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We show efficient elastic energy transfer and wave confinement through a graded array of
resonators attached to an elastic beam. Experiments demonstrate that flexural resonators
of increasing lengths allow to reduce wave scattering and to achieve the rainbow effect
with local wavefield amplifications. We show that the definition of a monotonically
decreasing distribution of the natural frequencies of the resonators along the wave
propagation direction, is the preferable choice to increase the energy efficiency of the
system. The proposed configuration is suitable for micro-fabrication, envisaging practical
applications for micro-scale vibration energy harvesting.
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1 INTRODUCTION

The study of novel metamaterial devices has attracted growing interest within the research
community working in several fields of physics, such as electromagnetism (Pendry et al., 1999;
Pendry, 2000) acoustics (Liu et al., 2000; Craster and Guenneau, 2013) and elasticity (Craster and
Guenneau, 2017), amongst others. In the context of elastic waves, early designs based on Bragg
scattering behavior due to material contrast were used to create bandgaps (Kushwaha et al., 1993;
Vasseur et al., 2001; Khelif et al., 2003; Pennec et al., 2011; Laude, 2015) and to tailor specific wave
behaviors often drawing ideas from the photonic crystal community. To push the operational regime
of such systems toward lower frequencies, the exploitation of local resonance has received
considerable attention (Liu et al., 2000; Miroshnichenko et al., 2010; Lemoult et al., 2011;
Williams et al., 2015), especially for applications in geophysics, mechanical and civil engineering
(Colombi et al., 2016a; Miniaci et al., 2016; Achaoui et al., 2017) involving common ambient spectra.
While the concept was initially employed for vibration isolation purposes, it was later linked to a
variety of phenomena including lensing (Colombi, 2016; Chaplain and Craster, 2019; Fuentes-
Domínguez et al., 2021), localisation (Lott et al., 2020) or topological edge states (Pal and Ruzzene,
2017; Xia et al., 2020).

To capitalize on these recent metamaterial designs, energy harvesting is an attractive application:
vibration-based energy harvesting has received considerable attention over the last 2 decades, aiming
at powering devices using vibrational energy. A practical example consists in the opportunity to
harvest energy from the environment to potentially remove the cost associated with battery
replacement and avoid the waste of conventional batteries (Erturk and Elvin, 2013). Among the
various possible energy harvestingmethods, the ones based on piezoelectric materials are widely used
due to their large power densities and ease of application (Anton and Sodano, 2007; Erturk and
Inman, 2011). A recent line of work in this context exploits methods to locally concentrate the
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vibrational energy in the attempt to enhance the efficiency of
piezoelectric devices. For instance, this can be achieved by
focusing or localising acoustic/elastic wave energy in
correspondence of the harvester using elastic mirrors, funnels
(Carrara et al., 2013) defect modes (Qi et al., 2016), lenses (Tol
et al., 2017; Allam et al., 2021), or black holes (Zhao et al., 2014).
Another approach to amplify the wavefield relies on the rainbow
effect, that effectively slows down waves and spatially separates
frequency components. These systems are based on gradually
varying periodic arrays of resonators to take advantage of local
band-gaps to control wave propagation. The underlying physics,
capable of inducing spatial segregation of frequency components,
relies on the ability to locally decrease the propagation speed
along the array. A similar wave speed reduction can be achieved
through black-hole configurations that, however, rely on
thickness modulations which reflect on a local stiffness
decrease of the host medium, often undesired from the
engineering perspective.

A graded array is instead formed by smoothly varying a
particular parameter in space through a specific design of
consecutive unit cells. Originally discovered in
electromagnetism using axially non-uniform, linearly tapered,
planar waveguides with cores of negative index material
(Tsakmakidis et al., 2007), there has been a flurry of intensive
research translating the rainbow effect into all flavors of classical
wave propagation fields including acoustics (Romero-García
et al., 2013; Zhu et al., 2013; Cebrecos et al., 2014; Chen et al.,
2014), water waves (Bennetts et al., 2018) and fluid loaded elastic
plates (Skelton et al., 2018), amongst others. Particular advances
have been recently reported in elastic devices made of arrays of
resonant rods for deep elastic substrates (Colombi et al., 2016b;
Colombi et al., 2017; Colquitt et al., 2017; Chaplain et al., 2020a)
to mode convert Rayleigh (R) into Shear (S) or Pressure (P)
waves. Such graded line arrays of resonators have been theorised,
designed and manufactured also for energy harvesting
applications (Chaplain et al., 2020b; De Ponti et al., 2020;
Alshaqaq and Erturk, 2021; De Ponti, 2021). In this context,

rainbow reflection and trapping mechanisms are employed to
enhance the interaction time between waves and the harvesting
system, reporting higher power output as compared to ungraded
designs. A straightforward implementation consists into a set of
rod resonators of increasing height, which effectively couple with
the motion of the A0 mode, with particularly strong interaction at
the longitudinal resonance frequency of the rods (De Ponti et al.,
2020). Even if the efficiency of the proposed designs has been
verified numerically and experimentally, the use of axial
resonators could be a problem for both fabrication and proper
connection of the piezoelectric patches. Here, in contrast, we
develop a more compact configuration based on a planar
geometry with cantilever resonators. This system is also
suitable for a piezoelectric deposition processes on the entire
structure, yielding an overall smaller device with broadband
features. In order to quantify the potential advantages of such
rainbow device, we compare its performance to the case of a
single resonating element and to an array with the same length
and random grading law. We show that a monotonically
decreasing distribution of the natural frequencies of the
resonators yields stronger wavefield amplifications, which
reflect on enhanced energy harvesting performance.

2 RAINBOW REFLECTION MECHANICS

We consider the system depicted in Figure 1A made of an elastic
beam with attached an array of cantilevers of linearly increasing
lengths. Due to the cross section symmetry, we focus the analysis on
thewave propagation of theA0 flexuralmode. It is worth tomention
that a symmetry-broken cross-section or a non-null coupling
between consecutive resonators may trigger different phenomena
involving the excitation of waves with different polarization (De
Ponti et al., 2021). Herein, we limit the analysis to the A0 mode and
we consider all other supported modes as orthogonal to the
excitation mechanism. The beam and the resonators are made of
aluminium with Young modulus Ea � 70GPa, Poisson ratio ]a �

FIGURE 1 | Schematic of the graded linear array of flexural resonators for energy harvesting. (A) By exciting the elastic beam with an A0 flexural wave, energy is
efficiently transferred to the array of resonators. Such interaction reduces both the amplitude and the wavelength of the waves in the beam inside the array (B).
Leveraging on this energy transfer mechanism, the elastic energy in the resonators can be used for piezoelectric energy harvesting (C).
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0.33 and density ρa � 2710 kg/m3. The beam is 500mm long, 7mm
wide and 2mm thick. The array is made of 9 unit cells of size a �
15mm, with a linear grading law for the lengths of the resonators,
from 16.75 to 27.75mm, resulting in a grading angle of
approximately 5.2°. By spatially varying the resonance frequency
of the resonators attached to the beam (De Ponti et al., 2020; De
Ponti, 2021) waves slow down with a reduction of both amplitude
and wavelength (Figure 1B). Differently with respect to the acoustic
wave compression (Chen et al., 2014), the array of resonators
progressively absorbs energy from the beam, allowing for a wave
amplitude reduction in the beam inside the array (De Ponti, 2021).
We remark that there is a difference between rainbow reflection
(hereafter implemented) and rainbow trapping, as delineated in
Chaplain et al. (2020b). Rainbow reflection occurs when zero group
velocity modes are met at band edge, while rainbow trapping when
zero group velocity modes arises within the first Brillouin Zone due
to the coupling between crossing modes. In both cases, the
concurrent amplitude and wavelength reduction is a hallmark of
energy transfer between the main structure and the resonators, and
is used here for energy harvesting purposes. That is, our
implementation in Figure 1C shows the arrangement of a set of
piezoelectric patches and the electric circuit employed to transduce
electric energy due to resonator motion in a tailored position along
the beam. In here, we exploit the 31-mode of the piezoelectric
patches connected to a resistive load to effectively harvest the elastic
energy stored inside the target resonators.

The wave propagation properties of the system can be rigorously
inferred by looking at the dispersion curves of a given cell inside the
array. Provided the grading is gentle enough and provided the
number of unit cells is sufficient, the global behaviour of the whole
array can be deduced from the local dispersion curves of the
constituent elements (Colombi et al., 2016b); in this way, the
desired spatial selection by frequency properties, i.e. the rainbow
behaviour of the system, is determined from the locally periodic
structure at a given position. Figure 2A shows the numerical
dispersion curves for the cell number 7 (where the cell
numbering in the array goes from 1 for the shortest resonators

to 9 for the longest). These dispersion curves are computed along
the 1D irreducible Brillouin Zone using the finite elements software
Abaqus (Smith, 2009), that incorporates the Bloch phase shift via
Bloch-Floquet periodic boundary conditions in the attempt to study
the unit cell containing two resonators. The resonators, later used
for energy harvesting purposes, are 5mm wide and 25mm long.
These values and the geometry of the attachments are chosen to ease
themanufacturing of the specimen, but we remark that dynamically
equivalent configurations can be achieved matching the desired
natural frequency and the participating mass (Sugino et al., 2016).
By inspecting the dispersion curves related to the bending of the
resonators, we identify an in-phase and an out-of-phase mode, as
shown in the inset in Figure 2A. This behaviour, which comes from
having two resonators per cell, does not affect the response of the
array since the antisymmetric mode cannot be excited with the
symmetric A0 input. The spatial properties of the wavefield can be
deduced from the local dispersion curves at a given frequency, as
shown in Figure 2B. By increasing the length of the resonators
along the spatial dimension, i.e. moving from (Pendry, 2000) to
(Pennec et al., 2011), the dispersion curves shift towards lower
frequencies. As a result, by fixing the frequency, the group velocity,
vg � zω/zκ, smoothly reduces until zero. Such effect allows to slow
down elastic waves inside the array and to confine waves in different
positions depending on frequency. In addition, since the zero group
velocity mode occurs at the band edge, it can couple with a
backward propagating mode, which is typical of rainbow
reflection (Chaplain et al., 2020b).

To provide further insights on the energy transfer
mechanism related to rainbow reflection, we compare the
linear graded array to the case of a single cell, and to an
array with a random grading law. The cells involved in the
random configuration are the same adopted for the linear array
but with a different arrangement of attachments, except for the
target one. Figure 3 shows the three configurations, in which the
target resonator, i.e. the one with the first flexural mode
corresponding to the input frequency, is marked with a
yellow star. We quantify the efficiency of each configuration

FIGURE 2 | (A) Numerical dispersion curves for a periodic array of identical resonators of fixed length (here we take the resonator having length 25 mm that is then
endowed with piezoelectric patches in the graded wedge); scatter points colours represent the wave polarization (green corresponding to the vertical motion, i.e.
bending of the resonator). (B) In-phase bending mode for different resonators inside the array. Moving from short (Pendry, 2000) to long (Pennec et al., 2011) resonators
at a given frequency the group velocity and the wavelength decrease, until the bandgap opening (here denoted with a yellow star in the position of the resonator
number (Vasseur et al., 2001)).
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by looking at the total energy density distributions along time, as
shown in Figure 3. Such energy, denoted with Σ, can be
decomposed in the contribution of the beam, Σbeam, and the
resonators Σresonators. Each configuration is excited using a
narrowband source at central frequency of 2 kHz, width Δf �
0.14 kHz, and time duration T � 15ms. The numerical model
employed is based on a finite element discretization of the
system through Abaqus (Smith, 2009), using full 3D stress
quadratic elements (C3D20). The analysis is performed
opting for an implicit analysis based on the Hilber-Hughes-
Taylor operator, with a constant time increment dt � 0.01ms.
The energy density for the beam and the resonators is obtained
summing the strain and kinetic energy densities of the
corresponding individual finite elements (FE) for each time
instant. We notice that when a single cell is introduced on the
elastic beam, low energy transfer is achieved (Figure 3A with a
mean local energy density percentage in the resonators of about
12%. The linear array shows (Figure 3B) the strongest energy
transfer, with a mean local energy density percentage in the

resonators of about 76%. Finally, the random array shows a
mean local energy density percentage in the resonators of
about 68%.

3 EXPERIMENTS ON SLOW WAVES FOR
ENERGY HARVESTING

A peculiar property of the rainbow reflection device is the
capability to slow down array guided waves as they transverse
the array. Such phenomenon allows for a longer interaction
between the wave and the resonators, locally increasing the
amplitude of the wavefield inside the resonators (De Ponti
et al., 2020; De Ponti, 2021). To validate this effect, and the
implications in terms of energy harvesting, we perform
experimental tests in narrow and broad-band frequency
regime. Figure 4 shows the experimental setup used for testing.

At the right boundary, a LDS v406 electrodynamic shaker is
rigidly connected to the beam through a thick aluminium plate with

FIGURE 3 | Total energy density distributions in time for the single cell (A), linear (B) and random array (C). Each system is forced using a tone burst of 15 ms at
2 kHz, able to excite the flexural resonace of the resonators in the cell marked with a yellow star. For the lone cell (A), weak energy transfer between the beam and the
resonators is achieved. Adding a linear array of resonators (B) allows to increase the efficiency of energy transfer, providing strong energy confinement inside the
resonators. A similar behaviour, but less efficient, is shown for the random array (C). To outline the differences in term of performance, the mean energy density
along time is also reported with dashed black lines.

FIGURE 4 | Experimental setup. The wavefield is measured using a 3D laser vibrometer (I). The beam is forced using an electrodynamic shaker (II), while the
opposite side is suspended through elastic cables (III). A zoomed-in view of the lone cell (IV), linear array (V) and random array (VI) is reported in the right insets.
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high strength adhesive, to provide excitation. At the opposite
boundary, the structure is suspended through elastic cables that
do not affect the dynamics of the system. The wavefield on the
elastic beam is measured through a Polytec 3D Scanner Laser
Doppler Vibrometer (SLDV), which is able to separate the out-
of-plane velocity field in both space and time. The same narrow-
band excitation input used in the numerical model is synchronously
started with the acquisition which, in turn, is averaged in time to
decrease the noise. Figure 5 shows the experimental Fast Fourier
Transform (FFT) of the wavefield for the single cell (Figure 5A), the
linear (Figure 5B) and random array (Figure 5C) at different time
instants. The corresponding input (blue arrow) and reflected waves
(green arrow) measured for different time instants along the plain
beam before the resonators are reported for the different
configurations. It can be noticed that a stronger slowing effect is
achieved for the linear array, since the wave reflection is not visible
before the array at 5ms. After a certain amount of time, such effect
vanishes and the three configurations are similar in terms of wave
reflection.

We experimentally show the rainbow effect in the linear array by
applying a broadband frequency sweep in the range 1.6–4.2 kHz.
Figure 6A shows a space-frequency analysis of the experimental data.
Depending on the frequency, waves stop at different spatial positions,
corresponding to the bandgap opening. Moreover, we notice that the
amplitude and the wavelength of themode shapes decrease inside the
array, until the amplitude vanishes in correspondence of the position
of the resonating element, which is well predicted by numerical
results (dashed white line). We then quantify the advantages of such
mechanism for energy harvesting by placing piezoelectic PZT-5H
patches (Ep � 61GPa, ]p � 0.31, ρp � 7800 kg/m3, dielectric constant
ϵT33/ϵ0 � 3500, and piezoelectric coefficient e31 � − 9.2C/m2) at the
position of the 7th cell, denoted with the white star in Figure 6A.
Figure 6B shows the mean output open circuit voltage for the single
cell, random and linear arrays normalized by the measured input
velocity, to make sure that the results are displayed under the same
conditions. Moreover, the extra stiffness due to the piezoelectric layer
is considered in the evaluation of the natural frequency of the
resonator. We observe that the graded linear array gives a mean

FIGURE 5 | Experimental Fast Fourier Transform (FFT) of the wavefield measured on the plain beam for the lone cell (A), linear (B) and random array (C). Waves are
backscattered when the input A0 wave reaches the target cell marked with the yellow star. Since the linear graded array (B) provides a smooth reduction of the wave
group velocity, it shows lower reflections with respect to the other two cases (A, C). While this effect is notably marked at small time increments (e.g. 5 and 10 ms), it
slowly vanishes in time (e.g. 15 ms), confirming the inherently reflective properties of the system.
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normalized peak voltage of 41Vs/m which is 56% higher than the
single cell and 41% higher than the random array. We notice that
such peak is reachedwith a delayΔt of approximately 1.3ms, which is
justified by the smooth reduction of the group velocity inside the
linear array. Both the linear and random arrays provide a strong time
spreading of the input, as can be noticed by comparing the input
signal reported in the inset of Figure 6B with the response of the
resonators for long time periods.

4 CONCLUSION

In conclusion, we have demonstrated potential advantages in
using graded arrays of flexural resonators for efficient elastic
energy confinement. The array capability of slowing down waves
enables a strong energy transfer to the resonators, which then
reflects in enhanced energy harvesting performances. This effect
is stronger for a monotonically decreasing distribution of the
natural frequencies of the resonators, due to the longest
interaction time between the wave and the array. We remark
that the system can be frequency-tuned simply by adding masses
at the tip of the cantilever resonators: this design can be employed
to match applications and scenarios characterized low frequency
ambient spectra. Also, we remark that the present configuration
can be suitably employed for energy harvesting applications and
can be scaled at the micro-scale for the implementation of next
generation vibration energy harvesting devices.
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