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The thermal conductivity of silicate melts and glasses is an important physical property for
understanding the temperature distribution in high-temperature metallurgical processes;
however, the mechanism of heat conduction in these non-crystalline materials remains
unclear. Two types of vibration modes must be considered to understand the mechanism
of heat conduction, namely, propagative and diffusive vibration modes. In the present
study, we carefully derived the thermal conductivity of pure silica and sodium disilicate
glasses and melts, and estimated the contribution of the diffusive vibration mode using a
recently developed model. The results indicated that the diffusive vibration mode was not
dominant in the silicate non-crystalline materials, whereas the propagative vibration mode
(i.e., phonons) was dominant in the heat conduction of silicate glasses and melts, which is
in contrast with borate glasses.
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free path, laser-flash method

INTRODUCTION

The thermal conductivity of silicate melts and glasses is one of the least understood properties
among the physical properties of non-crystalline materials, despite its importance in the design
of industrial plants and processes at elevated temperatures (such as glass-making and
metallurgical processes) (Glaser and Sichen, 2013; Pilon et al., 2014; Wang and Sohn,
2020; Li et al., 2021). Owing to the limited data on their thermal conductivity, a larger
number of reliable measurements and an in-depth interpretation of the thermal conductivities
are required to improve the precision of the process control (e.g., slag cooling) and the
development of the thermophysics of these disordered materials. Empirically, it is known that
the thermal conductivity of silicate melts and glasses is influenced by the overall
polymerization degree (Susa et al., 2001; Aune et al., 2002; Eriksson et al., 2003; Eriksson
and Seetharaman, 2004; Kang and Morita, 2006; Hasegawa et al., 2012a; Hasegawa et al., 2012b;
Kang et al., 2012; Hofmeister et al., 2016; Park and Sohn, 2016; Mills and Däcker, 2017; Wang
et al., 2020), type of non-framework (e.g., Na+, Ca2+) (Hayashi et al., 2001; Hiroshima et al.,
2008; Ozawa et al., 2007; Wang et al., 2020), framework cations (Si4+, B3+, Al3+) (Kim et al.,
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2015; Kim and Morita, 2015; Wang et al., 2019; Shirayama
et al., 2020), and temperature (Chebykin et al., 2020; Wang
et al., 2020); however, the detailed mechanism of the
compositional- and temperature-dependences of the
thermal conductivity of silicate melts and glasses remains
unclear (Varshneya and Mauro, 2019). Kittel (1949) proposed
that phonons are carriers of intrinsic heat conduction. The
thermal conductivity (κ) is commonly related to the phonon
mean free path (MFP, l) as given in Eq. 1:

κ � 1
3
CV · v · l, (1)

where Cv (J m
−3 K−1) denotes the volumetric heat capacity and v

(m s−1) denotes the velocity of sound. Recently, it has been found
that both propagative (propagons) and diffusive modes
(diffusons) contribute to the thermal conductivity of
disordered materials (e.g., glasses) (Agne et al., 2018; Sørensen
et al., 2020; Sørensen et al., 2021). According to the definition by
Allen and Feldman (Allen et al., 1999), “propagons” are similar
to propagating phonons with a definable vector, whereas
“diffusons” are vibrational modes without a definable
vector. Additionally, it has been reported that the thermal
conductivity of borate glasses is dominated by the diffusive
vibration mode (Sørensen et al., 2020), whereas the
contribution of the propagative vibration mode (phonon) is
significant in silicate glasses. However, the contribution of the
diffusive vibration mode has not been investigated for silicate
systems over a wide temperature range from room
temperature (∼300 K) to elevated temperatures higher than
their liquidus. Although the thermal conductivity of silicate
glasses and melts has been associated with the MFP of
phonons for a long time, it remains unclear whether this
classical concept is applicable to non-crystalline silicate
materials at elevated temperatures. In addition, the
temperature dependence of the MFP for the silicate melts
has not been carefully discussed from the viewpoint of the
structure. To carefully consider the contribution of the two
types of vibration modes, the physical properties of the target
sample (i.e., the density, heat capacity, and velocity of sound)
are required. Among the wide variety of silicate systems,
unary silica (SiO2) and binary sodium silicate (Na2O–SiO2)
are well-studied systems in terms of their thermophysical
properties (such as density and heat capacity) and structure,
where silica (SiO2) acts as a network former and sodium
oxide (Na2O) acts as a network modifier. Previous studies
(Manako et al., 2018; Nishi et al., 2019) have measured the
thermal effusivity of sodium disilicate melts (Na2O·2SiO2,
NS2) at temperatures higher than their liquidus. In the
present study, we carefully derived the thermal
conductivity of the NS2 melt from the reported thermal
effusivity, density and heat capacity. The obtained thermal
conductivity of NS2 melts was compared with that of NS2
glass at room temperature (300 K) as well as that of silica glass
and melt. Additionally, the contribution of the diffusive and
propagative vibration modes to the thermal conductivity was
investigated.

EXPERIMENTAL METHODS

Thermal Conductivity of Glasses at Room
Temperature
The thermal conductivities of the SiO2 and Na2O·2SiO2 (NS2)
glasses were evaluated at room temperature (room temperature
was assumed to be 300 K in the present study). High-purity
synthetic silica (Suprasil F300) was shaped into a plate (5 × 5 ×
1 mm), which was used as the SiO2 glass sample. NS2 glass was
fabricated using the conventional melt-quench method. Reagent
powders of SiO2 and Na2SiO3 were carefully weighed and mixed
in a mullite mortar. The powder mixture was placed in a platinum
crucible and melted in an air atmosphere at 1673 K for 30 min.
The melt was quenched on a copper plate to obtain a glassy
sample. To ensure sample homogeneity, the quenched glass was
crushed into a powder and re-melted at 1773 K to remove bubbles
from the melt. Finally, the bottom of the platinum crucible was
placed in contact with water to quench the sample melt. The
obtained bubble-free bulk glass was annealed at 30 K below the
glass transition temperature for 4 h. The annealed glass was
shaped into a glass plate (5 × 5 × 1 mm) and used for thermal
diffusivity and density measurements. Specific heat capacity
measurements were performed for the NS2 sample with a
cylindrical shape (diameter: 3 mm, thickness: 1.5 mm).
Wavelength-dispersive X-ray spectroscopy was used to
determine the composition of the NS2 glass, (this is listed in
Table 1). The analyzed composition was close to the nominal
value, indicating that the evaporation amount of the Na2O
component during melting was small and negligible.

The thermal conductivity of these glasses at 300 K was
determined using Eq. 2 considering three types of properties
of the samples: thermal diffusivity [α (m2 s−1)], density [ρ (kg
m−3)], and specific heat capacity [Cp (J kg−1 K−1)]:

κ � α · ρ · Cp, (2)

where κ denotes the thermal conductivity (W m−1 K−1). The α
values of the samples were determined using the laser flash
method (Shibata et al., 1996). Since the temperature response
of the sample was measured using an infrared ray detector, a laser
beam absorber and an infrared ray emitter were required for
measurements involving transparent materials, such as oxide
glasses. Therefore, the sample glass plate was coated with a
thin gold film (≈150 nm) and carbon powder spray. The
samples were placed in a vacuum chamber of the apparatus,
and the upper side of the sample was heated using a Nd:YAG laser
with a wavelength of 1,064 nm under vacuum. The temperature
variation at the bottom of the sample was measured using an
infrared detector at room temperature. The value of αwas derived
by analyzing the temperature response curve according to a well-
established procedure (Shibata et al., 1996). The measurement of
α was repeated at least five times for each sample. The obtained α
values are listed in Table 1. The density (ρ) of the glass samples
was measured using a conventional Archimedean method with
ethanol fluid at 300 K. Density measurements were performed
five times for each sample. The average values are presented in
Table 1. The specific heat capacity (Cp) of the NS2 glass sample
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was measured using differential scanning calorimetry (DSC,
Netzsch 3,500 Sirius) during the continuous heating process in
the temperature range of 278–873 K, whereas the reported Cp

value (Richet et al., 1982) for silica glass was used to determine its
κ value. The obtained values of ρ and Cp are listed in Table 1.

Thermal Conductivity of Molten Samples at
Elevated Temperatures
In previous studies, the thermal effusivity [b (m2 s−1)] of the NS2
melts was measured using a front-heating front-detection laser
flash method at temperatures above their liquidus (Manako et al.,
2018; Nishi et al., 2019). The relationship between b and κ is
expressed by Eq. 3:

κ � b2

ρ · Cp
, (3)

The thermal conductivity (κ) of the NS2 melt was derived
using the reported density (Shartsis et al., 1952) and the estimated
specific heat capacity (Cp) based on the model proposed by Richet
and Bottinga (1985). It is well known that their model reproduces
the Cp of alkali silicate systems. For the thermal conductivity of
pure SiO2 glass and melt, the values measured by Hofmeister and
Whittington (2012) using a laser flash method were employed for
comparison.

Structural Characterization of NS2 Glass
The thermal conductivity of silicate materials should be
structure-sensitive. The synchrotron X-ray total scattering was
measured for the NS2 glass at the BL04B2 beamline in SPring-8
(Japan) to obtain the total correlation function T(r), which
provides the correlation length between two atoms. The
crushed NS2 glass powder was packed in polyimide capillary
tubes (diameter: 3 mm), and the scattering patterns of the
samples were collected using a horizontal two-axis
diffractometer under vacuum at room temperature with an
incident X-ray energy of 61 keV (λ � 0.0202 nm). This high-
energy X-ray enables the collection of scattering patterns with
wave vectors (q) as high as 260 nm−1, which are sufficiently high
to accurately determine the interatomic distance in non-
crystalline solids. To obtain a Faber–Ziman structure factor
(S(q)), scattering patterns were handled according to a well-
established procedure (Ohara et al., 2020). In an X-ray
scattering experiment on glasses containing n chemical

components, the total structure factor S(q) is represented by
Eqs 4–6:

S(q) � 1 + 1∣∣∣∣〈w(q)〉∣∣∣∣2 ∑n

β�1 ∑n

c�1 cβccwβ(q)wc(q)[Sβc(q) − 1],
(4)

〈w(q)〉 � ∑
i

ciwi(q), (5)

q � 4π sin θ
λ

, (6)

where q is the wave vector, cβ is the atomic fraction of the
chemical component β; wβ(q) is a q-independent atomic form
factor with dispersion terms in X-ray scattering, Sβc(q) is a partial
structure factor, λ is the wavelength of the X-ray, and 2θ is the
scattering angle. To determine the interatomic distance between the
two atoms, the total correlation function T(r) was obtained from the
Fourier transform relation Eq. 7 and Eq. 8 (Kohara, 2017):

T(r) � 4πrρ0g(r), (7)

g(r) � 1 + 1
2π2ρ0r

∫qmax

qmin

q[S(q) − 1] sin(qr)dq, (8)

where ρ0 (m
−3) denotes the number of atoms per unit volume and

g(r) represents the weighted sum of the partial functions.

RESULTS

Equations 2, 3 indicate that the thermal conductivity of the
glasses and melts is the product of the density, heat capacity, and
thermal diffusivity of the samples. Understanding these three
parameters is essential for interpreting the compositional and
temperature dependences of thermal conductivity. Figure 1A
illustrates the temperature dependence of the density of silica and
the NS2 glasses and melts. The measured density of the pure silica
glass at 300 K was 2,200 ± 2 kg m−3, which agrees well with the
reported value for synthetic silica glass (e.g., 2,202 kg m−3

(Mazurin et al., 1983)) at room temperature, validating our
methodology for density measurements. The measured density
of the NS2 glass at 300 K was 2,490 ± 10 kg m−3, which is larger
than that of silica glass and lies in the range of reported values for
similar compositions (2,488–2,495 kg m−3) (Morey and Merwin,
1932; Verweij et al., 1979), confirming the presence of a bubble-
free sample. As depicted in Figure 1A, the density of silica

TABLE 1 | Composition and properties of the glass samples at room temperature. The analyzed composition of the NS2 glass is indicated in parentheses. Assuming the
uncertainty in the Cp is ±1%, the possible error range for the derived κ value is ±2.2%.

Composition (mol%) α (10−7 m2 s−1) Cp (J kg−1 K−1) ρ (kg m−3) κ (W m−1 K−1)

SiO2 Na2O

SiO2 100 — 8.67 7361 2,200 1.40
— — ±0.17 ±2

NS2 67.0 33.0 4.40 886 2,490 0.971
(66.1) (33.9) ±0.11 ±10

1The value reported by Richet et al. (1982) was employed for Cp of silica glass.
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exhibited a small temperature dependence because of its small
linear thermal expansion coefficient (≈10−6 K−1 (Kobayashi et al.,
2011; Hofmeister and Whittington, 2012). However, the reported
densities of the NS2 melts (Shartsis et al., 1952) were considerably
smaller than those of the NS2 glass and exhibited a negative
temperature dependence, indicating a larger thermal expansion
coefficient of the sodium-containing system than that of pure
silica.

Figure 1B depicts the temperature dependence of the specific
heat capacity (Cp) for silica and NS2 glasses and melts. The Cp

value reported for silica glass (Richet et al., 1982) and the
measured values for the NS2 glass gradually increased with
increasing temperature up to its glass transition temperature
(Tg). The measured values for the present NS2 glass were close
to the values reported by Yageman and Matveev (1982) at
temperatures higher than 346 K. This agreement validates the
reasonability of the measured Cp of the NS2 glass at temperatures
close to room temperature (300 K). In general, the Cp value of
silicate glass significantly increases at temperatures close to Tg,
and the Cp value of the silicate melts is almost constant at
temperatures higher than its Tg unless it does not contain
alumina or boron oxide (Sugawara et al., 2013). The Cp values
reported for silica melt and the estimated values for NS2 melts

based on the well-known Richet and Bottinga model (Richet and
Bottinga, 1985) are depicted in Figure 1B. The Cp value of the
NS2 glass and melt was higher than that of silica in the
temperature range of 300–1750 K.

The thermal diffusivities (α) of the silica and NS2 glasses and
melts are shown in Figure 1C. The measured α value of the silica
glass was higher than that of the NS2 glass at room temperature. It
has been reported that the value of α for silica glass decreases as
the temperature is elevated and plateaus at temperatures above
750 K (Hofmeister and Whittington (2012)). The value of α for
NS2 glass has not been reported for temperatures close to the
glass transition temperature. The α value for the NS2 melt was
calculated from the reported thermal effusivity (b) of the melt
(Manako et al., 2018; Nishi et al., 2019). The derived α values of
the NS2 melt based on the reported value of b in the two different
studies (Manako et al., 2018; Nishi et al., 2019) agreed well. It was
found that the α values of the NS2 melt at 1250 K (Manako et al.,
2018; Nishi et al., 2019) were close to that of the NS2 glass at
300 K; however, the α value of the NS2 melts exhibited a negative
temperature dependence at temperatures higher than their
liquidus (i.e., 1147 K).

Using Eqs 2, 3, the thermal conductivity (κ) of the NS2
composition obtained by the laser flash method was carefully

FIGURE 1 | (A) Temperature dependence of the density of the silica and sodium disilicate (NS2) compositions. Reported value by Shartsis et al. (1952) was plotted
as the density of the NS2melt. The dashed line indicates the estimated density of silica glass based on the thermal expansivity. (B) Specific heat capacity of the silica and
NS2 compositions. (C) Thermal diffusivity of the silica and NS2 compositions. The blue triangle and circle represent the thermal diffusivities of the NS2 melts, which are
derived from the thermal effusivity reported by Nishi et al. (2019) andManako et al. (2018), respectively. (D) Thermal conductivity of the silica and NS2 compositions.
The blue dashed line represents the thermal conductivity of NS2 melt and glass obtained using the transient hot-wire method (Hayashi et al., 2001). Applying the
uncertainty in the reported thermal effusivity (±5%, Nishi et al., 2019), density (±1%, Mazurin, 2005), and specific heat capacity (±1%, Richet and Bottinga, 1985) for the
NS2 melt, the propagation of error in the thermal conductivity of the NS2 melt obtained using the laser flash method should be ±7.2%.
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derived in the present study and is depicted in Figure 1D. For
comparison, the reported κ value of silica obtained using the laser
flash method (Hofmeister and Whittington, 2012) is also shown
in the figure. The κ value of silica gradually increased with
increasing temperature from 300 K and plateaued at
temperatures above 1250 K. The measured κ value of the NS2
glass in the present study was lower than that of silica glass at
300 K. The derived κ value of the NS2 melt at temperatures above
1250 K was close to that of the NS2 glass; however, it was found
that the κ value of the NS2 melt exhibited a negative temperature
dependence, which was not observed for pure silica. This
contrasting temperature dependence can be attributed to the
difference in the thermal expansivities of the two samples. The
negative temperature dependence of the NS2 melt is due to its
higher thermal expansion coefficient, which should be correlated
with the smaller average bond strength of the NS2 melt than that
of silica (Mysen and Richet, 2019). A comparison of the derived κ
value of the NS2melt (obtained using the laser flashmethod) with
that obtained using the transient hot-wire method (Hayashi et al.,
2001) revealed that the κ values obtained using the two
measurement techniques agreed well at temperatures close to
300 K, whereas the κ value obtained using the transient hot-wire
method significantly decreased at temperatures higher than
750 K. At 1250 K, the κ value of the NS2 melt obtained using
the laser flash method was more than three times higher than that
obtained using the transient hot-wire method. This difference,
depending on the measurement technique, has long been
discussed by researchers, and the following indications have
been suggested (Mills, 2016; Mills and Däcker, 2017):

1) The κ value obtained using the laser flash method would
contain the contribution of radiation conduction, in
comparison with that obtained using the transient hot-wire
method.

2) The κ value measured using the transient hot-wire method is
expected to be influenced by electrical leakage from the hot
wire to the melt.

The former indication was examined by Shibata et al. (2005),
who concluded that radiative components do not significantly
affect the obtained thermal conductivity. In addition, previous
reports (Takeuchi et al., 1983; Kang et al., 2013) have confirmed
that the experimental error caused by current leakage during
thermal conductivity measurement is insignificant for sodium
silicate melts. The reason for the disagreement between the
observed values remains unclear; however, both methods
typically demonstrate a similar tendency in terms of
compositional dependence. The present study considered the κ
value obtained using the laser flash method for the discussion.

DISCUSSION

Contribution of Diffusive Vibration Mode
Hiroshima et al. (2008) proposed that the heat conduction of
silicate melts and glasses is dominated by propagative vibration
modes (i.e., phonons), which have been successfully used to

explain the heat conduction in crystalline materials with high
rigidity. In contrast, heat conduction in low-rigidity non-
crystalline solids tends to be controlled by diffusive vibration
modes (i.e., diffusons), which do not have well-defined wave
vectors, limiting their contribution to heat conduction (Sørensen
et al., 2021). To clarify whether phonons are the main carriers of
heat in silicate melts and glasses, the present study estimates the
contribution of the diffusive mode (κdiff) based on a recently
developed model (Agne et al., 2018):

κdiff ≈
ρ
−(2

3)
0 kB
2π3v3

(kBT
h

)4 ∫0.95θDT−1

0
( x5ex

(ex − 1)2)dx, (9)

where ρ0 denotes the atomic number density, kB denotes the
Boltzmann’s constant, ] represents the velocity of sound, T
denotes the temperature, Z � h(2π)−1 denotes the reduced
Planck’s constant, θD refers to the Debye temperature, and
x � Zω(kBT)−1, where ω represents the frequency. Here, θD is
estimated using Eq. 10 (Sørensen et al., 2021):

θD � Z(6π2ρ0)1/3vk−1B . (10)

Figure 2A depicts the temperature dependence of the sound
velocity (]) of the silica and NS2 compositions. The value of ] for
the silica glass and melt was estimated using the reported Young’s
modulus (Carnevale et al., 1964), as shown in Eq. 11 (Inaba et al.,
2001):

v �

E

2ρ
,

√
(11)

where E represents the Young’s modulus. For the NS2
composition, the reported ] values of the glass (Hiroshima
et al., 2008) and melt (Hayashi et al., 2011) are shown in the
figure. The ] for silica gradually increased with increasing
temperature, whereas that for NS2 decreased with increasing
temperature. The estimated κdiff values were compared with the
experimental thermal conductivities (κexp) of the silica and NS2
compositions obtained using the laser flash method (Figure 2B).
As shown in the figure, the contribution of κdiff to κexp is less than
30%, indicating that the contribution of the diffusive vibration
mode is limited to the thermal conduction of the selected silicate
systems, whereas the propagative mode (i.e., phonons)
contributes significantly to the heat conduction.

Phonon Mean Free Path
When the phonon is the main carrier of heat in the system, it is
meaningful to relate the phonon MFP to the structure. Assuming
that the heat conduction in the non-crystalline silica and NS2
composition is completely dominated by the propagative mode
(i.e., phonon), the phonon MFP is estimated using Eq. 1.
Figure 3A depicts the estimated phonon MFP (l) of the silica
and NS2 compositions. The value of l for the silica glass was
approximately 0.6 nm at 300 K, whereas that for the NS2 glass
was close to 0.4 nm at 300 K. Figures 3B,C depict the total
structure factor S(q) and total correlation function (T(r))
derived from S(q). As shown in Figure 3C, T(r) exhibited
major peaks at 0.163, 0.233, 0.264, and 0.316 nm, which could
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be assigned to the Si-O, Na-O, O-O, and Si-Si correlations (Saito
et al., 2016), respectively. The l value of the NS2 glass was slightly
larger than the length of the Si-Si correlation (Figure 3C). The l
value of the silica glass was close to 0.6 nm, which is close to the
distance from a silicon atom to its second neighbor silicon atom
(Si-Si2nd) (Waseda and Toguri, 1978). These results indicate that

the value of l should be decreased by breaking the silicate network
structure with the addition of a modifier cation (i.e., sodium
cation). This tendency agrees with the general interpretation of
the contribution of network modifiers to the thermal conductivity
of non-crystalline silicate materials (Nishi et al., 2018). Based on
the temperature dependence of l (Figure 3A), the l value of the

FIGURE 2 | (A) Velocity of sound for the silica and NS2 glass and melt. (B) Comparison of the estimated contribution of the diffusive vibration mode (κdiff ) with the
experimental thermal conductivity (κexp).

FIGURE 3 | (A) Estimated phonon mean free path of the silica and NS2 glass and melt. (B) S(q) of the NS2 glass at 300 K. (C) Total correlation function [T(r)] of the
NS2 glass at 300 K. Inset: schematic illustrations of the structure composed of SiO4 tetrahedra with the typical range of interatomic distance between two silicon atoms
(Waseda and Toguri, 1978).
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silica composition slightly decreased with increasing temperature,
whereas the opposite tendency was observed for the NS2
composition. The l values of the silica and NS2 compositions
were similar in the temperature range of 1,250–1500 K. Although
the detailed mechanism of these contrasting temperature
dependences remains unresolved, it has been reported that the
number of small ring species (“e.g., 3-membered ring”) increases
with increasing temperature for the silica melt, which is mainly
composed of larger ring species, such as 4–6 membered rings
(McMillan et al., 1994; Zhou et al., 2021). The formation of such a
“defect” structure (i.e., 3-membered ring) is expected to decrease
the phononMFP of silica by elevating the temperature. In the case
of the NS2 melt, previous in situ Raman experiments (Maehara
et al., 2005; Malfait et al., 2008; Mysen and Frantz, 1992) have
quantified the Qn species [i.e., SiO4 unit with (n � 0, 1, 2, 3, or 4)
bridging oxygen atoms connected to the silicon atom] in sodium
silicate melts. They suggest that NS2 glass is mainly composed of
Q3 species and the speciation reaction 2Q3 � Q2 + Q4 proceeds to
the right-hand side with an increase in temperature, resulting in
an increase inQ4 species. TheQ4 species is expected to contribute
to an increase in the l value of the sodium silicate melts. To prove
the reasonability of these speculations, the influence of the ring
structure and Qn distribution on the l value of non-crystalline
silicate materials should be carefully examined in future work.

CONCLUSION

The thermal conductivities of the silica and NS2 glasses and
melts were carefully derived based on the data obtained using
the laser flash method. The experimental data was compared
with the estimated contributions of the diffusive vibration
mode. The present study confirms that the contribution of
the diffusive vibration mode is insignificant for the present
silicate system, indicating that the propagative vibration
mode (i.e., phonons) mainly contributes to heat
conduction. The decrease in the thermal conductivity of the
silica glass with the addition of Na2O can be attributed to the
decrease in the phonon MFP of the glass at 300 K. Although the
phonon MFP of silica is similar to that of the NS2 melt at
temperatures higher than 1250 K, the thermal conductivity of
the silica melt is higher than that of the NS2 melt, which can be

attributed to the difference in the velocity of sound.
Experimental data on the velocity of sound for the molten
oxide are quite limited; however, this data is expected to be
essential for understanding the mechanism of heat conduction
in silicate melts at elevated temperatures. Thus, more
measurements are required for the sound velocity of silicate
melts at elevated temperatures.
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