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Cardiovascular diseases are one of the leading causes of death across the globe. Heart
transplantation has been used for end stage heart failure patients. However, due to the lack
of donors, this treatment option usually depends on multiple variables and the result varies
due to immunological issues. 3D bioprinting is an emerging approach for in vitro generation
of functional cardiac tissues for drug screening and cardiac regenerative therapy. There are
different techniques such as extrusion, inkjet, or laser-based 3D printing that integrate
multiple cell lines with different scaffolds for the construction of complex 3D structures. In
this review, we discussed the recent progress and challenges in 3D bioprinting strategies
for cardiac tissue engineering, including cardiac patches, in vitro cardiac models, valves,
and blood vessels.
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INTRODUCTION

Cardiovascular diseases (CVD) are common, enervating and fatalmalady that devours thousands of life
every year (Huang et al., 2021; Mei et al., 2021). Multiple conditions like congenital heart disease,
ischemic heart disease and inflammation contribute to the loss of cardiac functions (Liu N. et al., 2021).
Due to the limited regenerative capacity of cardiomyocytes (CMs), adult myocardium lacks ability to
self-renew after injury (CMs) (Li et al., 2018). The current treatments for myocardial infraction (MI)
relieves the symptoms andmodestly prolong life rather than restore the lost cardiac tissue. Heart failure
(HF), the common outcome of CVD, may require a heart transplant at the end stage (Wang Q. et al.,
2021). However, the number of available donors lags far behind the number required by the patients
(Liu N. et al., 2021). Allogenic organ transplantation is coupled with the high risk of immune rejections
and surgical complications, where the desire for long term recovery of heart function is still unfulfilled.

In regenerative treatment approach, stem cell therapies have been considerably studied for cardiac
repair (Berry et al., 2019; Oh et al., 2016; Zhu and Cheng, 2021; Tang J. N. et al., 2018; Tang J. et al.,
2018). Mounting evidence suggested that stem cell therapies demonstrate treatment benefit through
cardiac function enhancement, infract size reduction, and angiogenesis improvement (Su et al., 2018;
Huang et al., 2018; Su et al., 2019; Huang K. et al., 2020; Cheng et al., 2012b). However, they are
hampered by the intrinsic limitations after transplantation, such as low cell retention, low survival
rate of the engrafted cells and lack of host tissue integration (Wang and Guan, 2010; Ong et al., 2017).
Hence, applying contemporary technology to build functional artificial cardiac tissue in vitro has
been a Frontier direction in tissue engineering (Tomov et al., 2019).

Cardiovascular tissue engineering encompasses cell biology, material science and biofabrication that
facilitates the generation therapeutics for CVD (Noh et al., 2018; Zhu and Cheng, 2021). Within tissue
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engineering, bioprinting both 2-dimensional (2D) and 3-dimensional
(3D) has emerged as a modern fabrication method that utilizes live
cells, bioactivemolecules, and biomaterials for both in vitro and in vivo
applications. Mimetic heart tissues are can fabricated using 3D
bioprinting, which successfully capture the intricacy of the native
cellular composition and matrix structure. (Bejleri et al., 2018; Ong
et al., 2017; Liu et al., 2019; Chingale et al., 2021). These fabricated
constructs have been further used for drug screening and regenerative
studies (Ong et al., 2017; Liu et al., 2019). For the treatment of aortic
valve disease and bypass procedures, 3D bioprinted aortic valves and
conduits have been used. (Hockaday et al., 2012; Kang et al., 2016;
Pountos et al., 2019). In ischemic events, the functionality of the
cardiac tissue can be preserved using 3D cardiac patches (Gaetani
et al., 2015; Jang et al., 2017; Izadifar et al., 2018). Also, 3D printed

vascular grafts have enhanced structural stability and biocompatibility
(Marga et al., 2012; Kucukgul et al., 2015). Using 3D bioprinted
cardiac patch, fabricated by human coronary artery endothelial cells,
methacrylate collagen micropatterning, and an alginate matrix
(Izadifar et al., 2018) showed high cell proliferation, migration and
differentiation. This review provides an overview of cardiovascular 3D
bioprinting techniques, their potential applications, limitations and
also the future prospects of this new technology (Figure 1).

3D Bioprinting Approaches for
Cardiovascular Tissues
3D bioprinting is a layer-by-layer additive technology that
precisely deposits biomaterials and active cells in accordance

FIGURE 1 | 3D bioprinting technology for cardiac repair and regeneration.

TABLE 1 | Comparison Between different scaffold-based 3D printing techniques for cardiovascular applications.

Property Extrusion 3D printing Inkjet 3D
bioprinting

Laser-assisted 3D
bioprinting

References

Printing speed 0.1 mm/s -5 cm/s 1–10,000 droplets 1,600 mm/s (Xu et al., 2009), (Hopp et al., 2012), (Guillotin et al., 2010), (Kim
et al., 2010), (Cui et al., 2012a), Smith et al. (2007)Viscosity Medium to high Low Low to medium

Gelation methods Chemical Photo crosslinking Chemical
Material Integrity High Low Medium
Scaffolds Fibrinogen

Extracellular matrix (dECM)
Collagen
Methacrylate (GelMA)
Gelatin

Gelatin alginate Culture medium
Geltrex
Alginate

Resolution 0.1–2 mm Up to 100 μm 20–50 μm droplet
Cell Viability 40–80%% >85% >95%
Cell density (cells/m) 1 × 106 to 1 × 108 2×106 to ×106 2–100 ×106
Cost Medium to high Low Very high
Status in cardiovascular
tissue printing

Complete heart, arteries,
valves, cardiac patches

Pseudocardiac
tissues

Cardiac patches

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 8 | Article 8041342

Chingale et al. Cardiac 3D Bioprinting

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


with a certain spatial pattern that has high resolution stimulation
of the heart (Mir & Nakamura, 2017). High resolution
stimulation of is a method of evaluation of the functional
attributes of the cardiac tissue and means of induction of
various arrhythmia (Issa et al., 2019). Briefly, the 3D
bioprinting procedure begins with the gathering of the
patient’s data through imaging tools like computed
tomography (CT), magnetic resonance imaging (MRI) to
design a computer-aided design (CAD) model. This model has
a well-defined structure, architecture and porosity (Hockaday
et al., 2012; Burke et al., 2017). 3D bioprinting techniques is
further bifurcated scaffold-based printing and scaffold free
printing (Table 1). The predominant approaches of scaffold
based 3D bioprinting are extrusion, inkjet, laser assisted
printing and stereolithography (Pountos et al., 2019). Using
the various 3D bioprinting approaches, a number of tissue
constructs like cartilage (Wang et al., 2016a; Luo et al., 2012;
Shi et al., 2017; Cui et al., 2012a), neural tissue (Radulescu et al.,
2007; England et al., 2017) heart valve (Hockaday et al., 2012;
Duan, et al., 2013) have been successfully constructed.

Scaffold-Based 3D Printing
Scaffold based 3D bioprinting is used to generate tissue
constructs using cells, biological macromolecules, and
structural moieties. The scaffold-based materials have facile
surface functionalization and superior physicochemical
properties (Sarkhosh-Inanlou et al., 2021). These
biomaterials facilitate the reconstruction and repair of
various anatomical defects that may occur in the cardiac
tissues. The porosity of the scaffolds allows the movement
of the biological fluids which in turn amplifies the cell
adhesion, proliferation, migration and differentiation
(O’Brien, 2011). Furthermore, many scaffolds based 3D
printing techniques have been under investigation that
exhibit low inflammation and toxicity, and low rejection of
scaffold through autoimmunity (O’Brien, 2011; Ng et al., 2012;
Tariverdian et al., 2019). Extrusion-based bioprinting, inkjet-
based bioprinting and laser-based bioprinting are the three
major scaffold-based bioprinting modalities for cardiovascular
tissue fabrication (Qasim et al., 2019).

Extrusion-Based 3D Bioprinting
The extrusion-based 3D printing is a facile, less complex and
affordable 3D printing approach (Mandrycky et al., 2016; Kato
et al., 2021). The cell deposition density usually ranges from
108–109 cells per mL which is crucial for cardiac tissue
engineering (Pati et al., 2014). Although extrusion based 3D
bioprinting offers high cell densities, due to high stress and
dispensing pressure (>6 × 107 mPa s), the cell viability of only
about 40–80% (Mandrycky et al., 2016). Promising results are seen
in 3D bioprinting of myocardium constructs, heart valves, and
blood vessels (Alonzo et al., 2019). In this printing technique, the
cells are suspended in a prepolymer solution, loaded in syringes
and printed in the form of cylindrical filament precisely into the
target 3D cardiac tissue structure by using pneumatic or
mechanical forces (Liu et al., 2017; Mistry et al., 2017; Byambaa
et al., 2017). To construct durable 3D cardiac tissues, factors like
viscosity, shape of the needle, pressure and gauge size should be
accurately optimized (Hölzl et al., 2016). Here, the 3D constructs
are constructs by sequentially depositing the hydrogel filaments
that have the diameters in a range of 150–300 μm (Pereira and
Bártolo, 2015). Recently, a 3D human chambered cardiac muscle
was constructed using a photo-crosslinking native extracellular
matrix (ECM) proteins and human induced pluripotent stem cells
(hiPSC)- laden structures (Kupfer et al., 2020). This 3D chamber
muscle possessed a continuous action-potential propagation along
with macroscale beating. Using freeform reversible embedding of
suspending hydrogels (FRESH v2.0), a modified extrusion-based
3D bioprinting technique was developed to bioprint a model of the
left ventricle of human heart left ventricle of human heart. Here,

TABLE 3 | Advantages of scaffold based and scaffold free 3D bioprinting.

Advantages Disadvantages

Scaffold-based Consistent size and quality
Better stiffness
Robust
Pre-vascularized

Immunogenic
Lower cell density
Probable toxic biodegradation

Scaffold-free Non- immunogenic
Less prone to infection
3D cell density

Not easy manipulate
Need huge number of cells

TABLE 2 | Advantages and disadvantages of scaffold biomaterials used for 3D bioprinting of cardiovascular tissues.

Scaffold Advantage Disadvantage References

Alginate • High compatibility with many cells • Unstable if used for prolonged culture Xu et al. (2009)
• Short crosslinking time • Low rate of degradation Attalla et al. (2016)
• CaCl2 don’t not have significant effect on cell viability • Does not promote cell proliferation Kundu et al. (2015)

Collagen • Good cell carrier • Cannot be used alone (Park et al., 2014)
• Easy to modify and add other scaffold materials • Long time for crosslinking Skardal et al. (2012)

Hyaluronic acid • Main component of ECM • Low mechanical stability Pinto et al. (2016)
• Good cell carrier
• Increases the mechanical stability and cell viability

Gelatin • Has good thermoresponsive property • Not stable at physiological temperature
• Good cell viability
• Can be used as fugitive scaffold
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collagen type I and human embryonic stem cell–derived cardiac
fibroblasts (hESC-CFs) were used (Lee et al., 2019a). Using gelatin
methacryloyl (GelMA) as a cell carrier, a combination of cardiac
myocytes and cardiac fibroblasts was used to generate a self-
contracting cardiac muscle, called engineered heart tissues
(EHT) (Koti et al., 2019). Furthermore, GATA binding protein
4 (GATA4) -transfected Mesenchymal Stem Cells (MSCs) that
were derived from human umbilical cord-derived (hUC-MSCs)
expressed cardiac marker proteins and differentiated further into
cells similar to cardiomyocyte. These naked plasmids when
encapsulated in polyurethane (PU) hydrogel can upregulate
specific cardiac marker genes and indicates as a new approach
for in situ cardiac therapeutics (Huang N. C. et al., 2020). A tissue
of cardiogenic potential was printed using human cardiac-derived
cardiomyocyte progenitor cells (hCMPCs) in alginate scaffold that
increase of the early cardiac transcription factor Nkx, Mef-2c,
GATA4 also, late cardiac marker Troponin T (TnT) was also
highly expressed (Gaetani et al., 2012).

Inkjet-Based 3D Bioprinting
Inkjet 3D based bioprinter allows the precise positioning of cells
and biomaterials in the targeted cardiac tissue construct using
droplets (1–100 pL) with cell densities as high as 10,000–30,000
cells/drop (Calvert, 2007), ejected via thermal (Cui et al., 2012b) or
acoustic forces (Xu et al., 2008). In piezoelectric inkjet printer the
piezoelectric crystals produce acoustic waves and force the liquid
through the nozzle (Pereira and Bártolo, 2015). Whereas, in the
thermal inkjet bioprinting, the droplets are expelled out from the
nozzle by the pressure generated by the vaporizing the bioink
around the heating element (Cui et al., 2012b). The inkjet 3D
bioprinter is compatible with most of the biomaterials and has a
cell viability of up to 90% (Wang Z. et al., 2021). The inkjet 3D
bioprinter is compatible with biomaterials having specific viscosity
of 3.5–12mPa/s where specific viscosity is the increase in the
viscosity of the scaffold beyond that of the solvent due to polymer
additive (Murphy and Atala, 2014; Chawla et al., 2018). Inkjet
printer was used to construct a layer-by-layer 3D bioprinted aortic
tissue construct, using Mouse Embryonic Fibroblast (MEF) cell
aggregates with hydrogel support. This tissue construct was a
hierarchical design of functional cardiac pseudo tissue with
balanced porosity, structural support and a beating cell response
(Alonzo et al., 2019). In another study, 3D rectangular sheet was
fabricated with alternating layers of alginate hydrogels and primary
feline adult andH1 cardiomyocytes (Xu et al., 2009). However, due
to the noncontact nature of inkjet printers and its dispensing
mechanisms, the 3D constructs usually have weak mechanical
properties (Lee et al., 2009). Therefore, the inkjet aided bioprinting
of the cardiac tissue specifically is still in its infancy stage (Cui and
Boland, 2009).

Laser-Assisted 3D Bioprinting
Laser-assisted bioprinting (LAB) facilitates the formation of
in vitro tissue constructs. Based on the principle of Laser-
Induced Forward Transfer (LIFT), LAB is being progressively
used for tissue- and organ-engineering (Barron et al., 2004). LAB
exhibits high precision and resolution which can print high cell
density (108cells/ml) and viscosity (10–100) μm scaffolds. Using a

laser pulse repetition rate of 5 kHz, and speed of 1,600 mm/s. LAB
can print bioinks with negligible effect on cell viability and
function (Ventura, 2021; Barron et al., 2004; Murphy and
Atala, 2014). LIFT has been used to construct a defined
patterned cardiac patch seeded with human umbilical vein
endothelial cells (huvec) and hMSC on a Polyester urethane
urea (PEUU) for cardiac regeneration (Gaebel et al., 2011).
Also, laser bioprinting of undifferentiated hiPSCs in
combination with different biomaterials like collagen, alginate,
hyaluronic acid, fibrinogen, fibrin proved that hiPSCs are
sensitive to the biomaterials, not to laser printing.
Biomaterials, such as the hyaluronic acid, matrigel support
hiPSCs differentiation and can be laser printed without losing
their pluripotency (Koch et al., 2018).

Stereolithography
Stereolithography (STL) is a nozzle-free technology based on
photo-sensitive polymer formulation. It utilizes ultraviolet (UV)
or visible light to cure photosensitive polymers in a layer-by-layer
manner (Budharaju et al., 2021). This technique is fast and
provides accurate fabrication, that has resolutions ranging
from 5to 300 µm (Raman et al., 2016). Photoinitiators
molecules are sensitive to different ranges of wavelength and
initiate the polymer chains which in turn affects the stiffness and
density of the cured resins (Pereira and Bártolo, 2015). Due to the
toxic nature of some of the photoinitiators, commonly used least
cytotoxic photoinitators are Irgacure 2,959 for UV cross-linkage
and eosin Y for visible light (Noshadi et al., 2017). Since, UV light
induce mutations, visible light-based photocross-linkage have
been used more often in SLA (Ikehata and Ono, 2011). Using
STL, a MSCs hydrogel patch was constructed with cross linked
poly (ethylene glycol) dimethacrylate (PEGDMA) with desired
diameter of microchannel suitable for sustained release of
cytokines from cells resulted in enhance cardiac function and
minimized cardiac remodeling (Melhem et al., 2017).

Digital Light Processing
Digital light processing (DLP) uses a digital micromirroe device
(DMV) chip that is composed of approximately millions of
micromirrors that reflects light and project an optical pattern
that is dictated by CADmodel on the photopolymer solution (Lu
et al., 2006). The resolution of this printer controlled by the focal
size of the light beam from each micromirror. In DLP printer
prints parallely by projecting the entire plane of optical pattern
onto the photopolyer solution, thus reducing the time required
for the fabrication (Zhang et al., 2012). Compared to the other 3D
bioprinting approaches, DLP has significant advantages in
prining resolution, efficiency, and working condition (Zhang
et al., 2019). Human embryonic stem cell derived
cardiomyocytes (hECMs- CMs) and hydrogel were used to
fabricate a cardiac tissue using DLP based 3D printing. The
DLP facilitated the 3D bioprinting of hECMs- CMs mimicing
the multilayed alignment of the myocardium. This tissue
construct was furthre used to detect simultaneously both
calcium transients and mechanical force that is essential for
in vitro disease modeling (Zhang et al., 2012). Recently, using
rapid light based 3D printing (DLP), a cardiac tissue construt
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made of Human induced pluripotent stem cell - derived
cardiomyocytes (iPSC-CMs) was used to detect the expression
of mature cardiac marker genes (Ma et al., 2019).

Scaffolds for 3D Bioprinting
Cardiac tissue engineering aims to regenerate the injured cardiac
tissue by combining cells and highly porous scaffold biomaterials
to act as templates for tissue regeneration (O’Brien, 2011). It is of
paramount importance that the scaffold possesses native ECM
like texture and morphology for precise 3D cardiac construct
fabrication (Zhu K. et al., 2017). The 3D scaffolds must have
patterned channels that mimic the function of the endothelial
network (Usprech et al., 2017). These patterned 3D channels
promote the cell migration, physiology, morphology, and
phenotype. They also play an important role in stem cell
differentiation into cardiomyogenic phenotype (Zhang et al.,
2016). In Tissue engineering, scaffold (hydrogel) materials
should support cell adhering, cell proliferation along
possessing key attributes like printability, degradation kinetics,
biocompatible and material biomimicry (Table 2) (Murphy and
Atala, 2014; Sahai and Gogoi, 2019). Hydrogels that are currently
used in the cardiac regenerative medicine are either naturally
derived polymers (like alginate, gelatin, collagen, chitosan, fibrin
and hyaluronic acid) or synthetic molecules (polyethylene glycol,
PEG) (Murphy and Atala, 2014; Sun et al., 2012; Spiller et al.,
2011). Natural polymers provide the advantage in 3D bioprinting
as they mimic the ECM both in terms of morphology and
bioactivity. The synthetic polymers like hydrogels are also a
preferred choice due to the ease of manipulating and tailoring
and physical properties as per the target tissue. The challenges
with the synthetic polymers include toxic degradation, loss of
mechanical properties and poor biocompatibility (Li and
Kawashita, 2011; Prasad, 2021).

For precise 3D printing of cardiac constructs, proper selection of
scaffold based on the type of 3D bioprinting modality used is very
crucial. Hydrogels used for extrusion based 3D bioprinting are
usually non-Newtonian fluids, where the viscosity and sheer rate are
corelated (Jungst et al., 2016). In addition, the scaffold should
possess low surface tension and low adhesion properties along
with rapid gelation characteristics (Jia et al., 2016). In inkjet-based
3D printing, the scaffold must have low viscosity and non-fibrous in
nature to ensure easy flow through the tubing system. Also, the
scaffoldmust have rheopectic behavior where the viscosity increases
with applied shear (Mandrycky et al., 2016). A scaffold with
sufficient adhesion and low surface tension characteristics can
spread uniformly and adhere is best suited for laser assisted 3D
bioprinting. Also, the scaffold chosen should exhibit viscoelasticity
as it can enhance cell viability. The viscoelasticity properties of the
scaffolds can be altered to achieve high cell densities (Nooranidoost
et al., 2019). Also the scaffold should possesses rapid gelation
capability, solidifying speed up to 10 s as it helps to maintain
structural fidelity. (Wang et al., 2016b). The following functional
scaffolds have been used in cardiac 3D printing.

Alginate
Alginate is a common hydrogel used in 3D bioprinting due to its,
easy of handling, price, crosslinking, bio-inertness, printability

and biocompatibility (Paques et al., 2013; Selcan Gungor-
Ozkerim et al., 2018). Alginate is chemical modified to
promote desirable cell function and mechanical support
(Agarwal et al., 2021). The viscosity of alginate depends on its
concentration hence alginate at lower concentrations leads to
shape distortion of the 3D constructs which in turn affects cell
adhesion, proliferation and distribution of the differentiated cells
(Paques et al., 2013). Modifying the alginate surface using
peptides sequence (arginine–glycine–aspartic acid) RGD,
results in enhanced cell attachment on alginate (Paques et al.,
2013). Using chelating agents like ethylenediaminetetraacetic
acid (EDTA), alginate can be eliminated after printing the 3D
constructs. In clinical trials for patients affected by myocardial
infraction, Algisyl-LVR™ has been approved for treatment
(Liberski et al., 2016). The human cardiac-derived
cardiomyocyte progenitor cells (hCMPCs) printed in alginate
scaffold in vitro culture demonstrated increased cardiac
commitment of hCMPCs without altering the cell viability and
proliferation. A significant increase cardiac marker TnT and
cardiac transcription factor Nkx2.5, GATA-4, Mef-2c was
observed (Maiullari et al., 2018).

Hyaluronic Acid
Hyaluronic acid (HA) and its derivatives are biocompatible, not
toxic and plays a central role in cell support. HA is modified to
readily crosslink as it lacks spontaneous ionic/enzymatic gelation
and used in 3D bioprinting due to this high viscosity (Duan, et al.,
2013). It is a glycosaminoglycan (GAG) found in morphogenesis
(Rosines et al., 2007), wound repair (Kikuchi et al., 2005), cell
migration and signaling (Lokeshwar and Selzer, 2000). HA is a
preferred choice in tissue engineering as its important role during
early embryonic development its biocompatible nature and also
the ability to control its architecture and degradation (Hölzl et al.,
2016). HA displays a slow gelation rate, along easy mechanical
and chemical modifications are required to enhance the
rheological properties (Hospodiuk et al., 2017). Human
cardiosphere-derived cells (CDCs) when delivered with FDA-
approved Hyaluronan based scaffold Hystem-C™ hydrogel,
showed high cell engraftment and therapeutic efficacy (Cheng
et al., 2012a); . A photocrosslinked hydrogel constructed from
oxidized and methacrylated HA which enabled the cell-hybrid
hydrogel interaction stimulated cell migration, proliferation,
GAG secretion. This study provides a proof that the hybrid
hydrogels mimic layer specific valve ECM and are a good
choice for heart valve tissue engineering (Duan, et al., 2013).

Fibrinogen
Fibrinogen is a fibrous plasma protein that is actively involved in
wound thrombosis, wound healing, angiogenesis. Fibrinogen is
also involved in cell adhesion, migration, proliferation and
differentiation (Budharaju et al., 2021). Fibrinogen is often
used in 3D printing of cardiac tissues as it undergoes
spontaneous gelation in the presence of thrombin and has
docking sites for many proteins like VEGF, IL-1, albumin,
Von Willebrand factor (Brown and Barker, 2014). By adding
FDA approved chemicals like aminocaproic acid, aprotinin
during the gel preparation, plasminogen mediated proteolytic
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degradation of fibrin can be avoided (Wang et al., 2018). Since
fibrinogen is less viscous and poses weak rheological properties,
fibrinogen is used with other biomaterials like Matrigel, collagen
during the printing process (Hölzl et al., 2016). A advancedmodel
of cardiac tissue constructed using HUVECs and iPSC-CMs
encapsulated in alginate and PEG-Fibrinogen hydrogel strands
demonstrated functional integration of the host’s vasculature into
the 3D bioprinted constructs, supplying blood to the implant and
preventing necrosis and endorsing heart-like engineered tissue
(Maiullari et al., 2018).

Decellularized ECM
Cardiac ECM contains is madeup of fibronectin collagen I, fibrillin
1, and laminin and other tissue specific growth factors (Williams
et al., 2014). Decellularized ECM (dECM) has gained attention due
to its high biocompatibility, printability and thermoresponsive
nature (Garreta et al., 2017). Cardiac dECM can be prepared
from porcine sheep by decellularization followed by
lyophilization (He and Callanan, 2013). The dECM mimics the
architecture of the cardiac ECM and facilitates the process of cell
adhesion, proliferation and differentiation and migration (Ott
et al., 2008). When myocardial ECM hydrogel was injected into
the infract region of rat hearts, the RNA transcriptome analysis
revealed the upregulation of neovascularization, cardiac
transcription factors and the pathways associated. The factors
associated with apoptosis, fibrosis were downregulated (Seif-
Naraghi et al., 2013; Spang and Christman, 2018). Using dECM
scaffold, a bioconstruct that mimicked native cardiac ECM
microenvironment was fabricated that show high cell viability
and proliferation of cardiac progenitor cells, that resulted in the
increased cardiomyogenic differentiation (Jang et al., 2016).

Gelatin
Gelatin is a derivative of collagen that contains RGD cell-binding
motifs like collagen. Gelatin is less immunogenic and takes active
part in cell adhesion, differentiation, migration, and proliferation
(Davidenko et al., 2016). Gelatin is sensitive to temperature,
concentration, solvent and crosslinking agents that in turn
affects the thermoresponsive nature of gelatin (Zhu W. et al.,
2017). Due to poormechanical characteristics, gelatin is chemically
cross linked with agents like glutaraldehyde before using for 3D
bioprinting (Hellio and Djabourov, 2006). Using extrusion-based
three-dimensional (3D) bioprinting (Yin et al., 2018) reported
accurate deposition of cell-laden GelMA inmicroarchitectures that
showed high cell viability. To build patient specific soft tissue,
gelatin-methacrylate gelMA hydrogel using poly -actic-co-glycolic
acid nanofiber fragments (PLGA-NF) was fabricated that
enhanced the biomechanical properties and stability and also
promoted fibroblast proliferation in gelMA/PLGA-NF hydrogel
(Ko and Kwon, 2020).

Cell Sources for 3D Printing
For the accurate functioning of the fabricated constructs, the
proper choice of cells for tissues is crucial. There are various cell
types in tissues and organs that are endowed with specific
functions, and these attributes must be recapitulated in the
new 3D bioprinted construct. The cells present in the native

organ are mainly involved in providing structural support and are
actively involved in maintaining the stem cell niche (Murphy and
Atala, 2014). For the 3D bioprinted cardiac construct to be
functional in the long term, the cardiac tissue construe must
maintain homeostasis, respond to tissue injury and self-renew
(Budharaju et al., 2021).

Primary Cardiomyocytes
The adult primary cardiomyocytes are terminally differentiated
and where the Ca+ regulates the functional characteristics, thus
making them an excellent choice for tissue engineering (Foglia
and Poss, 2016). By using primary cardiomyocytes and
polycaprolactone support frame, a contractile cardiac construct
was developed that was structurally organized and scalable The
3D bioprinted cardiac tissue construct was a dense, aligned
cardiac muscle bundles that possessed synchronous
contraction and responded to known cardiac medications.
These medications acted by blocking which notch pathway
and promoted improved cardiac tissue formation (Wang et al.,
2018). A EHT constructed, contained aligned homologous
cardiomyocytes and a synthetic supporting polymer
polyethylene vinyl acetate (PEVA) that enhanced the
expression of cadherins, integrin proteins, differentiation and
maturation with increased functionality (Das et al., 2019).

Stem Cells
Stem cells like iPSCs, ESCs, MSCs (Li et al., 2022), cardiac
progenitor cells have been cultured in 2D cell cultures and
further differentiated to functional cardiomyocyte (Kattman
et al., 2006; Wang X. et al., 2021). The growth factors and
differentiation factors present in the matrix of scaffolds play
an important role in the cell fate. Among the different proteins in
the ECM, integrin is important as it activates transcription factors
to future differentiate into cardiomyocyte (Lee, 2018). Mouse
ESCs plated on polyglycolic-acid (PGA) material patches and
transferred to ischemic and peri-ischemic mice myocardium
3 days after seeding. The survival rate, blood pressure along
with ventricular function in the mice heart with ESCs patch
was better than the sham operated and cell free patches mice
hearts thus demonstrating that ESCs aided the cardiac repair of
infracted myocardium (Ke et al., 2005).

hiPSC-Derived Cardiomyocytes
To design an accurate cardiac construct, researchers have
integrated stem cells derived human cardiac cells in the
construct (Liu et al., 2019). Human induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs) are superior to
primary cardiomyocytes as they can expand prior to
differentiation to cardiomyocytes and also are easy to scale up
(Zuppinger, 2019). GelMA-a photopolymerizable ECM has
adhesion moieties and natural degradation making it a
popular choice for printing encapsulated cells (Yu et al., 2020).
To design hiPSC-CMs models, cells have been encapsulated in
ECM, Fibrin or gelatin methacrylate (GelMA) (Veldhuizen et al.,
2019) to facilitate the formation of connections in 3D space (Ma
et al., 2018). The recently developed micro-continuous optical
printing system (μCOP) is a perfect 3D bioprinting technique
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that supports high 3D printing resolution, biocompatibility and
speed (Ma et al., 2018; Liu et al., 2020). 3D cardiac tissue that is
constructed using hiPSC-CM and human cardiac fibroblasts
(HCF) that is coated with (ECM) and plates on the fabricated
HBC gel frame, enhances the contractile function and vascular
function (Tsukamoto et al., 2020). A study established that a 3D
in vitro model of cardiac fibrosis made of TGF-β1 treated 3D
cardiac microtissues promoted myofibroblast proliferation and
differentiation (Lee et al., 2019b). However, hiPSC-CMs are not
preferred for adult cardiac tissue constructs as the new
differentiated hiPSC-CMs possess limited tissue alignment and
have deficient calcium handling (Ronaldson-Bouchard et al.,
2018).

Scaffold–Free Bioprinting
Though scaffolds have been successfully used in tissue
engineering, the issues that still persist are low
biodegradability and adverse immune response which are life
threatening (Gao et al., 2017). Hence, scaffold free printing, has
emerged as an alternative for artificial tissue/organ fabrication
(Zhu W. et al., 2017). In scaffold-free 3D bioprinting, cell
adhesion is crucial as it compensates for the scaffold support.
For tissue repair and regeneration, several scaffold free printing
methods have be developed like pallet culture (Estes and Guilak,
2011), hanging drop (Lee et al., 2012), hydrodynamic cell
trapping (Fu et al., 2014) and spinner flask (Rodday et al., 2011).

Briefly in all these techniques, the cells are outspread in a 3D
environment where their differentiation results into a mass due
to cell-cell adhesion. After the cells grow in a definite shape, they
are placed in a layered pattern with the aid of 3D printer and then
cultured with other cells to form a tissue like structure (Tan et al.,
2014). A biomaterial free cardiac patch was developed to deliver
hiPSC-CMs, fibroblasts (FB) and endothelial cells (EC) as mixed
cell spheroids. These 3D printed patches show uniform electrical
conduction and also exhibit action potential waveforms as in the
ventricle. Upon implantation, vascularization and engraftment
with the myocardiumwas seen (Ong et al., 2017) thus, suggesting
a next generation stem cell based treatment for heart failure. A
scaffold free cardiac graft patch was developed that was made of
spheroids containing CMs, FB and EC that promoted rapid self-
organization and vascularization (Noguchi et al., 2016). Though
a thicker myocardial graft could not be fabricated, this approach
could potentially be developed to treat myocardium injury. In a
scaffold free 3D cell sheet, MSCs are seeded and cultivated on
temperature-responsive polymer-grafted cell culture dishes
(TRCD) at 37°C. At confluency, the cells deposit ECM and
form interactions along with forming channels with the
neighboring cells. The cells are detached at confluency by
reduction of temperature from 37 to 20°C to induce changes
in the surface properties, that results in the change from
hydrophobic to hydrophilic nature of the culture dished and
releases the adherent cells. Spontaneous tissue contraction
upon the release from the 2D monolayer resulted in the
increase in the thickness of the cell sheet rendering an
increase in the volume of the cardiac like tissue construct.
This tissue has demonstrated an upregulation in the
expression of vascular hepatocyte growth factor (HGF),

interleukin -10(IL-10), endothelial growth factor (VEGF)
(Bou-Ghannam et al., 2021). The advantage and
disadvantages of scaffold-based or scaffold-free bioprinting
were summarized in Table 3.

APPLICATION

Though the cardiac tissue is complex, 3D bioprinting has
emerged as a next generation treatment approach for
generating cardiovascular implants that have biomimetic
qualities. These 3D implants recapitulate both morphological
as well as biochemical attributes of the native cardiac tissue.
Here, we discuss the 3D bioprinting strategies used to fabricated
cardiac tissues such as myocardium, cardiac valves, and cardiac
models for drug screening.

3D Bioprinted Myocardium
The myocardium is an intricately organized muscle layer in the
heart wall that plays a crucial role in the contraction and
relaxation of the heart. Myocardium is made of nearly 2-4
billon cardiomyocytes (Laflamme and Murry, 2011). During a
cardiac injury, there is a loss of cardiomyocytes accompanied with
modification in the cardiac ECM (Gaetani et al., 2012). Hence
cardiac 3D bioprinted constructs/implants aim in repopulating
the cardiomyocytes and ECM for cardiac repair (Mathur et al.,
2016). An engineered humanmyocardium (EHM) that mimicked
the postnatal heart both in terms of structural and functional
properties was fabricated in vitro under well-defined serum free
conditions using ESCs and iPSCs. These EHM exhibited
attributes like cardiomyocytes with M bands, systolic twitch,
positive force frequency response along with molecular
advancement. This EHM can potentially be used for cardiac
repair, drug screening and disease modeling (Tiburcy et al.,
2017). ‘VentriGel’- a first in man clinical research implant,
fabricated from porcine heart-derived dECM-based hydrogel
and transendocardially injected in early and late post MI
patients with left ventricular dysfunction. Post injection, there
was an increase in the vascularization, reduced cardiomyocyte
dystrophy and fibrosis (Traverse et al., 2019). Cardiac patches
composed of cECM, human cardiac progenitor cells (hCPCs) and
gelatin methacrylate (GelMA) were implanted in vivo on rat
hearts. After 14 days of implantation, an increase angiogenic
potential (>2 fold) along with improved endothelial cell tube
formation was observed which indicated that these patches could
be used as potential treatment for repairing the damaged
myocardium (Bejleri et al., 2018).

3D Bioprinted Cardiac Valves
Apart from myocardial damage, cardiac valve dysfunction
represents another major reason for heart failure (Howell and
Butcher, 2012). The cardiac valves are mainly made of valve
interstitial cells (VICs), SMCs, and valvular endothelial cells
(VECs) (Klebe, 1988). In cardiac valve diseases, the valves are
either incapable to close or are too contracted to open entirely. In
such conditions, valve replacement surgery is the only option
where prosthetic valves are employed. Though the prosthetic
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valves have high longevity, thrombogenicity is a major issue
(Maxson et al., 2019). A 3D bioprinted aortic heart valve
scaffold was fabricated using rat MSCs onto gelatin support
gel. In vivo studies proved that this scaffold was capable of
alteration and an increase in elastin, vimentin, alpha SMA,
and CD31 was observed in all 12 weeks (Maxson et al., 2019).
3D bioprinted aortic valve conduit constructed directly by
encapsulating aortic root sinus smooth muscle cells (SMC)
and aortic valve leaflet interstitial cells (VIC) within alginate/
gelatin hydrogel discs improved cell viability, migration and
proliferation (Duan et al., 2013).

3D Bioprinted Blood Vessels
Impaired blood circulation to heart underlies enervating
conditions like ischemia, heart failure and stroke (Mozaffarian
et al., 2015). Functional vascular network facilitates the adequate
delivery of oxygen, nutrients, unwanted metabolite removal and
constant circulation of immune cells which in turn plays a crucial
role cardiovascular regeneration (Duan, 2017). 3D bioprinted
viable cardiac tissue constructs require imbedded blood vessel
networks for nutrient transport and cellular waste disposal
(Jafarkhani et al., 2019). Using bone marrow MSCs and
sodium alginate/gelatin, a cardiac patch was designed and
implanted on the injured heart. 5-azacytidine (5-Aza) induced
differentiation of MSCs leds to morphological changes and
expression of α-striate muscle actine antibody (α-SCA) and
desmin antibody (DES) and other proteins. This cardiac patch
repairs the injured cardiomyocytes by generating new
cardiomyocytes, rather, than increasing the blood supply and
increasing the cardiac functionality by promoting vascular
proliferation. Also, the implanted cardiac patch demonstrated
improved epicardial activation that promoted angiogenesis and
EMT through WT1 (Wilms tumor protein 1)-mediated Wnt/β-
catenin signaling pathway (Liu X. et al., 2021). Using the in vivo
priming strategy, bone marrow MSCs were primed in vivo by
genetically induced hepatocyte growth factor -expressing MSCs
(HGF-eMSCs). These MSCs and HGF-eMSCs were encapsulated
within a 3D cardiac patch. On implantation onMI induced heart,
an improvement in cardiac function, prevented apoptosis along
with the enhancement of vessel formation was observed post MI
(Park et al., 2020).

3D Bioprinted for Drug Screening In Vitro
3D printing offers a great platform in pharmaceutics for drug
discovery and development (Sharma et al., 2021;
Vijayavenkataraman et al., 2018). In cardiac regenerative
medicine, efforts are mainly focus on recreating biomimetic
microtissues of left ventricular myocardium as it is the
primary pumping chamber and site for pathologies (Ma et al.,
2018). Recently, an µCOP system was adopted to construct a
scalable 3D model that mimicked the function and
microarchitecture of the ventricular myocardium (Liu et al.,
2020) that could be used in drug screening. A customizable
force computing asymmetric system was designed that directly
printed encapsulated cardiomyocyte. Here the NMVCMs formed
a contracting tissue that possessed improved alignment
physiological responsiveness to ionotropic stimulation (Liu

et al., 2020). Using microfluid technology 3D endothelialized
microfibrous scaffold with precisely controlled macroscale
microfibers and seeded cardiomyocytes that induced the
formatin of myocardium that possessed spontaneous and
synchrous contraction (Zhang et al., 2016; Veldhuizen et al.,
2019).

LIMITATIONS

The innovations in 3D printing in tissue engineering for
cardiovascular repair and regenerative research has made
tremendous stride in the recent years. The advantage of 3D
bioprinting approach is its ability of accurately printing high
resolution constructs of different biomaterials, cells, and
therapeutics for the fabrication of highly complex 3D cardiac
constructs. Despite of the significant progress and sophistication
in 3D bioprinting in tissue engineering, the fabrication of a fully
functional heart is yet to achieve. In 3D bioprinting, one of the
major challenges is the printing resolution. For the fabricated new
tissue to be closely mimetic to the native tissue, the ideal
resolution much be comparable to the cell size. For the clinical
application, a multilayered tissue is required. It is a challenge to
generate controlled vascular network for the survival for the cells
(Lovett et al., 2009). In the recent years, the 3D bioprinting
technique has advanced in achieving structural complexity, but
the 3D bioprinting of soft materials is still immature (Lee and Dai,
2017). Another limitation of the 3D bioprinting is that there is no
standard and accepted method to access the accuracy and
efficiency of the fabricated models which results in the
variability. Some of current biomaterials used do not truly
replicated the mechanical properties of the human heart
limiting the evaluation of the tissue behavior (Harb et al.,
2019). Another issue in 3D bioprinting is the determination of
scaffold and optimizing the process parameters. Also, the present
polymeric materials lack appropriate conductivity and weak
mechanical strength as compared to native cardiomyocytes.
For CTE engineers, degradability, and biocompatibility of
scaffold along with cells interaction and migration in the
scaffolds remains an important challenge. In the present times,
3D bioprinted of cardiac tissue is still in infancy, in the coming
years, once the above issues are addressed, 3D bioprinting will
enable the translation of technology to personalize therapeutic
and pharmaceutical applications.

PROSPECTS

Cardiovascular constructs (vasculature constructs, heart valves,
myocardium), have been successfully 3D bioprinted with discrete
structure and function. However, all these techniques are still in
infancy and face several challenge which hinder the accurate
construction of cardiac analogs with full functionality and
complex micro-architecture (Cui et al., 2018). The recent
advancements on the field of 3D printing and tissue
engineering have shown to provide a platform for studying
and understanding the unknown mechanism of development
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of diseases and its responsiveness to new developing drugs. This
science continues to grow and evolve with the addition of new
advanced technologies like bioelectronics, next generation
sequencing etc. For instance, the convergence of bioelectronics
and 3D printing helps to generate a functional live tissues like
cardiac muscles with electrophysiological signals (Ershad et al.,
2019). Also, the integration of biosensors and engineered tissue
devices further helps in real-time monitoring of parameters
which in turn can provide insight in morphogenesis,
pathogenesis, and drug responsive remodeling processes in
disease conditions (Ni et al., 2017). Using patient driven stem
cells, 3D printed cardiac tissues can be used to study the in vitro
responses of individual characteristics (Sun, 2020). This facilitates
higher treatment efficacy by enabling personalized prescriptions
and treatments.

CONCLUSION

The 3D bioprinting technology is novel and cutting-edge. it is one
of the most popular tissue engineering methods as it facilitates the

rapid creation of complex biostructures. Currently, significant
efforts are being made to develop the technique to improve
printing accuracy and speed, as well as the capacity to capture
the tissue’s complexity. Future advancements in the field of 3D
bioprinting will offer new doors and speed up cardiac
regenerative medicine research.
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