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In this work, without introducing mass-in-mass units or inertial amplification mechanisms,
we show that two Bragg atomic chains can form an acoustic metamaterial that possesses
different types of bandgaps other than Bragg ones, including local resonance and inertial
amplification-like bandgaps. Specifically, by coupling masses of one monatomic chain to
the same masses of a diatomic or triatomic chain, hybrid bandgaps can be generated and
further be switched through the adjustment of the structural parameters. To provide a
tuning guidance for the hybrid bandgaps, we derived an analytical transition parameter
(p-value) for the mass-coupled monatomic/diatomic chain and analytical discriminants for
the mass-coupled monatomic/triatomic chain. In our proposed mass-coupled
monatomic/triatomic chain system, each set of analytical discriminants determines a
hybrid bandgap state and a detailed examination reveals 14 different bandgap states.
In addition to bandgap switching, the analytical p-value and discriminants can also be used
as a guide for designing the coupled-chain acoustic metamaterials. The relations between
the mass-coupled monatomic/triatomic chain system and a three-degree-of-freedom
(DOF) inertial amplification system further indicate that the band structure of the former is
equivalent to that of the latter through coupling masses by negative dynamic stiffness
springs.
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INTRODUCTION

Being classic textbook models that can explain lattice vibrations in solid state physics, one-
dimensional atomic chains can capture the most fundamental properties of phononic crystals
(PCs) (Kittel et al., 1996; Hofmann, 2015), which are known for having Bragg bandgaps that can
suppress the propagation of mechanical waves (Deymier, 2013; Khelif and Adibi, 2015). Over the
past decade, based on PCs that contain the simplest spring-mass systems in a unit cell, some
important advances in the domains of nonlinear wave guides (Narisetti et al., 2010; Porubov
and Andrianov, 2013; Ganesh and Gonella, 2015; Fang et al., 2016), topological edge states (Pal
et al., 2018; Al Ba’ba’a et al., 2019), and diode-like acoustic structures (Vila et al., 2017; Attarzadeh
et al., 2018) have been achieved. The atomic chains have also been used to explain nonlocal
interactions of the panels of origami metamaterials (Pratapa et al., 2018). Despite being
an idealized spring-mass lattice system, the simplest atomic chains can capture the bandgap
phenomenon of PCs and to which other bandgap-generation mechanisms can be introduced.
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Since the properties of the Bragg bandgaps depend heavily on
the lattice constant, it is difficult to achieve low-frequency
bandgaps if not increasing the size of the periodic cell. By
introducing mass-in-mass units to a monatomic lattice system,
acoustic metamaterials exhibiting local resonance (LR) bandgaps
independent of the spatial periodicity can be obtained (Huang
et al., 2009). Acoustic metamaterials have attracted significant
interest due to their unusual mechanical properties such as
subwavelength bandgaps, negative effective mass density, or
negative effective modulus (Liu et al., 2000; Li and Chan,
2004; Fang et al., 2006; Lazarov and Jensen, 2007; Yao et al.,
2008; Huang and Sun, 2010; Huang and Sun, 2012). The concept
of infinite mass-in-mass atomic chains have been extended to the
design of continuum structures such as elastic metamaterial rods
(i.e., through the homogenization method), beams, plates
or pillared metamaterial (i.e., surfaces that consist of pillars or
branching substructures) in which longitudinal, lateral or flexural
vibrations can be suppressed (Yu et al., 2006; Kundu et al., 2014;
Zhu et al., 2014; Liu et al., 2015; MuhammadLim, 2019; Jin et al.,
2021). Although LR bandgaps are low-frequency ones compared
to Bragg bandgaps, several researchers have attempted to further
push the bandgaps to lower frequencies without adding extra
masses. By introducing internal couplings to mass-in-mass
lattices through negative stiffness springs, Hu et al. recently
showed that multiple bandgaps and ultra-low resonance
bandgaps can be achieved without adding extra masses (Hu
et al., 2017; Hu et al., 2019). In addition to mass-in-mass
units, inertial amplification mechanisms have also been

introduced to mass-spring chains to generate wide and deep
low-frequency bandgaps (Yilmaz et al., 2007; Yilmaz and Hulbert,
2010; Taniker and Yilmaz, 2013; Yilmaz et al., 2017). Frandsen
et al. investigated an elastic rod with a periodically attached
inertial amplification mechanism and found the characteristic
double-peak phenomenon in bandgap regions (Frandsen et al.,
2016). Through deriving the effective mass of a modified
monatomic chain with a lightweight attached mass-link
system, Bennetts et al. obtained its low-frequency vibration-
isolation properties (Bennetts et al., 2019). Recently, Li and
Zhou proposed a periodic mass-spring-truss chain based on a
scissor-like structure and inertial amplification to achieve low-
frequency vibration attenuation (Li and Zhou, 2021). One
interesting question arises: Can we generate local resonance or
inertial amplification bandgaps in the band structures of atomic
chains without mass-in-mass units or inertial amplification
mechanisms?

To solve the above question, we introduce mass coupling to
two Bragg atomic chains at certain masses. Specifically, as
illustrated in Figure 1A, considering a fundamental
configuration of a mass-coupled atomic chain, where a
diatomic chain is coupled to a monatomic chain. It is well
known that, depending on the existence of certain springs, the
mass-coupled atomic chain can be degenerated to a local resonant
(LR) acoustic metamaterial with mass-in-mass units (see
Figure 1B) or an alternating mass-spring Bragg system
(i.e., also known as phononic crystal) showed in Figure 1C.
What we are going to demonstrate is that the local resonance, as

FIGURE 1 | (A) The mass-coupled atomic chain coupled by a diatomic chain and amonatomic chain. (B)One-resonator mass-in-mass atomic chain. (C) Diatomic
chain.
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well as the inertial amplification-like (IA-like) bandgaps can be
opened through adjusting parameters without altering system
configuration (i.e., without performing mechanical cutting of
certain springs or arranging the inertial amplification mechanisms).

In this work, we first obtain the governing equations of the
mass-coupled atomic chain with n-degree-of-freedom (DOF) by
analytical mechanics. Then, the analytical expressions of band
structures, anti-resonant frequencies, and edge frequencies of
passbands are deduced. In Section 3.1, through discussions about
mass-coupled monatomic/diatomic chain, we show that LR
bandgaps can be generated simply by performing parametric
switching, which is characterized by an inherent transition
parameter (p-value). The different bandgap behaviors of mass-
coupled monatomic/triatomic chain are classified by different
sets of discriminants in Section 3.2. Finally, the relations between
the mass-coupled monatomic/triatomic chain system and a 3-
DOF inertial amplification system are further discussed in
Section 3.3.

MODEL DESCRIPTIONS AND TRANSITION
CONDITIONS OF HYBRID BANDGAPS

The mass-coupled atomic chain, as illustrated in Figure 1A, can
be generalized as a model shown in Figure 2A, where a
polyatomic chain is coupled to a monatomic chain. There are
arbitrary n − 1 (n≥ 2) masses connected by n different springs
between coupled masses in a unit cell. Obviously, there are n
degrees of freedom in this system, the displacements of the
coupled mass Mj and other masses mi,j(1≤ i≤ n − 1) are
respectively marked as Ujand ui,j for the j-th unit cell.

The band structures of this infinite mass-coupled atomic chain
can be deduced as follows. First, we list all expressions about
kinetic and potential energies related to the displacements:

T � 1
2
m1,j _u

2
i,j

V � 1
2
k1(u1,j − Uj)2 + 1

2
k2(u1,j − u2,j)2, for i � 1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

T � 1
2
mi,j _u

2
i,j

V � 1
2
ki(ui,j − ui−1,j)2 + 1

2
ki+1(ui,j − ui+1,j)2, for 2≤ i≤ n − 2,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

T � 1
2
mn−1,j _u

2
n−1,j

V � 1
2
kn(un−1,j − Uj+1)2 + 1

2
kn−1(un−1,j − un−2,j)2, for i � n − 1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

And

T � 1
2
Mj

_U
2
j

V � 1
2
k1(Uj − u1,j)2 + 1

2
kn(Uj − un−1,j−1)2 + 1

2
k(Uj − Uj−1)2 + 1

2
k(Uj − Uj+1)2.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4)

According to the Lagrange equation for conservative systems, i.e.,

zL

z�u
− d

dt
(zL
z _�u
) � 0, (5)

Where L � T − V is Lagrangian, �u is generalized displacement, and
_�u is generalized velocity, the governing equations can be derived as

m1,j€u1,j + k1(u1,j − Uj) + k2(u1,j − u2,j) � 0

mi,j€ui,j + ki(ui,j − ui−1,j) + ki+1(ui,j − ui+1,j) � 0 (2≤ i≤ n − 2)
mn−1,j€un−1,j + kn(un−1,j − Uj+1) + kn−1(un−1,j − un−2,j) � 0

Mj
€Uj + k1(Uj − u1,j) + kn(Uj − un−1,j−1) + k(2Uj − Uj−1 − Uj+1) � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

Then the band structures can be obtained by solving the
following eigenvalue problem according to Bloch theorem
(Huang et al., 2009; Hu et al., 2017; Hu et al., 2019):∣∣∣∣K − ω2M

∣∣∣∣� 0, (7)

Where

K�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2k(1 − cos(qa)) + k1 + kn −k1 0 / 0 −kne−iqa

−k1 k1 + k2 −k2 / / 0
0 −k2 1 1 / «
« / 1 1 −kn−2 0
0 / / −kn−2 kn−2 + kn−1 −kn−1

−kneiqa 0 / 0 −kn−1 kn−1 + kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Mj 0 0 / 0 0
0 m1,j 0 / / 0
0 0 1 1 / «
« / 1 1 0 0
0 / / 0 mn−2,j 0
0 0 / 0 0 mn−1,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(8)

q is the Bloch wave vector, ω is circular frequency, and a is lattice
constant.

The coefficient polynomial of Eq. 7 can be expressed as

2x⎡⎢⎢⎣∏n
i�1

ki + k⎛⎝∏n−1
i�1

mi
⎞⎠f1(ω)⎤⎥⎥⎦ − ω2⎛⎝∏n

i�1
mi
⎞⎠f2(ω) � 0, (9)

Where

FIGURE 2 | (A) The mass-coupled atomic chain with n − 1 different
masses between coupled masses in a unit cell (n-DOF), (B) The mass-
coupled monatomic/diatomic chain (2-DOF), (C) The mass-coupled
monatomic/triatomic chain (3-DOF).
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⎧⎪⎨⎪⎩ x � 1 − cos(qa)
mi � mi,j(1≤ i≤ n − 1)
mn � M � Mj

, (10)

And the analytical formulas of f1(ω) and f2(ω) are listed in
Appendix A. Coefficient polynomial of x determines the
existence of the anti-resonant frequencies as well as their
values according to Eq. 9 (Hu et al., 2017; Yilmaz et al., 2017;
Bennetts et al., 2019; Hu et al., 2019; Li and Zhou, 2021).

So anti-resonant frequencies are acquired by solving the
following expression:

∏n
i�1

ki + k⎛⎝∏n−1
i�1

mi
⎞⎠f1(ω) � 0. (11)

It is worth noting that in band structures any single curve of
passbands is continuous when q ∈ (0, πa)(x ∈ (0, 2)). Meanwhile,

FIGURE 3 | Band structures of the mass-coupled monatomic/diatomic chain (2-DOF). (A) The anti-resonant frequency is between the adjacent frequencies
atq � 0(x � 0) corresponding top>1, (B) the anti-resonant frequency line coincides with a passband curve corresponding top � 1, (C) the anti-resonant frequency is
outside two adjacent frequencies corresponding top< 1, (D) p< 1 and Bragg bandgap disappears.

FIGURE 4 | Isosurfaces of the ratios of the width of bandgap region to the maximum frequency of passbands for (A) LR bandgap, and (B) Bragg bandgap.
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the passbands will not intersect with the anti-resonant frequency
line. According to Eq. 9, if an anti-resonant frequency solved by
Eq. 11 is simultaneously the solution of edge frequency of
passband, the corresponding passband will be a straight-line
coinciding with this anti-resonant frequency line. Therefore,
one can determine whether a bandgap is LR bandgap by
comparing the roots of Eq. 11 with edge frequencies of the
passbands. The edge frequencies can be obtained by Eq. 9:

ω2⎛⎝∏n
i�1

mi
⎞⎠f2(ω) � 0, x � 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4[∏n

i�1
ki + k(∏n−1

i�1
mi)f1(ω)] − ω2(∏n

i�1
mi)f2(ω) � 0, x � 2.

There is a LR bandgap around a root if the root of Eq. 11 is
between the adjacent two solutions of ω2f2(ω) � 0.

Based on the above inference, by comparing distributions of
solutions corresponding to Eqs 11, 12, we can derive an analytical
parameter (p-value) or analytical discriminants describing the
transition conditions between the LR bandgaps and Bragg
bandgaps. The bandgap transition p-value will be defined and
its analytical expression will be given in the next section (Section
3.1). The discriminants for a monatomic/triatomic chain will also
be given in the next section (Section 3.2).

RESULTS AND DISCUSSION

P-value in Mass-coupled Monatomic/
Diatomic Chain
Let’s first discuss the simplest 2-DOF case where a monatomic
chain is coupled to a diatomic chain as illustrated in Figure 2B.
According to theories in Section 2 and Eq. (A3) in Appendix A,
the transition condition from the LR bandgap to Bragg bandgap
can be written as���������������

(M +m)(k1 + k2)
Mm

√
<
��������������
k1k2 + kk1 + kk2

km

√
, (13)

i.e.,

p � k(k1 + k2)(M +m)
(k1k2 + kk1 + kk2)M< 1, (14)

Where p is defined as the bandgap transition parameter (p-value).
If p< 1, there is a Bragg bandgap. Bragg bandgap turns into LR
bandgap when p> 1.

The expression of p can be simplified as

p � 1 +
k
M − k1k2

(k1+k2)m
k
m + k1k2

(k1+k2)m
� 1 +

k
M − keff

m

k
m + keff

m

, (15)

FIGURE 5 | Different bandgap states when anti-resonant frequencies are absent in the mass-coupled monatomic/triatomic chain system. (A) State “BB”: the first
and second bandgaps are Bragg bandgaps. (B) State “PB”: the first Bragg bandgap closes. (C) State “BP”: the second Bragg bandgap closes. (D) State “PP”: both first
and second bandgaps disappear.
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Where keff is effective stiffness. It is obvious that bandgaps can
be switched to different types depending on⎧⎪⎪⎪⎨⎪⎪⎪⎩

k

M
> keff

m
, Bragg bandgap to LR bandgap

k

M
< keff

m
, LR bandgap to Bragg bandgap

. (16)

In classical acoustic metamaterials with local resonators, as
shown in Figure 1B, the value of keff is zero (k1 � 0 or
k2 � 0 ), on the contrary, we get k � 0 in a Bragg system (see
Figure 1C).

Figure 3 shows the transition process from LR bandgap to
Bragg bandgap with respect to the change of p-value. If p> 1, the
anti-resonant frequency is between the adjacent frequencies of
passbands at q � 0(x � 0), which leads to the occurrence of an

anti-resonant peak in the bandgap region. Bragg bandgap appears
when the anti-resonant frequency is outside the adjacent
passband frequencies corresponding top< 1. As shown in
Figure 3D, Bragg bandgap will vanish in some situations due
to the fact that the spring with stiffness k acts as a waveguide that
counteracts and diminishes the Bragg scattering effect compared
to the Bragg system.

In addition, when there is a LR bandgap, the ratio of the width
of bandgap region to the maximum frequency of passbands in
band structure can be calculated by

ηLR �
�
2

√ −
���������������������������������������������
1 + 4mk

(M+m)(k1+k2) −
������������������������������(1 + 4mk

(M+m)(k1+k2))2 − 16Mm[k1k2+k(k1+k2)]
(M+m)2(k1+k2)2

√√
�����������������������������������������������[1 + 4mk

(M+m)(k1+k2)] + ������������������������������(1 + 4mk
(M+m)(k1+k2))2 − 16Mm[k1k2+k(k1+k2)]

(M+m)2(k1+k2)2
√√ .

(17)

FIGURE 6 | Different bandgap states when there is only one anti-resonant frequency in the mass-coupled monatomic/triatomic chain system. (A) State “LB”: the
first bandgap is LR bandgap and second one is Bragg bandgap. (B) State “LP”: the second Bragg bandgap disappears. (C) State “BL”: the first bandgap is Bragg
bandgap and second one is LR bandgap. (D) State “PL”: the first Bragg bandgap has vanished and only the LR bandgap is left. (E) State “LL”: the anti-resonant
frequency line coincides with a curve of passband, which generates an enlarged LR bandgap.
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But for Bragg bandgap, the ratio becomes

ηBG �

������������������������������������������������������������������
1 + 4mk

(M +m)(k1 + k2) +

���������������������������������������������(1 + 4mk

(M +m)(k1 + k2))2

− 16Mm[k1k2 + k(k1 + k2)]
(M +m)2(k1 + k2)2

√√√√√
�
2

√

−

������������������������������������������������������������������
1 + 4mk

(M +m)(k1 + k2) −

���������������������������������������������(1 + 4mk

(M +m)(k1 + k2))2

− 16Mm[k1k2 + k(k1 + k2)]
(M +m)2(k1 + k2)2

√√√√√
�
2

√
(18)

Noting that Eq. 17 or Eq. 18 can be expressed by three
independent variables,

�x � k1k2
(k1 + k2)2, �y � k

(k1 + k2), �z � m

M
, (19)

So Eqs 17, 18 can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηLR �
�
2

√ �����
1 + �z

√ −
������������������������������������
1 + �z + 4�z�y −

�����������������������(1 + �z + 4�z�y)2 − 16�z(�x + �y)√√
������������������������������������
1 + �z + 4�z�y +

�����������������������(1 + �z + 4�z�y)2 − 16�z(�x + �y)√√

ηBG �

������������������������������������
1 + �z + 4�z�y +

�����������������������(1 + �z + 4�z�y)2 − 16�z(�x + �y)√√
−

������������������������������������
1 + �z + 4�z�y −

�����������������������(1 + �z + 4�z�y)2 − 16�z(�x + �y)√√
�
2

√ �����
1 + �z

√

.

(20)

The discriminant of Eq. 16 turns to

{ �z�y> �x, Bragg bandgap to LR bandgap
�z�y< �x, LR bandgap to Bragg bandgap

, (21)

Hence the bandgap transition condition is separated by a
hyperbolic paraboloid. The isosurfaces of ratios for LR bandgap
and Bragg bandgap are plotted in Figure 4 respectively. One can

FIGURE 7 | Different bandgap states when there are two anti-resonant frequencies in the mass-coupled monatomic/triatomic chain system. (A) State “LⅡB”: the
first bandgap is a LR bandgap with double anti-resonant peaks and second one is Bragg bandgap. (B) State “LⅡP”: the second Bragg bandgap becomes a passband.
(C) State “BLⅡ”: Bragg bandgap and LR bandgap with double anti-resonant peaks. (D) State “PLⅡ”: the first Bragg bandgap vanishes. (E) State “LL”: there are two LR
bandgaps.
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construct a wide bandgap at low frequency through changing the
material parameters according to the isosurfaces.

Bandgap States of Mass-coupled
Monatomic/triatomic Chain Classified by
Discriminants
In this section, we study the 3-DOF mass-coupled monatomic/
triatomic chain as shown in Figure 2C. Here the transition
parameter p-value will turn to several sets of discriminants
determining the transition conditions between LR bandgaps
and Bragg bandgaps. We note that as the number of degrees
of freedom further increases, the complexity of the problem
sharply arises despite the number of material parameters only
increase by two compared to the 2-DOF system.

According to Eqs 9, 11, 12 and Eq. (A4), the equations about
nonzero edge frequencies of passbands can be obtained,

Mm1m2ω
4 − ((k1 + k3)m1m2 +M(k1m2 + k2(m1 +m2)

+ k3m1))ω2 + (k1k2 + k1k3 + k2k3)(m1 +m2 +M) � 0 (at x � 0),
(22)

Mm1m2ω
6 − [(k1 + k3 + 4k)m1m2 +M(k1m2 + k2(m1 +m2)

+ k3m1)]ω4 + [(k1k2 + k1k3 + k2k3)(m1 +m2 +M) + 4k(k1m2

+ k2(m1 +m2) + k3m1)]ω2 − 4(k1k2k3 + k(k1k2 + k1k3 + k2k3))
� 0 (at x � 2), (23)

And anti-resonant frequencies can be acquired by

m1m2ω
4 − (k1m2 + k2(m1 +m2) + k3m1)ω2

+(k1k2k3
k

+ (k1k2 + k1k3 + k2k3)) � 0.
(24)

The distribution of solutions of these equations are discussed
in detail in Appendix B. There are total 14 different bandgap
behaviors, referred to as bandgap states, in our mass-coupled
monatomic/triatomic chain according to Eq. (B16). For the sake
of convenience, we use “L,” “B,” and “P” to represent the normal
LR bandgap, the Bragg bandgap, and the passband, respectively.
When the values of anti-resonant frequencies solved by Eq. 24 are
conjugate imaginary numbers (i.e., anti-resonant frequencies
don’t actually exist), there are four different states as shown in
Figure 5. The states from (a) to (d) correspond to sets of
discriminants from (1) to (4) in Eq. (B16), respectively.
Obviously, there are no LR bandgaps due to non-existence of
anti-resonant frequencies.

Figure 6 shows five bandgap states, corresponding to sets of
discriminants from (5) to (9) in Eq. (B16), where there is only one
anti-resonant frequency. In Figure 6A, the anti-resonant
frequency lies between edge frequencies of passbands, which
leads to the formation of LR bandgap. The second bandgap
can turn into LR bandgap with tuning of parameters as shown
in Figures 6C,D. A widened LR bandgap is generated in
Figure 6E due to coincidence of the anti-resonant frequency
line and a dispersion curve.

FIGURE 8 | Vibration modes of a unit cell at certain points in band structures for the (A) LR acoustic metamaterial with two resonators in series
(k1 � k2 � 1, k3 � 0, k � 2, M � 0.5, m1 � m2 � 1), (B) State “LL” (k1 � k2 � k3 � 1, k � 2, M � 4, m1 � m2 � 1), and (C) State “LⅡB”
(k1 � k2 � k3 � 1, k � 2, M � 0.5, m1 � m2 � 1). The purple arrows indicate the vibration directions and the lengths of the arrows represent the relative amplitudes. The
corresponding amplitudes are zero when there are no arrows above the masses.
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When there are two anti-resonant frequencies, other five
bandgap states arise as shown in Figure 7, corresponding to
sets of discriminants from (10) to (14) in Eq. (B16). A LR
bandgap with double anti-resonant peaks is observed in
Figures 7A–D. In order to distinguish the LR bandgap with
double anti-resonant peaks from the normal LR bandgap,
which is labeled as “L,” the former is represented by the
symbol “LⅡ.” In addition, to further reveal the differences
between the LR bandgap with double anti-resonant peaks
and a normal one, vibration modes of a unit cell at certain
points in band structures are plotted in Figure 8. In the LR
metamaterial with two resonators in series, the anti-resonant
frequencies separate two different vibration modes as shown in
Figure 8A. Although the vibrations are attenuated and weak,
all the masses vibrate in one direction at point A while the
vibration direction of the coupled mass is different from those
of the resonators at point B. In the state “LL” of the
monatomic/triatomic chain system, the relative vibration
directions of the masses are the same on both sides of the
gap separated by the anti-resonant frequency as shown in
Figure 8B. In the LR bandgap region with double anti-
resonant peaks as shown in Figure 8C, two dispersion
curves CO and DO that represent evanescent waves come
close as frequency increases until the two curves lock

together at point O, forming a pair of attenuating
oscillatory waves, which later unlock into a pair of
evanescent waves (Mace and Manconi, 2012). The relative
vibration directions of the masses change at point O, so the
vibration modes will ultimately change while passing through
the LR bandgap region with double anti-resonant peaks.

In addition, the weak coupling phenomenon, known as
veering that occurs when branches of the dispersion curves
interact in coupled periodic waveguide system, is also observed
in band structures in Figure 9 (Mace and Manconi, 2012). As
shown in Figure 9, two dispersion curves ab and cd come close
together as frequency increases then the curves veer apart, which
results in an extremely narrow LR bandgap.

Relations Between the Mass-coupled
Monatomic/triatomic Chain and Inertial
Amplification System
In the previous section, we find that under certain parameters
there is a double anti-resonant peak in the LR bandgap region of
the mass-coupled monatomic/triatomic chain, which is also a
representative characteristic of the bandgap behaviors possessed
in a periodic structure with inertial amplification mechanisms
(Frandsen et al., 2016). Next, we will show that IA-like bandgaps

FIGURE 9 | State “LL”: (A) the dispersion curves ab and cd veer apart in dotted circle region. (B) Enlarged view of the veering region.

FIGURE 10 | Schematic diagrams of the effective monatomic chains for (A) the mass-coupled monatomic/triatomic chain (3-DOF), and (B) the inertial amplification
system of 3-DOF.
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can exist in band structures of mass-coupled monatomic/
triatomic chain.

As shown in Figure 10B, in a classical 3-DOF inertial
amplification system (Yilmaz et al., 2017), an added mass ma is
connected to the coupled masses by two massless rigid rods in a
unit cell with a very small angle θ between the rigid rods and the
horizontal line. The characteristic determinant of band structure is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k1 + k3 − (M + 1

2
ma[1 + cos qa + cot2 θ(1 − cos qa)])ω2 −k1 −k3e−iqa

−k1 k1 + k2 −m1ω
2 −k2

−k3eiqa −k2 k2 + k3 −m2ω
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣� 0,

(25)

Which can be rewritten as[M + 1
2
ma(1 + cot2 θ)][m1m2ω

6 − (k1m2 + k2(m1 +m2)
+ k3m1)ω4 + (k1k2 + k1k3 + k2k3)ω2] − (k1 + k3)m1m2ω

4

+ (k1k2 + k1k3 + k2k3)(m1 +m2)ω2 − 2k1k2k3

+ (1
2
ma(1 − cot2 θ)[m1m2ω

6 − (k1m2 + k2(m1 +m2)

+ k3m1)ω4 + (k1k2 + k1k3 + k2k3)ω2] + 2k1k2k3) cos qa � 0.

(26)

The mass-coupled atomic chain and the inertial amplification
system can be simplified as effectivemonatomic chains. The effective
stiffness and mass for the mass-coupled atomic chain are listed as

FIGURE 11 | Band structures of the mass-coupled monatomic/triatomic chains and inertial amplification systems of 3-DOF and their corresponding dimensionless
dynamic effective masses. The parameters are listed as follows: (A) k1 � k2 � k3 � 1, k � 2, M � 0.5 , m1 � m2 � 1, ma � 0.4 , θ � π/18,. (B)
k1 � k3 � k � 1, k2 � 10, M � 1 , m1 � 15,m2 � 10for the mass-coupled atomic chain andk1 � k2 � k3 � 1,M � m1 � m2 � 1,ma � 0.4 , θ � π/18for the inertial
amplification system, (C) k1 � k2 � k3 � 1, k � 1

4 (1 − cot2(π/18))ω2 , M � 2,m1 � m2 � 1 for the mass-coupled atomic chain and k1 � k2 � k3 � 1,M � m1 �
m2 � 1,ma � 1 , θ � π/18 for the inertial amplification system.
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�k1 � k1k2k3
(k1k2 + k1k3 + k2k3) + k

�Meff 1 �

Mm1m2ω
4 − [M(k1m2 + k2(m1 +m2) + k3m1)

+(k1 + k3)m1m2]ω2

+(k1k2 + k1k3 + k2k3)(M +m1 +m2)
km1m2ω

4 − k(k1m2 + k2(m1 +m2) + k3m1)ω2

+ k(k1k2 + k1k3 + k2k3) + k1k2k3

�k1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(27)

And

�k2 � k1k2k3
k1k2 + k1k3 + k2k3

�Meff 2 �

(M +ma)m1m2ω
4 − [(M +ma)(k1m2 + k2(m1 +m2)

+ k3m1) + (k1 + k3)m1m2]ω2

+(k1k2 + k1k3 + k2k3)(M +ma +m1 +m2)
1
4
ma(1 − cot2 θ)[m1m2ω

6 − (k1m2 + k2(m1 +m2)
+ k3m1)ω4 + (k1k2 + k1k3 + k2k3)ω2] + k1k2k3

�k2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

For the inertial amplification system. The dimensionless dynamic
effective masses are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Meff 1 �

�Meff 1

M +m1 +m2

Meff 2 �
�Meff 2

M +ma +m1 +m2

. (29)

Besides double anti-resonant peaks, the mass-coupled
atomic chain can also offer high attenuation in the bandgap
regions and similar width of bandgaps compared to the inertial
amplification system by adjusting material parameters (see
Figure 11A). As shown in Figures 11A,B, a wide bandgap in
low frequency can also be opened in mass-coupled
atomic chain.

In fact, the band structures of the mass-coupled atomic chain
can be exactly the same as that of an inertial amplification
system through introducing a negative dynamic stiffness k,
i.e., let

⎧⎪⎪⎨⎪⎪⎩ k � 1
4
ma(1 − cot2 θ)ω2

�M � M +ma

. (30)

As seen in Figure 11C, the band structures are identical for
these two atomic chains. The effective dynamic masses are not
exactly the same because the effective stiffnesses are different
when these two systems are simplified to monatomic chains
according to Eqs 27, 28. Thus far, we have shown that IA-like
bandgaps can exist in band structures of mass-coupled
monatomic/triatomic chain.

CONCLUSION

In this work, we propose an acoustic metamaterial formed by two
coupled Bragg atomic chains that can possess various bandgap
behaviors through the adjustment of parameters. The transition
condition between LR bandgaps and Bragg bandgaps in the mass-
coupled monatomic/diatomic chain can be characterized by an
analytical transition parameter, referred to as p-value. If p< 1,
there is a Bragg bandgap, but the Bragg bandgap turns into LR
bandgap when p> 1. The ratio of the bandgap width to the
maximum frequency of passbands is determined by three
independent variables and the bandgap transition condition is
separated by a hyperbolic paraboloid. A wide bandgap at low
frequency can be constructed through changing the material
parameters according to the isosurfaces.

The transition p-value turns to several sets of discriminants
when considering bandgap states for mass-coupled monatomic/
triatomic chain due to the increase of the degrees of freedom. After
careful classification, we find that there are 14 different sets of
discriminants, which correspond to 14 possible bandgap states. In
addition, the weak coupling phenomenon termed veering which
occurs in coupled periodic elastic systems is observed in the band
structures. The veering phenomenon can be used to construct an
extremely narrow LR bandgap. IA-like bandgaps can be opened by
adjusting parameters without requirement of changing structural
topological properties. Moreover, through coupling masses by a
negative dynamic stiffness spring, the band structure of mass-
coupled monatomic/triatomic chain system is equivalent to that of
the 3-DOF inertial-amplification periodic system.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SX and K-CC conceived and designed the main ideas together;
SX, ZX, and K-CC performed theoretical analysis; SX and K-CC
wrote the paper draft. All authors conducted subsequent
improvements to the manuscript.

FUNDING

Financial support from the National Natural Science Foundation
of China (No. 11972318) and the Opening Project of State Key
Laboratory for Strength and Vibration of Mechanical Structures
(No. SV2020-KF-16), Xi’an Jiaotong University is gratefully
acknowledged.

Frontiers in Materials | www.frontiersin.org November 2021 | Volume 8 | Article 77461211

Xu et al. Bandgaps in Mass-Coupled Atomic Chains

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


REFERENCES

Al Ba’ba’a, H., Nouh, M., and Singh, T. (2019). Dispersion and Topological
Characteristics of Permutative Polyatomic Phononic Crystals. Proc. R. Soc.
A: Math. Phys. Eng. Sci. 475 2226. doi:10.1098/rspa.2019.0022

Attarzadeh, M. A., Al Ba’ba’a, H., and Nouh, M. (2018). On theWave Dispersion
and Non-reciprocal Power Flow in Space-Time Traveling Acoustic
Metamaterials. Appl. Acoust. 133, 210–214. doi:10.1016/
j.apacoust.2017.12.028

Bennetts, L. G., Peter, M. A., Dylejko, P., and Skvortsov, A. (2019). Effective
Properties of Acoustic Metamaterial Chains with Low-Frequency Bandgaps
Controlled by the Geometry of Lightweight Mass-Link Attachments. J. Sound
Vibration 456, 1–12. doi:10.1016/j.jsv.2019.05.022

Deymier, P. A. (2013). Acoustic Metamaterials and Phononic Crystals. Berlin:
Springer Science and Business Media.

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., et al. (2006).
Ultrasonic Metamaterials with Negative Modulus. Nat. Mater 5 (6), 452–456.
doi:10.1038/nmat1644

Fang, X., Wen, J., Yin, J., and Yu, D. (2016). Wave Propagation in Nonlinear
Metamaterial Multi-Atomic Chains Based on Homotopy Method. AIP Adv. 6
(12),121706. doi:10.1063/1.4971761

Frandsen, N. M. M., Bilal, O. R., Jensen, J. S., and Hussein, M. I. (2016). Inertial
Amplification of Continuous Structures: Large Band Gaps from Small Masses.
J. Appl. Phys. 119 (12), 124902. doi:10.1063/1.4944429

Ganesh, R., and Gonella, S. (2015). From Modal Mixing to Tunable Functional
Switches in Nonlinear Phononic Crystals. Phys. Rev. Lett. 114 (5), 054302.
doi:10.1103/PhysRevLett.114.054302

Hofmann, P. (2015). Solid State Physics: An Introduction. Hoboken, NJ: JohnWiley
& Sons.

Hu, G., Tang, L., Das, R., Gao, S., and Liu, H. (2017). Acoustic Metamaterials with
Coupled Local Resonators for Broadband Vibration Suppression. AIP Adv. 7, 2.
doi:10.1063/1.4977559

Hu, G., Tang, L., Xu, J., Lan, C., and Das, R. (2019). Metamaterial with Local
Resonators Coupled by Negative Stiffness Springs for Enhanced Vibration
Suppression. J. Appl. Mech. 86, 8. doi:10.1115/1.4043827

Huang, G. L., and Sun, C. T. (2010). Band Gaps in a Multiresonator Acoustic
Metamaterial. J. Vibration Acoust. 132, 3. doi:10.1115/1.4000784

Huang, H. H., and Sun, C. T. (2012). Anomalous Wave Propagation in a One-
Dimensional Acoustic Metamaterial Having Simultaneously Negative Mass
Density and Young’s Modulus. The J. Acoust. Soc. America 132 (4), 2887–2895.
doi:10.1121/1.4744977

Huang, H. H., Sun, C. T., and Huang, G. L. (2009). On the Negative Effective Mass
Density in Acoustic Metamaterials. Int. J. Eng. Sci. 47 (4), 610–617. doi:10.1016/
j.ijengsci.2008.12.007

Jin, Y., Pennec, Y., Bonello, B., Honarvar, H., Dobrzynski, L., Djafari-Rouhani, B.,
et al. (2021). Physics of Surface Vibrational Resonances: Pillared Phononic
Crystals, Metamaterials, and Metasurfaces. Rep. Prog. Phys. 84, 8. doi:10.1088/
1361-6633/abdab8

Khelif, A., and Adibi, A. (2015). Phononic Crystals. Berlin: Springer.
Kittel, C., McEuen, P., and McEuen, P. (1996). Introduction to Solid State Physics.

New York, NY: Wiley.
Kundu, T., Nouh, M., Aldraihem, O., and Baz, A. (2014). Metamaterial Structures

with Periodic Local Resonances. San Diego, CA: Health Monitoring of
Structural and Biological Systems.

Lazarov, B. S., and Jensen, J. S. (2007). Low-frequency Band Gaps in Chains with
Attached Non-linear Oscillators. Int. J. Non-Linear Mech. 42 (10), 1186–1193.
doi:10.1016/j.ijnonlinmec.2007.09.007

Li, J., and Chan, C. T. (2004). Double-negative Acoustic Metamaterial. Phys. Rev. E
Stat. Nonlin Soft Matter Phys. 70 (5 Pt 2), 055602. doi:10.1103/
PhysRevE.70.055602

Li, Y., and Zhou, W. (2021). Bandgap and Vibration Transfer Characteristics of
Scissor-like Periodic Metamaterials. J. Appl. Phys. 130 (2). doi:10.1063/
5.0047119

Liu, Y., Su, X., and Sun, C. T. (2015). Broadband Elastic Metamaterial with Single
Negativity by Mimicking Lattice Systems. J. Mech. Phys. Sol. 74, 158–174.
doi:10.1016/j.jmps.2014.09.011

Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., et al. (2000). Locally
Resonant Sonic Materials. Science 289 (5485), 1734–1736. doi:10.1126/
science.289.5485.1734

Mace, B. R., and Manconi, E. (2012). Wave Motion and Dispersion Phenomena:
Veering, Locking and strong Coupling Effects. J. Acoust. Soc. America 131 (2),
1015–1028. doi:10.1121/1.3672647

Muhammadand Lim, C. W. (2019). Elastic Waves Propagation in Thin Plate
Metamaterials and Evidence of Low Frequency Pseudo and Local Resonance
Bandgaps. Phys. Lett. A 383 (23), 2789–2796. doi:10.1016/
j.physleta.2019.05.039

Narisetti, R. K., Leamy, M. J., and Ruzzene, M. (2010). A Perturbation Approach
for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic
Structures. J. Vibration Acoust. 132 (3). doi:10.1115/1.4000775

Pal, R. K., Vila, J., Leamy, M., and Ruzzene, M. (2018). Amplitude-dependent
Topological Edge States in Nonlinear Phononic Lattices. Phys. Rev. E 97 (3-1),
032209. doi:10.1103/PhysRevE.97.032209

Porubov, A. V., and Andrianov, I. V. (2013). Nonlinear Waves in Diatomic
Crystals. Wave Motion 50 (7), 1153–1160. doi:10.1016/
j.wavemoti.2013.03.009

Pratapa, P. P., Suryanarayana, P., and Paulino, G. H. (2018). Bloch Wave
Framework for Structures with Nonlocal Interactions: Application to the
Design of Origami Acoustic Metamaterials. J. Mech. Phys. Sol. 118, 115–132.
doi:10.1016/j.jmps.2018.05.012

Taniker, S., and Yilmaz, C. (2013). Phononic Gaps Induced by Inertial
Amplification in BCC and FCC Lattices. Phys. Lett. A 377 (31-33),
1930–1936. doi:10.1016/j.physleta.2013.05.022

Vila, J., Pal, R. K., Ruzzene, M., and Trainiti, G. (2017). A Bloch-Based Procedure
for Dispersion Analysis of Lattices with Periodic Time-Varying Properties.
J. Sound Vibration 406, 363–377. doi:10.1016/j.jsv.2017.06.011

Yao, S., Zhou, X., and Hu, G. (2008). Experimental Study on Negative Effective
Mass in a 1D Mass–spring System. New J. Phys. 10, 4. doi:10.1088/1367-2630/
10/4/043020

Yilmaz, C., and Hulbert, G. M. (2017). “Dynamics of Locally Resonant and
Inertially Amplified Lattice Materials,” in Dynamics of Lattice Materials.
Editors A. S. Phani and M. I. Hussein, 233–258. doi:10.1002/
9781118729588.ch11

Yilmaz, C., Hulbert, G. M., and Kikuchi, N. (2007). Phononic Band Gaps Induced
by Inertial Amplification in Periodic media. Phys. Rev. B 76, 5. doi:10.1103/
physrevb.76.054309

Yilmaz, C., and Hulbert, G. M. (2010). Theory of Phononic Gaps Induced by
Inertial Amplification in Finite Structures. Phys. Lett. A 374 (34), 3576–3584.
doi:10.1016/j.physleta.2010.07.001

Yu, D., Liu, Y., Wang, G., Zhao, H., and Qiu, J. (2006). Flexural Vibration Band
Gaps in Timoshenko Beams with Locally Resonant Structures. J. Appl. Phys.
100, 12. doi:10.1063/1.2400803

Zhu, R., Liu, X. N., Hu, G. K., Sun, C. T., and Huang, G. L. (2014). A Chiral Elastic
Metamaterial Beam for Broadband Vibration Suppression. J. Sound Vibration
333 (10), 2759–2773. doi:10.1016/j.jsv.2014.01.009

Zucker, I. J. (2016). 92.34 The Cubic Equation - A New Look at the Irreducible
Case. Math. Gaz. 92 (524), 264–268. doi:10.1017/s0025557200183135

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Xu, Xu and Chuang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Materials | www.frontiersin.org November 2021 | Volume 8 | Article 77461212

Xu et al. Bandgaps in Mass-Coupled Atomic Chains

https://doi.org/10.1098/rspa.2019.0022
https://doi.org/10.1016/j.apacoust.2017.12.028
https://doi.org/10.1016/j.apacoust.2017.12.028
https://doi.org/10.1016/j.jsv.2019.05.022
https://doi.org/10.1038/nmat1644
https://doi.org/10.1063/1.4971761
https://doi.org/10.1063/1.4944429
https://doi.org/10.1103/PhysRevLett.114.054302
https://doi.org/10.1063/1.4977559
https://doi.org/10.1115/1.4043827
https://doi.org/10.1115/1.4000784
https://doi.org/10.1121/1.4744977
https://doi.org/10.1016/j.ijengsci.2008.12.007
https://doi.org/10.1016/j.ijengsci.2008.12.007
https://doi.org/10.1088/1361-6633/abdab8
https://doi.org/10.1088/1361-6633/abdab8
https://doi.org/10.1016/j.ijnonlinmec.2007.09.007
https://doi.org/10.1103/PhysRevE.70.055602
https://doi.org/10.1103/PhysRevE.70.055602
https://doi.org/10.1063/5.0047119
https://doi.org/10.1063/5.0047119
https://doi.org/10.1016/j.jmps.2014.09.011
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1126/science.289.5485.1734
https://doi.org/10.1121/1.3672647
https://doi.org/10.1016/j.physleta.2019.05.039
https://doi.org/10.1016/j.physleta.2019.05.039
https://doi.org/10.1115/1.4000775
https://doi.org/10.1103/PhysRevE.97.032209
https://doi.org/10.1016/j.wavemoti.2013.03.009
https://doi.org/10.1016/j.wavemoti.2013.03.009
https://doi.org/10.1016/j.jmps.2018.05.012
https://doi.org/10.1016/j.physleta.2013.05.022
https://doi.org/10.1016/j.jsv.2017.06.011
https://doi.org/10.1088/1367-2630/10/4/043020
https://doi.org/10.1088/1367-2630/10/4/043020
https://doi.org/10.1002/9781118729588.ch11
https://doi.org/10.1002/9781118729588.ch11
https://doi.org/10.1103/physrevb.76.054309
https://doi.org/10.1103/physrevb.76.054309
https://doi.org/10.1016/j.physleta.2010.07.001
https://doi.org/10.1063/1.2400803
https://doi.org/10.1016/j.jsv.2014.01.009
https://doi.org/10.1017/s0025557200183135
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


APPENDIX A

(Note: All material parameters discussed in Appendix A and B are
positive by default.)

The analytical formulas of f1(ω) and f2(ω) in Eq. 9 are
expressed as

f1(ω) �∑n
i�1
(−1)i−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∑z1 ,z2 ,/zn−i∈[1,n−1]

z1 < z2 </< zn−i

∑kts∈{kzs ,kzs+1}
t1 < t2 </< tn−i

(∏n−i
s�1

kts)
∏n−i
s�1

mzs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ω2(i−1)

f2(ω) �∑n
i�1
(−1)i−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∑z1 ,z2 ,/zn−i∈[1,n]

z1 < z2 </< zn−i

∑kts∈{kzs ,kzs+1}
t1 < t2 </< tn−i

(∏n−i
s�1

kts)
∏n−i
s�1

mzs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ω2(i−1)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(A1)

where

mn � M, kn+1 � k1, (A2)

noting that value range of zs is [1, n − 1] in f1(ω) but that of zs is
[1, n] in f2(ω). This is because there is one more component
(i.e., coupled mass M) in f2(ω).

Some concrete expressions are as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1(ω) � −ω2 + k1 + k2

m1

f2(ω) � −ω2 + (M +m1)
Mm1

(k1 + k2)
for n � 2, (A3)

When n � 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
f1(ω) � ω4 − (k1m2 + k2(m1 +m2) + k3m1)

m1m2
ω2 + (k1k2 + k1k3 + k2k3)

m1m2

f2(ω) � ω4 − (k1 + k3
M

+ (k1m2 + k2(m1 +m2) + k3m1)
m1m2

)ω2

+ (k1k2 + k1k3 + k2k3) (m1 +m2 +M)
Mm1m2

,

(A4)

when n � 4,

f1(ω) � −ω6 + ( k1m2m3 + k2(m1 +m2)m3+k3(m2 +m3)m1 + k4m1m2

m1m2m3
)ω4

−(
m1(k2k3 + k2k4 + k3k4)+m2(k1k3 + k1k4 + k2k3 + k2k4)+m3(k1k2 + k1k3 + k2k3)

m1m2m3
)ω2

+ k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4
m1m2m3

,

(A5)

f2(ω) � −ω6 + ((k1 + k4)
M

+
k1m2m3 + k2(m1 +m2)m3
+k3(m2 +m3)m1 + k4m1m2

m1m2m3
)ω4

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1(k2k3 + k2k4 + k3k4) +m2(k1k3+k1k4 + k2k3 + k2k4) +m3(k1k2 + k1k3 + k2k3)
m1m2m3

+(k1k3 + k1k4 + k3k4)
Mm3

+(k1k2 + k2k4 + k1k3 + k3k4)
Mm2

+ (k1k2 + k1k4 + k2k4)
Mm1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ω2

+ (k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4) (m1 +m2 +m3 +M)
Mm1m2m3

.

(A6)

APPENDIX B

We will solve Eq. 22 as well as Eq. 24 and make a thorough
classified discussion to obtain the discriminants about bandgap
transitions.

The criterion on existence of solutions of Eq. 22 is:

Δ1 � ((k1 + k3)m1m2 +M(k1m2 + k2(m1 +m2) + k3m1))2
− 4Mm1m2(k1k2 + k1k3 + k2k3)(m1 +m2 +M),

(B1)

and for Eq. 24 it becomes

Δ2 � (k1m2 + k2(m1 +m2) + k3m1)2 − 4m1m2(k1k2k3k
+ (k1k2

+ k1k3 + k2k3)).
(B2)

First, we will confirm that Eq. (B1) is always greater than or
equal to zero, i.e.,

Δ1 ≥ 0. (B3)

The Eq. (B1) can be written as function of M:

f(M) � M2(( − k1m2 + k2m1 − k2m2 + k3m1)2 + 4k22m1m2)
+ 2M(k21m1m

2
2 + k23m

2
1m2 − (k1k2 + k1k3

+k2k3)(m2
1m2 +m1m

2
2))

+ (k1 + k3)2m2
1m

2
2, (B4)

then the criterion on roots of this quadratic function is

�Δ1 � −4(k1k2 + k1k3 + k2k3)(k1m2 − k3m1)2 ≤ 0. (B5)

Therefore, Eq. (B3) has been proven to be correct for all
situations.

Next, we will discuss the following six situations:

{Δ1 > 0
Δ2 < 0

,{Δ1 � 0
Δ2 < 0

,{Δ1 > 0
Δ2 � 0

,{Δ1 � 0
Δ2 � 0

, {Δ1 > 0
Δ2 > 0

, and{Δ1 � 0
Δ2 > 0

. (B6)
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The equivalent formulas below can be derived:

Δ1 � 05(k1m2 − k3m1)2 + [(k1 + k3)m1m2

M
− k2(m1 +m2)]2

� 0

(B7)

and

Δ2 � 05( − k1m2 + k2m1 − k2m2 + k3m1)2 + 4k22m1m2

− 4m1m2
k1k2k3

k

� 0. (B8)

Solutions of Eq. 22 can be expressed as

�ω1,2 �
����������������������������������������������
(k1 + k3)m1m2 +M(k1m2 + k2(m1 +m2) + k3m1) ± ���

Δ1

√
2Mm1m2

√
,

(B9)

and those of Eq. 24 are

�ωLR1 ,LR2 �
����������������������������
k1m2 + k2(m1 +m2) + k3m1 ± ��

Δ2

√
2m1m2

√
. (B10)

For every situation in Eq. (B6), the classified discussions are
carried forward by comparing the distribution between solutions
of Eq. 22 and that of Eq. 24. Several sets of discriminants, which
are used to distinguish different bandgap behaviors, of all possible
results of discussions are listed below,

{g1 > 0
g2 < 0

, {g1 � 0
g2 < 0

,
⎧⎪⎨⎪⎩ g1 > 0

g2 � 0
g3 < 0

,
⎧⎪⎨⎪⎩ g1 > 0

g2 � 0
g3 � 0

,
⎧⎪⎨⎪⎩ g1 > 0

g2 � 0
g3 > 0

,

{g1 � 0
g2 � 0

, {g1 � 0
g2 > 0

,
⎧⎪⎨⎪⎩ g1 > 0

g2 > 0
g3 ≤ 0

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1 > 0
g2 > 0
g3 ≥ 0
g4 > 0

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1 > 0
g2 > 0
g3 < 0
g4 > 0

,

(B11)

where gi(i � 1, 2, 3, 4) are functions of material parameters:

g1(M,k1, k2, k3, m1, m2) � (k1m2 − k3m1)2

+[(k1 + k3)m1m2

M
− k2(m1 +m2)]2

g2(k, k1, k2, k3, m1, m2) � ( − k1m2 + k2m1 − k2m2 + k3m1)2

+ 4k22m1m2 − 4m1m2
k1k2k3

k

g3(M,k1, k2, k3, m1, m2)
� M(( − k1m2 + k2m1 − k2m2 + k3m1)2 + 4k22m1m2)

− 2m1m2[(k1k2 + k1k3 + k2k3)(m1 +m2)
− (k21m2 + k23m1)]g4(k,M, k1, k2, k3, m1, m2)

� (k1k2k3
k
)2

M2 − k1k2k3
k

M[(k1k2 + k1k3 + k2k3)(m1 +m2)

− (k21m2 + k23m1)]
+(k1 + k3)2k1k2k3k

m1m2 − (k1k2 + k1k3 + k2k3)(k1m2 − k3m1)2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B12)

The above results have not included the influence of
frequencies of passbands at another edge (i.e., q � π/a, x � 2).

In fact, the distribution of frequencies at x � 2 only affects
whether the Bragg bandgaps are opened or not after we have
determined locations of LR bandgaps. Then we will deal with
equation about edge (x � 2) frequencies of passbands (i.e., Eq.
23). According to theories about solutions of cubic equation
(Zucker, 2016), its discriminants of the roots are:

{Δr1 � 18�a�b�c�d − 4�b
3�d + �b

2
�c2 − 4�a�c3 − 27�a2�d

2

Δr2 � �b
2 − 3�a�c

, (B13)

where

�a � Mm1m2
�b � −[(k1 + k3 + 4k)m1m2 +M(k1m2 + k2(m1 +m2) + k3m1)]
�c � (k1k2 + k1k3 + k2k3)(m1 +m2 +M)
+4k(k1m2 + k2(m1 +m2) + k3m1)

�d � −4(k1k2k3 + k(k1k2 + k1k3 + k2k3)).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(B14)

Adopting similar approaches on proving Eq. (B3), one can
ascertain the following inequalities

{Δr1 ≥ 0
Δr2 > 0

(B15)

are true for any material parameters. It means that Eq. (B13)
has three distinct real roots or has a double real root as
well as a single real root. The Bragg bandgaps at x �
2(q � π/a) will be opened when Δr1 > 0 and will be closed
when Δr1 � 0.

The final sets of discriminants are as follows after above
discussion:

(1)
⎧⎪⎨⎪⎩ g1 > 0

g2 < 0
Δr1 > 0

, (2)
⎧⎪⎨⎪⎩ g1 > 0

g2 < 0
Δr1 � 0

, (3)
⎧⎪⎨⎪⎩ g1 � 0

g2 < 0
Δr1 > 0

,

(4)
⎧⎪⎨⎪⎩ g1 � 0

g2 < 0
Δr1 � 0

, (5)
⎧⎪⎨⎪⎩ g1 > 0

g2 � 0
g3 < 0

, (6){g1 � 0
g2 � 0

,

(7)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1 > 0
g2 � 0
g3 > 0
Δr1 > 0

, (8)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1 > 0
g2 � 0
g3 > 0
Δr1 � 0

, (9)
⎧⎪⎨⎪⎩ g1 > 0

g2 � 0
g3 � 0

,

(10)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g1 > 0
g2 > 0
g3 < 0
g4 > 0

, (11){g1 � 0
g2 > 0

,

(12)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g1 > 0
g2 > 0
g3 ≥ 0
g4 > 0
Δr1 > 0

, (13)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g1 > 0
g2 > 0
g3 ≥ 0
g4 > 0
Δr1 � 0

, (14)
⎧⎪⎨⎪⎩ g1 > 0

g2 > 0
g4 ≤ 0

,

(B16)

where each set of discriminants corresponds to a bandgap
behavior in the mass-coupled monatomic/triatomic chain
system.
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