Ag

2 and Ag
3 mode decrease obviously

whereas that of Ag
1 mode increases. Interestingly, the Raman peaks shifted a lot due to the

strain effect. We expect these variations in the Raman spectroscopy can be employed to
identify the status of GeSe films, e.g., the AFE or FE state, and the number of layers in
experiments.
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INTRODUCTION

Ferroelectric (FE) materials with a stable spontaneous polarization that could be switched
under external electric field have been widely studied and exploited in multifunctional devices
such as ferroelectric synapse, field-effect transistors, and ferroelectric tunnel junction (Scott
and Paz de Araujo, 1989; Mathews et al., 1997; Velev et al., 2007; Garcia et al., 2009; Huang
et al., 2018b; Shen et al., 2019; Tian et al., 2019; Guan et al., 2020) due to their abundant
physics. Until now, perovskite ferroelectric oxides are mostly utilized in these devices.
However, with the decrease of thickness, ferroelectricity can hardly be maintained because
of the existence of depolarization field in ferroelectric films (Junquera and Ghosez, 2003),
which severely restrain the application of traditional perovskite ferroelectrics in miniaturized
and high-density devices. In addition, the interfacial defect caused by lattice mismatch can also
destroy the film ferroelectricity (Duan et al., 2006; Wang et al., 2010). The emergence of two-
dimensional (2D) ferroelectrics provides an opportunity to resolve these difficulties (Wu and
Jena, 2018). Recently, plenty of 2D ferroelectrics have been successfully exfoliated from a bulk
structure in experiments, including in-plane ferroelectricity (Chang et al., 2016; Chang et al.,
2019; Higashitarumizu et al., 2020), and out-of-plane ferroelectricity (Liu et al., 2016; Zhou
et al., 2017; You et al., 2019; Yuan et al., 2019). Beyond experimental works, theoretical studies
have predicted that ferroelectricity can survive in 2D materials (Ding et al., 2017; Huang et al.,
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2018a), in which some even possess noncollinear ferroelectric
ordering (Lin et al., 2019; Song et al., 2021).

Among these works, group IV chalcogenides (MX,M � Sn, Ge;
X � S, Se) with few-layer have been discovered with intrinsic
ferroelectricity and antiferroelectricity in the experiment (Fei
et al., 2016), with a fantastic optical selective property as a
polarizer (Shen et al., 2018), valley physics (Rodin et al.,
2016), a high absorption coefficient as photovoltaic cells
(Franzman et al., 2010; Shi and Kioupakis, 2015), robust
ferroelectricity as nonvolatile storage (Wang and Qian, 2017)
and so on (Yagmurcukardes et al., 2016). On the other hand, FE
and antiferroelectric (AFE) phase transition is also predicted by
interlayer sliding (Xu et al., 2021), suggesting an AFE tunnel
junction can be realized in these materials (Ding et al., 2021).

As a most general and powerful tool to study crystal structures
and vibration properties, Raman spectroscopy has been diffusely
employed due to the advantage of nondestructive to the sample
and easy sample preparation. Especially in 2D materials, the
Raman spectrum can be used to precisely identify the number of
layers because of its high sensitivity of thickness. For instance, in
graphene (Ferrari et al., 2006), the G peak down-shifts with the
decrease of layers, which is a sign to determine the number of
layers. A similar case occurs in the theoretical work of PbI2
(Yagmurcukardes et al., 2018), the larger number of layers, the
more blueshift with the Raman peak of Ag

1 mode. On the
contrary, a redshift of Ag and B1g modes with the increased
layers in few-layer phosphorene (Feng et al., 2015) could be
observed. Moreover, the information of interlayer stacking and an
effect of external field can be also detected by Raman
spectroscopy (Zhang et al., 2015). Therefore, investigation
using Raman spectroscopy could help to understand charming
properties in 2Dmaterials (Deng et al., 2019; Saboori et al., 2019).

However, it should be mentioned that few-layer GeSe is rarely
explored in the experiment due to the great challenge for sample
preparation, leading to difficulty to study their layer numbers and
phase transition related Raman spectroscopy. Consequently,
systematic study of Raman spectroscopy of layered GeSe is
necessary by theoretical calculation, which can provide
guidelines for evaluating phonon-related characterization of
GeSe based on Raman spectroscopy.

In this paper, we fully investigate the Raman spectroscopy,
concerning the bulk and few-layer GeSe from monolayer to
trilayer, by first-principles calculations. The van der Waals
(vdW) correction is adopted in our calculations by comparing
the Raman spectrum and crystal structure with experiment
results in bulk GeSe. We find four vibration modes of Ag

1, B3g,
Ag

2 andAg
3 in bulk GeSe, in whichAg

2 is absent in the experiment
but exists in SnSe (Yang et al., 2018). For monolayer GeSe, these
vibration peaks are located at 81.84 cm−1, 97.54 cm−1,
141.94 cm−1 and 183.14 cm−1, respectively. With the increase
of layer number, Ag

1 mode has a redshift but Ag
2 and Ag

3 exhibit a
large blue shift as large as 40 cm−1 and 30 cm−1, which verify the
importance of interlayer interaction and can be used to identify
the thickness of GeSe. In addition, we find strain has a remarkable
influence on the Raman spectrum in different structures,
suggestive of the possibility to probe the strain effect using
optical method. More importantly, AFE/FE phase transition

could be triggered by some methods such as interlayer sliding
or strain. Herein, we use interlayer shift to realize the transition in
few-layer as well as study the Raman spectroscopy on transition
structures. We find an Ag

1 mode increase of about 10 cm−1

whereas Ag
2 and Ag

3 decrease with the transition from AFE to
FE phase, helping us to determine the AFE state or FE state. Our
calculation could give information about the number of layers,
whether the system under strain state and the ferroelectric phase
of layered GeSe.

CALCULATION DETAILS

The optimized structures are calculated by employing the PWSCF
package of the QUANTUM-ESPRESSO (Giannozzi et al., 2009)
within the density functional theory (DFT) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965). We adopt the local
density approximation (LDA) with Perdew-Zunger
parametrization (Perdew and Zunger, 1981) and the
generalized gradient approximation (GGA) with Perdew-
Burke-Ernzehof parametrization (Perdew et al., 1996) to
evaluate the exchange-correlation energy and consider a
modified norm-conserving pseudopotential to describe the
valence electron-ion interactions (Gonze et al., 1991). In our
calculations, the vdW correction was fully taken into account by
using the DFT + D2 method (Grimme, 2006; Barone et al., 2009).
To avoid the spurious interactions between periodic images,
vacuum spacing of 20 �A was set along the c-direction. The
energy cutoff was set to 50 Ry and a Brillouin zone (BZ)
integration is adopted with a k-grid density of 7 × 7 × 3 for
bulk structures and 7 × 7 × 1 for few-layer structures via using the
k-points scheme. All structures are optimized until the Hellman-
Feynman force is below 10−6 Ry/Bohr and the convergence of
electric energy is of about 10−4 Ry/atom.

The related phonon vibration frequencies are calculated
by diagonalizing the force constant matrix within the
density functional perturbation theory (DFPT) (Baroni
et al., 2001). The BZ integration is adopted with a k-grid
density of 14 × 14 × 6 for bulk structures and 14 × 14 × 1 for
few-layer structures at gamma point. The force tolerance is
set to 10−10.

The Raman intensity of Raman activate mode
(Supplementary Figures S1,S2) can be written as (Umari
et al., 2001; Ceriotti et al., 2006):

I∝
∣
∣
∣
∣es ·R · ei∣∣∣∣2 (1.1)

where es and ei represent the electric polarization vectors of
incident and scattered light, respectively.

RESULTS

Raman Active Modes of Bulk and
Few-Layer GeSe
Bulk GeSe belongs to a layered structure in AB stacking with vdW
interactions, as plotted in Figure 1A, with the space group of
Pnma. We noted the longer axis in the x-y plane is the armchair
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direction (y) and the other axis is the zigzag (x) direction. Figures
1B,C shows the monolayer GeSe that retains the symmetry of the
bulk structure. The relative displacement between the Ge atom
and Se atom indicates the system is in the ferroelectric phase.

We first optimize the lattice parameters of the bulk structure to
compare to experimental lattices, shown in Table1. As we can see,
there is a large lattice difference of the b axis (b axis is the
armchair direction) under various pseudopotentials and methods
for bulk structure. DFT-D2 (vdW-D2) and DFT-D3 (vdW-D3)
method of Grimme is applied as vdW correction (Grimme, 2006).
The optimized structure with the vdW-D2 method is in good
agreement with experimental results compared to others. As to
LDA and GGAmethods, the lattice parameters is underestimated
by 4 and 2.5% of the b axis, respectively. Based on these calculated
structures, we investigate the Raman frequencies, and we find
vdW-D2 gives a credible result in comparison to other methods,
consistent with previous work (Park et al., 2019). Hence the
interlayer interactions will be considered in the following
calculations of bulk and multilayer structures. We should note
that the Ag

2 mode obtained in theoretical calculations was not
observed in experiments on GeSe (Wang et al., 2017) but appears
in the similar system SnSe (Yang et al., 2018), which is due to the
Raman tensor of Ag

2 mode is too small for its Raman peak to be
observed in GeSe.

According to the above comparison and analysis, we use the
vdW-D2 method to relax our structure and calculate the optical
phonon frequencies. To understand the Raman frequencies of

bulk GeSe, we analyze the crystal structure by combining the
irreducible representations of Γ points. The primitive unit cell of
bulk GeSe include eight atoms, resulting in 24 vibrational modes
as following:

Γacoustic � B1u + B2u + B3u (1.2)

and

Γoptic � 3B1u + B2u + 3B3u + 2Au + 4Ag + 2B1g + 4B2g + 2B3g

(1.3)

which are three acoustical (B1u, B2u, B3u), seven infrared active
modes (3B1u, B2u, 3B3u), two silent modes (2Au), as well as twelve
Raman modes (4Ag, 2B1g, 4B2g, 2B3g). Four active Raman modes
for bulk GeSe as 3Ag at 68.21 cm−1, 179.05 cm−1, and
189.6 cm−1and B3g at 153.02 cm−1 are listed in Table 2, and
we define 3Ag as Ag

1, Ag
2 and Ag

3, respectively. To study the four
active phonon vibration modes, we projected the eigenvectors of
the dynamical matrix on Ge and Se atoms. Figure 2 gives the
outline of the four vibration active modes of bulk GeSe. We find
that Ag

1, Ag
2 and Ag

3 couple the in-plane and out-of-plane
vibrations with various contribution. Ag

1 and Ag
2 modes are

mainly dominated by out-of-plane motion, in which Ge and
Se atoms (Ge1 and Se2) move to the opposite direction of Ag

1

mode whereas in Ag
2 mode they move to the same direction. Ag

3

mode is most contributed by armchair direction, and only the Ge
atom has a small out-of-plane contribution. For Ag

3 mode, it

FIGURE 1 | The atomic structures of (A) bulk and (B) monolayer GeSe. (C) The top view of monolayer GeSe. The dark and green spheres represent Ge and Se
atoms, respectively.

TABLE 1 | The calculated structure lattice parameters (in the unit of Å) of bulk
GeSe with various methods.

Bulk Method a b c

LDA 3.815 4.215 10.597
GGA 3.899 4.278 11.169
vdW-D2 3.845 4.481 11.024
vdW-D3 3.888 4.531 11.246
Exp 3.833 4.388 10.825

TABLE 2 | The Raman vibration frequency (in the unit of cm−1) of bulk GeSe with
different methods.

Bulk Method Ag
1 B3g Ag

2 Ag
3

LDA 70.83 145.19 176.96 185.53
GGA 67.6 141.02 164.76 182.25
vdW-D2 68.21 153.02 179.05 189.6
vdW-D3 67.80 143.44 163.84 184.23
Exp 80 150 188

Note: Previous experiment results of lattice parameters and Raman vibration frequency
are listed for comparison (Wang et al., 2017).
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forms by an in-plane vibration along the armchair direction,
indicating an intrinsic ferroelectric vibration mode in one layer of
bulk GeSe, which agrees with previous experiment work (Zhao
et al., 2018).

Monolayer GeSe has been predicted a member of ferrovalley
materials with plenty of fantastic physical properties (Morales-
Ferreiro et al., 2017; Shen et al., 2018; Liu et al., 2021). Thus, it is
necessary to investigate the Raman spectrum dependence of few-
layer. For monolayer GeSe, the four active Raman peaks of Ag

1,
B3g, Ag

2, and Ag
3 modes are located at 81.84 cm−1, 97.54 cm−1,

141.94 cm−1, and 183.14 cm−1 illustrated in Table 3. Even though,
both of paraelectric and ferroelectric phases exist in monolayer
GeSe, we investigate the FE phase in the current work due to its
lower energy state and stable structure. With the increase of
thickness from monolayer to trilayer, the Raman shift changes a
lot. Indeed, Ag

1 mode generates a redshift from 81.84 cm−1 in the
monolayer to 69.26 cm−1 in the bilayer. As to the remanent
modes, they all increase. However, few shifts are induced
between bilayer and trilayer. Our calculation suggests that
GeSe has a large Raman shift with increasing layer thickness
compared to other 2D materials (Lee et al., 2010; Tan et al., 2012;
Yagmurcukardes et al., 2018; Kong et al., 2021). It provides a
valuable approach for distinguishing the structure between
monolayer and few-layer GeSe. The reason for such a large
discrepancy of Raman peaks between monolayer and
multilayer is attributed to the interlayer vdW interactions in
multilayer GeSe, giving rise to structures difference. As a result,
the lattice parameters that is listed in Table 3 along the armchair
direction of monolayer GeSe are largely smaller than that of
bilayer and trilayer.

FIGURE 2 | The activate Raman vibration mode of bulk GeSe. The out-of-plane along z direction.

TABLE 3 | The lattice constant and activate Raman frequency (in the unit of Å and
cm−1) for monolayer, bilayer and trilayer GeSe.

Number of
layers

a b Ag
1 B3g Ag

2 Ag
3

monlayer 3.986 4.258 81.84 97.54 141.94 183.14
bilayer 3.873 4.428 69.26 140.77 176.59 185.29
trilayer 3.853 4.478 69.66 137.18 179.89 185.82

FIGURE 3 | The influence of the Raman frequency on strain from −2 to 2% for (A) monolayer, (B) bilayer and (C) trilayer GeSe.
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The Influence of Strain on Raman Peaks
Considering materials always are in strain in heterostructure or
different temperatures, the influence of strain on Raman active
modes is further explored in bulk and few-layer GeSe by
changing the lattice parameter on both armchair and zigzag
direction, as depicted in Figure 3. In monolayer GeSe, with the
varying strain from −2 to 2%, the vibration mode of Ag

1 linearly
decreases in frequency. On the contrary, Ag

2 and Ag
3 modes

exhibit a clear increase with strain. And for B3g mode, an
inconspicuous change has been observed. Raman peaks
between bilayer and trilayer GeSe possess the same trend in
tensile and compressive strains. It should be mentioned that
Raman frequency of Ag

1 mode is most steady and rarely changed
compared with the other three modes. Whereas, B3g and Ag

3

modes increase by compressive strain and decrease along with
tensile strain in Figures 3B,C. Moreover, as the strain increases,

FIGURE 4 | The evolution structures of AFE/FE transition by layer shift for (A) bilayer GeSe and (B) trilayer GeSe. The arrows represent the ferroelectric polarization
direction. The shift n (n � 0, 0.1, 0.2, 0.3, 0.4, 0.5) represent the multiples of lattice parameter. The direction of arrowsmeans the polarization direction of one-layer GeSe.

FIGURE 5 | The activate Raman frequency related to the evolution structures for (A) bilayer and (B) trilayer GeSe in Figure 4.
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the gap of Raman shift among Ag
2 and Ag

3 modes is shrunk. Our
results suggest that the stain has a great effect on the Raman
shift, which can be detected in the experiment, demonstrating
the stress dependence of Raman spectra can also be used for the
determination of crystal direction.

Interlayer Shift-Induced Raman Shift
Besides FE phase, AFE phase GeSe is also considered to be the lowest
energy phase in an even number of layers. However, in someways, the
FE phase is more desired by researchers to utilize in multifunctional
devices. To date, only the theoretical studies of AFE/FE transition for
GeSe multilayers have been reported rather than any experimental
works (Xu et al., 2021). Therefore, it is remarkable things to investigate
the interlayer shift-induced AFE/FE transition and relevant Raman
shift in few-layer GeSe. To realize the phase transition, we consider the
AFE phase as a start structure. The structure evolution of the AFE/FE
transition is illustrated in Figure 4. In bilayer GeSe, the bottom layer
GeSe is fixed and the top layer artificially shifted along-y-direction in
Figure 4A. When the top layer was shifted about 0.4b (b is the lattice
parameter of y-direction), the system translates to an FE state. The
same phenomenon appears in trilayer GeSe, in which we move
interlayer between the top and bottom layer that is in fixation,
showing in Figure 4B. Each shifted structure has been fully
relaxed so that the Raman spectrum is obtained with a stable
structure. Figures 5A,B represents the Raman shift in the
intermediate phase. Ag

1 mode of FE phase increases by of about
10 cm−1 compared with AFE phase in both bilayer and trilayer GeSe.
Meanwhile. B3g,Ag

2, andAg
3mode show a redshift, in which the same

variation rule in Ag
2 mode is observed in both of bilayer and trilayer

GeSe. In bilayer GeSe, Ag
3 mode decreases with a nearly linear slope,

yet it firstly increases and then diminishes with the interlayer shift of
the trilayer. These large discrepancies in the Raman shift could be
taken as an explicit evidence to identify the inducedAFE/FE transition
in the experiment.

CONCLUSION

To summarize, the Raman frequency of few-layer and bulk GeSe
is systematically investigated using first-principles calculations. A
large difference of Raman peaks between the monolayer and the

multilayer, demonstrating the significant effect of vdW
interlayer interaction. We then find the strain influence on
these systems, in which Ag

2 linearly increases and B3g mode
linearly diminishes from −2 to 2%. More important, the
interlayer shift could also induce a phase transition from
AFE to FE. As a result, the Raman frequency discrepancy of
four vibration modes is natural. We truly expect our calculations
can pave a way to verify the number of layers, strain influence,
and polarity in few-layer GeSe.
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