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During the rolling process of thick plate, the nonlinear specific plastic power that derived
from the non-linear Mises yield criterion is difficult to be integrated, which has restricted the
establishment of a rolling force model. To solve this problem, a new yield criterion is firstly
established, and then used to derive a linear specific plastic power. Meanwhile, a
kinematically admissible velocity field whose horizontal velocity component obeys the
Logistic function is proposed to describe the metal flow of the deformed plate. On these
bases, the rolling energy items including the internal deformation power of the deformed
body, friction power on the contact surface, and shear power on the entry and exit sections
are integrated successively, and the rolling force model is established. It is proved that the
model can predict the rolling force well when compared with the actual data of
multicomponent alloys. Besides, the formula for predicting the outlet thickness is
ultimately given upon this derived model, and a good agreement is also found
between the predicted values and the actual ones, since the absolute errors between
them are within 0.50 mm.
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HIGHLIGHTS

• A linear specific plastic power is derived form a linear yield criterion, which can be used to solve
the nonlinear integral problem.

• A velocity field that was constructed in the form Logistic function can describe the metal flow in
the deformation zone well.

• A good prediction of outlet thickness can be obtained through the present rolling force model
due to its high predictive accuracy.

INTRODUCTION

The yield behavior of a material can be described by a yield criterion. It is an important basis for
judging whether a material undergoes plastic deformation, or taken as an mechanical equation that
must be solved for obtaining the required force for material forming. So far, there are many yield
criteria, which are generally expressed in the form of stresses. In 1864, Tresca proposed the
maximum shear stress theory (Tresca, 1864), which provided a basic theoretical explanation for
the yield characteristics of materials. In 1900, Mohr used the Coulomb’s formula of shearing strength
for rock and soil to improve his own strength theory and published the Mohr-Coulomb criterion
(Mohr, 1900). This criterion is indeed a modification of the Tresca’s theory, in which the maximum
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shear stress is no longer a constant, but a function of the normal
stress in the same plane. In 1913, von Mises believed that if the
secondary invariant of deviation stress reached a specific value,
then the metal would turn from elastic deformation to plastic
deformation (Mises, 1913; Mises, 1928). Based on this
assumption, the Mises yield criterion was proposed. However,
the mathematical form of this criterion is nonlinear, which is not
convenient for the derivation of analytical solutions of material
forming force, such as the rolling force. In 1951, Drucker and
Prager (Drucker and Prager, 1952) added the influence of
hydrostatic pressure to the Mises’ formula, and the yield
surface is shown to be a conical surface. Yu et al. (Yu, 2002)
established the twin shear stress (TSS) yield criterion in 1961, and
modified it in 1985 (Yu et al., 1985). The twin shear stress yield
criterion assumes that when the sum of two larger principal shear
stresses reaches a critical value, the material yields. This criterion
is usually used to predict the upper limit of mechanical
parameters. In 2005, Yu et al. (Gao and Yu, 2005) believed
that although the TSS yield criterion can account for the
influence of the intermediate principal stress, it neglected the
influence of the minimum shear stress on the material yielding,
and then they proposed the triple-shear stress yield criterion. In
the case of combined shear stress on the element body, the three-
shear yield criterion is more consistent with the actual results
than the single-shear or twin shear yield criteria.

By summarizing the above information, it can be found that
the Tresca yield criterion brings in a lower limit solution, the twin
shear stress yield criterion brings in an upper limit solution.
Although the nonlinear Mises yield criterion has high accuracy, it
is difficult to obtain the analytical solution of material forming
force. For this reason, it is necessary to find a new linear yield
criterion whose locus can lies in between those based on the
Tresca yield criterion and the twin shear stress yield criterion, and
can approximate the Mises circle well, in order to meet the
requirements of high accuracy and ease of calculation.

Thick plate is widely used in construction machinery, oil
pipeline, offshore platform and other structural load-bearing
part. How to accurately obtain the rolling force and rolling
torque of thick plate is related to the selection of production
parameters. The difficulty in solving the nonlinear Mises plastic
power must be solved in the modeling of rolling force. In 2000,
Wang et al. (Wang, 2000) used the three-dimensional stream
function method to analyze the plastic processing problem, and
established a flat roll rolling model considering the widening. Jia
et al. (Jia et al., 2016) used the Zener-Hollomon parameter
method to establish a flow stress model during unidirectional
compression, and also established a flow stress model for variable
temperature rolling. Liu (Liu, 2017) proposed a new exponential
velocity field that can reflect the change law of metal flow for
finishing rolling passes. Li et al. (Li andWang, 1996) used the Hill
yield criterion to study the stress field and velocity field of the
plane stress problem of orthotropic materials, and obtained the
result that the characteristic lines of the stress field and velocity
field overlap everywhere. Zhang et al. (Zhang et al., 2019)
proposed a new type of velocity field considering the rolling
permeability to analyze the rolling of extra-thick plates. Their
results show that the rolling force and rolling torque models

considering the deformation penetration can give more accurate
results. Based on the above researches, it can be found that the
establishment of the velocity field by the analytical method can be
used well in analyzing the problem of thick plate rolling, and is
beneficial to the optimization of rolling parameters. However, the
existing velocity fields with the above function form fail to
accurately describe the vertical flow characteristic, which can
arise big errors in predicting rolling force and torque. One
important reason is that most of the available velocity fields
can just satisfy the velocity boundary condition on the inlet
section and neglect the required condition on the outlet
section. In fact, a good velocity should satisfy the velocity
boundary conditions on the inlet section and the outlet section
simultaneously. Quantitative assessment is necessary for
proposing a reasonable velocity field, which is desired to be
done in the future.

In order to solve the above problems, i.e. the problem of
integral difficulty of rolling power and the problem of inefficient
accuracy of available models, this paper intends to develop a
linear yield criterion that can approximate the nonlinear Mises
yield criterion well, and bring in a linear specific plastic power
to analyze the plate rolling process. For this purpose, a new
velocity field in the form of Logistic function, that can satisfy the
velocity boundary conditions rigorously, is also proposed for
describing the thick plate rolling. Based on the new yield
criterion and the new velocity field, the corresponding
internal deformation power, friction power and shear power
are obtained, and then the analytical rolling torque and force are
obtained through the variational method. Meanwhile, the
bouncing equation is given to predict the thickness of the
rolled plate by embedding the rolling force model, and a
comparison is carried out between the calculated ones and
the experimental data.

DERIVATION OF AVERAGE SLOPE YIELD
CRITERION

Yield Criterion Expression
The locus of the Mises yield criterion is a circle on the π plane.
The dodecagon between the circumscribed hexagon (TSS yield
locus) and the inscribed hexagon (Tresca yield locus) can be used
as a linear approximation to theMises circle. In Figure 1, suppose
that there is a moving point E on the line segment BF, and a new
yield edge can be obtained by connecting B′E. Set the angle
∠FB′E between B′F and B′E to θ, then it can be seen that when
θ � 0+, it corresponds to Tresca yield locus B′Fand when θ � 30+,
it corresponds to the TSS yield locus B′B.

In Figure 1, the radius of theMises circle satisfiesOB′ � OD ��
6

√
/3σs (σs is the yield strength). So, according to the geometric

relationship, OF � σs/
�
2

√
, B′F � σs/

�
6

√
.

Set the origin of the coordinate system at the point B′, as
shown in Figure 2, the slope of B′E is

k(θ) � tan θ, 0° ≤ θ ≤ 30°. (1)

From the mean value theorem of integral (Zhang et al., 2020),
the mean slope k of B′E can be obtained as
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k � 1(π6 − 0) ∫π
6

0
tan θ dθ � 0.275 (2)

Let k � tan θ, the undetermined value of θ and the length of
B′E at this time can be obtained

θ � arctan k � 0.268 (3)

B′E � B′F
cos θ

� 0.423σs (4)

Based on the above formulas, we can get

FE �
����������
B′E2 − B′F2

√
� 0.110σs. (5)

The modulus length of the deviation vector on the Mises yield
locus is

OD � OB′ � �
6

√
/3σs. (6)

The modulus length of the deviation vector of the newly
proposed yield criterion is

OE � 0.817σs. (7)

So, the error between them is

Δ � (0.817 − �
6

√
3

)/ �
6

√
3

� 0.0617%. (8)

It can be seen that the vector modulus length of the newly
proposed yield criterion is just a little higher than that of
the Mises yield criterion, which means that the point E
should be locates in between B and D, and near D, as shown
in Figure 2.

The expressions of the lines A′E and B′E are established in the
following section. Figure 3 shows the projection of the principal
stress component σ1 on the π plane. Considering the projection
relationship and the plain deformation condition, the three
principal stress components σ1, σ2, σ3 at point E can be
calculated by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1 � OE × �
3

√�
2

√
cos 30+

� 1.1554σs;

σ3 � 0;

σ2 � σ1 + σ3
2

� 0.57776σs.

(9)

It can be assumed here that the A′E line can be written in the
following form

σ1 − a1σ2 − a2σ3 − c � 0 (10)

When a material yields, there have c � σs, a1 + a2 � 1.
Substituting Eq. 9 into Eq. 10, it produces

a1 � 0.268, a2 � 0.732. (11)

FIGURE 1 | Different loci on the π-plane.

Frontiers in Materials | www.frontiersin.org September 2021 | Volume 8 | Article 7411443

Zhang et al. Rolling Force Model

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Substituting Eq. 11 into Eq. 10, the expression of A′E can be
derived as

σ1 − 0.268σ2 − 0.732σ3 � σs, σ2 ≤
1
2
(σ1 + σ3). (12)

In the same way, the equation of the locus B′E can be
determined as

0.732σ1 + 0.268σ2 − σ3 � σs, σ2 ≥
1
2
(σ1 + σ3). (13)

Eqs 12, 13 are the mathematical expressions of the new yield
criterion, which is a linear combination of the principal stress
components. Because the slope of the locus side B′E of this
criterion is the mean value of the slopes of the Tresca and TSS
loci, it can be called as the average slope yield criterion.

It can be seen from Figure 2 that the present yield locus
intersects the Mises circle, and the vertex angles are as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∠FB′E � ∠θ � 15.355+;
∠OB′E � 60+ + 15.355+ � 75.355+;
∠OEB′ � 180+ − 30+ − 75.355+ � 74.645+;
2∠OB′E � 150.71+, 2∠OEB′ � 149.29+.

(14)

Figure 1 and Eq. 14 show that the present yield locus is an
equilateral and non-equiangular dodecagon which intersects the
Mises circle with twelve intersection points. Of which, six vertices
of the locus are on theMises circle, and the vertex angle is 150.71°.
The other six vertices are located outside the Mises circle, with a
distance of 0.000503σs and the vertex angle is 149.29°. Except for
these, it is known that each side length of the present dodecagon is
equal to 0.423σs.

Specific Plastic Power
Suppose that the stress component σ ij satisfies f(σ ij) � 0 and the
strain rate component _εij satisfies the flow rule of plastic
deformation, then we can have (Kobayashi et al., 1989)

_εij � dλ
zf

zσ ij
� dλσ ij′ . (15)

Assuming that there are λ≥ 0, μ≥ 0, then from Eqs 12, 15, it
results in

_ε1: _ε2: _ε3 � 1: (−0.268): (−0.732) � λ: (−0.268)λ: (−0.732)λ. (16)

Similarly, according to Eqs 13, 15, it results in

_ε1: _ε2: _ε3 � 0.732 : 0.268: (−1) � 0.732μ: 0.268μ: (−μ). (17)

The linear combination of the results obtained from the above
two formulas gives

_ε1: _ε2: _ε3 � (λ + 0.732μ): 0.268(μ − λ): (−0.732λ − μ). (18)

Take _ε1 � λ + 0.732μ, then

_ε2 � 0.268(μ − λ), _ε3 � −(0.732λ + μ). (19)

Since _εmax � _ε1, _εmin � _ε3, it results in

_εmax − _εmin � 1.732(λ + μ), (λ + μ) � 1000
1732

(_εmax − _εmin). (20)

At the vertex E, we notice that σ2 � (σ1 + σ3)/2, so it can be
obtained from Eqs 12, 13 that

σ1 − σ3 � 2000
1732

σs. (21)

From Eqs 20, 21, the specific plastic power calculated by
D(_εij) � σ1 _ε1 + σ2 _ε2 + σ3 _ε3 (Hosford and Caddell, 2011) based on
the present yield criterion can be obtained as

D(_εij) � σ1 _ε1 + σ1 + σ3
2

_ε2 + σ3 _ε3

� 0.8660(σ1 − σ3)(μ + λ)
� 1732
2000

× 2000
1732

σs × 1000
1732

(_εmax − _εmin)

� 1000
1732

σs(_εmax − _εmin)
� 0.577σs(_εmax − _εmin).

(22)

By using the same method, the specific plastic power based on
the Tresca yield criterion and the TSS yield criterion can be
written as follows (Kobayashi et al., 1989)

FIGURE 3 | The locus of σ1 on the π-plane.

FIGURE 2 | The geometry of the average slope yield criterion.
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D(_εij)Tresca � 2
3
σs(_εmax − _εmin), (23)

D(_εij)TSS � 1
2
σs(_εmax − _εmin). (24)

Comparing Eq. 22 with Eqs 23, 24, the relative errors of the
specific plastic power among the present one, the Tresca one, and
the TSS one are⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔTresca � (0.577 − 1
2
)/1
2
� 15.40%;

ΔTSS � (0.577 − 2
3
)/2
3
� −13.45%.

(25)

The relative errors in Eq. 25 indicate that the calculated value
of using the mean slope yield criterion is 15.40% higher than the
calculated value based on the Tresca one, but is lower 13.45% than
that based on the TSS one.

Experimental Validation
When the principal stress components satisfy σ1 ≥ σ2 ≥ σ3, Lode
proposed a stress characteristic parameter to reflect the difference
among different yield criteria. The parameter is (Lode, 1926):

μ � 2σ2 − σ1 − σ3
σs

. (26)

Substituting Eq. 26 into the Tresca criterion, Mises criterion,
TSS yield criterion as well as the AS yield criterion, the following
expressions in terms of the Lode characteristic parameter can be
derived as follows:

Tresca:

σ1 − σ3
σs

� 1 (27)

Mises:

σ1 − σ3

σs
� 2�����

3 + μ2
√ (28)

TSS:

σ1 − σ3
σs

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4 + μ

3
,−1≤ μ≤ 0;

4 − μ

3
, 0≤ μ≤ 1.

(29)

AS:

σ1 − σ3

σs
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2000 + 268μ

1732
,−1≤ μ≤ 0;

2000 − 268μ
1732

, 0≤ μ≤ 1.
(30)

Based on the above expressions, a comparison can be carried
out with the experimental data from Ref. (Lode, 1926; Lessells and
Macgregor, 1940; Naghdi et al., 1957; Maxey, 1974), shown in
Figure 4.

It can be seen from Figure 4 that the Tresca yield
criterion predicts the lower bound of the experimental data,
while the TSS yield criterion predicts the upper bound. The
present calculated value is lie between those based on the TSS
criterion and the Tresca criterion, and closes to that based on the
Mises yield criterion. It can be seen that the predictive results
based on the AS yield criterion correlate well with the
experimental data, and can bring in the reasonable
intermediate results since both the average error and the
maximum error are very small, just 3.21 and 10.66% respectively.

MECHANICAL ANALYSIS OF THICK PLATE
ROLLING
Velocity Field in the Form of Logistic
Function
As shown in Figure 5, h0 is half thickness of the workpiece on the
inlet section, h1 is half thickness of the workpiece on the outlet
section, R is the radius of the roller, point O is the geometrical
center of the roller, v0 is the initial velocity on the inlet section,
and v1 is the final velocity on the outlet section. θ is the contact
angle, α is the neutral angle, x is the length of the neutral point
from the entrance of the deformation zone, and hx is half
thickness of the workpiece in the deformation zone. It should
be noted that when the tangential velocity of the rolled workpiece
at the neutral point is equal to the tangential velocity of the roller,
and the tangential velocity discontinuity and friction power at
this time are both zero. According to the geometric relationship
in Figure 5, the main deformation parameters can be expressed as
(Li et al., 2017)

{ z � hx � R + h1 − [R2 − (l − x)2]1/2;
z � hα � R + h1 − R cos α.

(31)

where, hx is the half thickness at the position x and hα is the
corresponding thickness at the angle α.

l − x � R sin α, dx � −R cos αdα (32)

hx′ � −tan α, hx″ � (R cos3 α)−1 (33)

FIGURE 4 | Comparison of various yield criteria and experimental data.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
y � bx � b0 + Δb

l
x � b1 − Δb

l
R sin α;

bx′ � Δb
l
.

(34)

From Eqs 31–34, the boundary conditions are as follows⎧⎪⎪⎨⎪⎪⎩x� 0,α� θ: hx � hα � hθ � h0,bx � bα � bθ � b0,hx′ �−tanθ,bx′ �−Δb
l
Rcosθ;

x� l,α� 0: hx � hα � h1,bx � bα � b1, hx′ � 0, bx′ � 0.

(35)

where, bx is the half of plate width along the x and Δb � b1 − b0 is
the spread between the final width and the initial width.

This article assumes that the horizontal velocity component vx
in the deformation zone increases gradually according to the
Logistic function from the inlet to the outlet, that is, it has the
following functional form

vx � c1c3ec2x

c1 + c3(ec2x − 1). (36)

where, c1, c2,c3 are undetermined parameters, which are
determined by the boundary conditions on the entrance and
exit sections: x � 0, vx � v0; x � l/2, vx � (v0 + v1)/2; x � l, vx �
v1. So, the following velocity field can be established⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vx � (v0 + v1)

1 + (v1
v0

)1− 2x
l

;

vy � bx′ · vx � Δb
l
· (v0 + v1)

1 + (v1
v0

)1− 2x
l

;

vz � vx
hx′
hx

z � (v0 + v1)

1 + (v1
v0

)1− 2x
l

· hx′
hx

z.

(37)

According to the volume constant condition, i.e.
v0h0b0 � v1h1b1, v1/v0 � h0b0/h1b1 � ξ, then the velocity field
can be simplified into the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vx � (1 + ξ)v0

1 + ξ
1−
2x
l

;

vy � bx′ · vx � Δb
l
· (1 + ξ)v0
1 + ξ1−

2x
l

;

vz � vx
hx′
hx

z � (1 + ξ)v0

1 + ξ
1−
2x
l

· hx′
hx

z.

(38)

where, vx,vy and vz are called the velocity components in the rolling
direction, the spreading direction and the reduction direction,
respectively. According to the geometric equation, we can get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
_εx � dvx

dx
� [2v0(1 + ξ) ln ξ]ξ(1− 2x

l )

l[1 + ξ(1− 2x
l )]2 � _εmax;

_εy � 0;

_εz � −_εmax � −[2v0(1 + ξ) ln ξ]ξ(1− 2x
l )

l[1 + ξ(1− 2x
l )]2 � _εmin.

(39)

where, _εx, _εy, and _εz are the strain rate components in the rolling
direction, the spreading direction and the reduction direction,
respectively. The volume rate per second denoted by U in the
deformation zone can be written as follows:

U � vxhxbx � vnhnbn

� vR cos αn(R + h1 − R cos αn)(b1 − Δb
l
R sin αn) � v1h1b1.

(40)

In Eqs 38, 39, due to _εx + _εz � 0; x � 0, vx � v0; x � l, vx � v1;
z � 0, vz � 0; z � hx, vz � −vx tan α, the velocity field meets the
kinematically admissible condition rigorously and can be used as
a basis for the following energy calculation.

Internal Deformation Power
It is known that the specific plastic power based on the Mises
yield criterion is nonlinear, which is difficult to be integrated to
obtain the internal deformation power. For solving this
problem, a new method called the replacement method of
specific plastic power is proposed here. This method is to
replace the specific plastic power of the Mises yield criterion
by the present specific plastic power based on the AS yield
criterion. Therefore, the internal deformation power Nd (Sezek
et al., 2008) can be calculated by

Nd � 4∫l

0
∫bm

0
∫hx

0
0.577σs(_εmax − _εmin)dxdydz

� 4∫l

0
∫bm

0
∫hx

0
0.577σs · 2_εmaxdxdydz

� 4.616σs ∫l

0
∫bm

0
∫hx

0

[2v0(1 + ξ) ln ξ]ξ(1− 2x
l )

l[1 + ξ(1− 2x
l )]2 dxdydz

� 4.616σsU · ln ξ.

(41)

Friction Power
According to the roller surface equation dS �

������
1 + h′2x

√
dxdy �

sec αdxdy and Eq. 36, the friction power consumed on the
contact surface between the roller and the workpiece can be
calculated by (Sezek et al., 2008)
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Nf � 4mk∫l

0
∫bx

0
Δvf

��������
1 + (hx′)2√

dxdy (42)

Δvf � vR − vx

��������
1 + (hx′)2√

� vR − vx sec α (43)

where, m is the friction factor, Δvf is the velocity discontinuity.
The shear yield strength is k � σs/

�
3

√
. According to the collinear

characteristic between the friction shear stress τf and the velocity
discontinuity Δvf, the shear power can be calculated by

Nf � 4∫l

0
∫bx

0
τf ·ΔvfdS

� 4∫l

0
∫bx

0
(τfxΔvx + τfyΔvy + τfzΔvz) ��������

1+(hx′)2√
dxdy

� 4mk∫l

0
∫bx

0
(Δvx cosα+Δvy cosβ+Δvz coscsecα)dxdy.

(44)

From Figure 5, the direction cosines between Δvf and the
coordinate axis are respectively⎧⎪⎨⎪⎩ cos α � ±[R2 − (l − x)2]1/2/R;

cos β � 0;
cos c � ±(l − x)/R � sin α.

(45)

Substituting Eq. 45 into Eq. 44, we can get

Nf � 4mk[∫l

0
∫bx

0
(vR cosα−vx)cosαsecαdxdy+∫l

0
∫bx

0
(vR sinα− vx tanα)coscsecαdxdy]

� 4mk⎡⎢⎣ΔbR2vR
l

(1−2cosαn + cosθ) +RvRb1(θ−2αn)+RU

hm
ln
tan2(αn

2
+ π

4
)

tan(θ
2
+ π

4
) ⎤⎥⎦

� 4mkb1⎡⎢⎣RvR(θ−2αn) + RU

b1hm
ln
tan2(αn

2
+ π

4
)

tan(θ
2
+ π

4
) ⎤⎥⎦.

(46)

where, hm is the average value of hx.

Shearing Power
From Eqs 35, 37, we can see that: on the exit section x � l,
hx′ � bx′ � 0; vy

∣∣∣x�l � vz
∣∣∣x�l � 0 is on the exit section. Therefore,

we can have

|vz|x�0 �
���������
v2y + v2z

∣∣∣∣x�0√
(47)

Since there is no shear power consumed on the outlet section,
the shear power Nsconsumed on the inlet section is equal to the
total shear power. Therefore, we have

Ns � 4∫h0

0
∫b0

0

������
v2y + v2z

√
dydz

� 4k∫h0

0
∫b0

0

v0Δb
l

����������
1 + l2 tan2 θ

4Δb2

√
dydz

� 2kU
l

�������������
4Δb2 + l2 tan2 θ

√
.

(48)

Total Power of Rolling Deformation and its
Extreme Value
The total power Φ can be calculated by

Φ � Nd +Ns +Nf (49).

Therefore, by adding Eqs 41, 46, 48, it results in

Φ� 4.616σsU · lnξ + 2kUΔh
l

+4mkb1⎡⎢⎣RvR(θ−2αn)+ RU

b1hm
ln
tan2(αn2 + π

4)
tan(θ2+ π

4) ⎤⎥⎦
(50).

FIGURE 5 | The thick plate in the rolling deformation zone.
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From Eqs 40, 41, 46, 48, one can obtain that

dU

dαn
� vRb1R(sin 2αn − R + h1

R
sin αn)

−Δb
l
R2vR(R + h1

R
cos 2αn + sin 2αn − cos3αn) � N (51)

dNd

dαn
� 4.616σsN · ln ξ (52)

dNs

dαn
� 2kN

l

�������������
4Δb2 + l2 tan2 θ

√
(53)

dNf

dαn
� 4mk⎡⎢⎣NR

hm
ln
tan2(π4 + an

2 )
tan(π4 + θ

2) + 2UR
hm cos an

− 2vRb1R⎤⎥⎦. (54)

Therefore, we can have

dΦ
dαn

� dNd

dαn
+ dNs

dαn
+ dNf

dαn
. (55)

When the total power Φ achieves the minimum value, the
theoretical expression of the friction factor m can be obtained by
solving Eq. 55. Therefore, we have

m � −N(4.616σs ln ξ + 2k
l

�������������
4Δb2 + l2 tan2 θ

√ )
4k[NR

hm
ln

tan2(π
4+an

2 )
tan(π

4+θ
2) + 2UR

hm cos an
− 2vRb1R] (56)

.

Substituting a neutral angle αn into Eq. 56, then the friction
factor m can be obtained. Therefore, we can obtain the analytical
solution of rolling torque M, rolling force F and stress state
coefficient nσ :

M � R

2vR
Φmin;F � M

χ
�����
2RΔh

√ ; nσ � F

4blk
(57)

where, the arm coefficient χ can refer to the literature (Harris,
2014).

From the above derivation, it can be seen that the present new
method of using a linear yield criterion to analyze a new velocity
field can solve the problem of integral difficulty due to the

nonlinear Mises yield criterion and can provide the possibility
of acquiring an analytical model of rolling force for multi-
component alloys. It also can be seen that such a model has a
clear functional relationship, which is convenient to be used on-
line in the process parameter design and the thickness control of a
rolled plate.

Experimental Validation of Rolling Force
and Thickness Prediction
An on-site rolling experiment was carried out in a domestic
factory. The roller diameter is 1120mm, and the billet size is
320 mm × 2050 mm × 3250 mm. The measured rolling
velocities for the 2nd–6th passes are 1.64, 1.66, 1.68, 1.82,
and 1.97 m/s respectively. The arm coefficient χ is respectively
taken as 0.49, 0.50, 0.51, 0.49, and 0.50; the corresponding
rolling temperatures are 944.56°C, 933.49°C, 922.97°C,
924.68°C, and 932.11°C, respectively. The outlet thickness
and the rolling force for each pass can be accurately
acquired by thickness measurement. The deformation
resistance of the multicomponent alloys in the experiment
adopted in the present paper is (Zhang, 2018)

σs � 3583.195e−2.233×10
−3T · ε0.42437 · _ε−0.3486×10−3T+0.46339;

T � t + 273.
(58)

where, ε is effectiveness strain, _ε is effectiveness strain rate, t is
deformation temperature, T is Kelvin temperature.

The rolling torque and rolling force for the above passes can be
predicted by Eq. 57, which is shown in Table 1.

In Table 1,Δ1 denotes the relative error between the calculated
rolling force FA and the experimental one FM. It can be seen that
the maximum error is 12.8%. Δ2 denotes the relative error
between the calculated rolling torque MA and the
experimental one MM. As shown in Table 1, the maximum
error is 12.5%. Therefore, both the two maximum errors are
within the engineering allowable value of 15% (Wang et al., 2019).
It should be noted here that it is better to further give the
comparison between the present results based on the present
yield criterion and those based on the other yield criteria, which
can further reflect the superiority of the present yield criterion.
However, due to the complexity of giving a set of formulas based
on the other yield criteria synchronously, it is inconvenient to do
this work at this time. In the future, we will work on this aspect
systematically.

At the same time, the rolling force model obeys the bounce
equation (Sun et al., 2013)

TABLE 1 | Validation of the predictive models of rolling force and torque with measured data.

Pass No vR
m · s−1

T
/°C

2h0

/mm
2h1

/mm
2b0

/mm
2b1

/mm
FM

/kN
FA

/kN
Δ1

/%
MM

/kN·m
MA

/kN·m
Δ2

/%

2 1.64 945 299 272 3,472.0 3,474.4 43,607 45,073 3.4 2,640 2,740 3.8
3 1.66 933 272 245 3,474.4 3,476.6 44,006 45,407 3.2 2,694 2,774 3.0
4 1.68 923 245 219 3,476.6 3,478.6 43,172 46,936 8.7 2,665 2,895 8.6
5 1.82 925 219 194 3,478.6 3,480.5 42,269 47,675 12.8 2,430 2,733 12.5
6 1.97 932 194 173 3,474.4 3,482.0 39,061 40,565 3.9 2,101 2,174 3.4

TABLE 2 | Comparison of the predicted outlet thickness with the measured one.

Pass No FM /kN S0 /mm 2h1 /mm Hf /mm ΔH /mm

2 43,607 267.95 272.02 272.16 0.14
3 44,006 241.26 245.37 245.50 0.13
4 43,172 214.76 218.80 219.15 0.35
5 42,269 189.92 193.87 194.37 0.50
6 39,061 169.52 173.17 173.31 0.14
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Hf � S0 + E � S0 + P

K
(59)

where,Hf is the final thickness of the rolled product, S0 is the no-
load roll gap which can be determined by the regression of
experimental data of measured rolling force and measured exit
thickness in Table 1, E is the bouncing amount of the rolling mill,
P is the rolling force, and K is the stiffness coefficient of the rolling
mill, K � 10700 kN/mm is for the present rolling mill.

Based on Eq. 59, the comparison between the predicted value
of outlet thickness and the measured value for each pass can be
shown in Table 2.

In Table 2, ΔH is the absolute error between the measured exit
thickness 2h1 and the predicted exit thickness Hf. The average
error remains at 0.25mm, and the maximum error does not
exceed 0.50mm, which meets the allowable deviation of GB/T
709-2019. Therefore, it can be concluded that the prediction

FIGURE 6 | Effect of friction factor and relative reduction on the neutral point position.

FIGURE 7 | Effect of the shape factor and friction factor on the stress state coefficient.
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accuracy is high. Also, it can be concluded that due to the high
precision of the rolling force model, the precision of the outlet
thickness is also high, which can provide scientific guidance for
rolling process optimization.

ANALYSIS AND DISCUSSION

Figure 6 shows the effect of friction factor m and relative
reduction ε on the neutral point position Xn/l. It is seen that
with the increase ofm, the position of the neutral point gradually
moves towards the entrance, while with the increase of ε, the
position of the neutral point moves towards the exit.

Figure 7 shows the effect of shape factor l/2hm and the friction
factorm on the stress state coefficient nσ . It can be seen that as the
shape factor increases, the nσ decreases significantly. The friction
factorm has a small effect on nσ , indicating that the friction power
has little influence on the total power.

Figure 8 shows the effect of the thickness-radius ratio h0/R and
the reduction ratio ε on the calculated rolling force FA. It can be seen
that with the increase of the reduction ratio and the increase of the
ratio of thickness to radius, the rolling force increases.

From the above comparison and analysis, it should be noted
here that by comparing with the previous method, the present
method of using a new yield criterion to analyze the present
velocity field can not only provide an analytical solution of rolling
force rather than a numerical one, but also can give more
reasonable results with high precision (within 15%). This is
due to the effectiveness of approximating to the Mises yield
criterion with the present linear one and the rationality of
proposing the present velocity field in the form of logistic
function. In a word, the present paper has proposed a new
method of analyzing the plate rolling process for multi

component alloys. Based on this superiority, the process
parameters of plate rolling can be designed and the thickness
of the rolled plate can be controlled well, and the changing
tendency of the rolling force along with many process
parameters, such as the reduction, friction factor, thickness-to-
radius ratio, can be disclosed quantitatively.

CONCLUSION

1) The AS yield criterion proposed in this paper is a linear
combination of principal stress components. Its yield locus is
an equilateral and non-equiangular dodecagon with side length
of 0.423σs. It intersects with theMises circle, whose vertex angles
are 150.71+ and 149.29+ respectively. The calculated results of
the AS yield criterion are in good agreement with the
experimental data, and the linear specific plastic power that
lies in between the one based on the Tresca criterion and the one
based on the TSS criterion is also derived.

2) This paper establishes a new velocity field based on the logistic
function. This velocity field is proved to be satisfy the
kinematically admissible condition rigorously. Based on the
velocity field, the analytical solutions of rolling force and
torque are established. After comparing with the measured
rolling data, it is found that the analytical ones are in good
agreement with the actual measured ones. The maximum
errors for the rolling force and torque are 12.8 and 12.5%
respectively. Besides, the bounce equation that based on the
rolling force model is also given, and it is found that the
predictive error is maintained at 0.25 mm, and the maximum
error is no more than 0.50 mm. It can be seen that the method
of using the AS yield criterion to analyze the proposed velocity
field in this paper is effective.

FIGURE 8 | Effect of the thickness to radius ratio and relative reduction on the rolling force.

Frontiers in Materials | www.frontiersin.org September 2021 | Volume 8 | Article 74114410

Zhang et al. Rolling Force Model

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


3) It is found that as the friction factor m increases, the neutral
point moves toward the inlet. As the reduction rate ε increases,
the neutral point moves toward the outlet. The stress state
coefficient will decrease with the increase of the shape factor
l/2hm, and the increase in the thickness-to-radius ratio h0/R of
the rolled plate will cause an increase in the rolling force.
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