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Compared with the traditional solar cells, the nano-optical antenna breaks

through the band-gap limitation of semiconductor materials, and provides a

new scheme for solar energy collection. In order to solve the problems of

complex structure, low efficiency and narrow bandwidth of nano-optical

antenna, a novel nano-ring-cylinder based on metamaterials is proposed in

this paper. The antenna has an average absorption efficiency of 96.93% in the

wide-band absorption range of visible and near-infrared light. First of all, the

basic design theory of the antenna was given based on the surface plasma

theory. Then, the antenna structure design scheme was determined, the overall

structure consists of two layers ofmetal and an insulating layer formed by Al2O3.

Finally, on the basis of the established antenna model, the absorption

characteristics were analyzed by simulation. The analysis result shows that

the super-absorption ability of the antenna is independent of the polarization of

the incident light, and the average absorption ability can bemaintained at about

91% when the incident angle is ±60°. The absorption capability of the antenna is

mainly due to the synergistic effect of Fabry-Perot resonance and localized

surface plasmon resonance enhancement. The conclusion can provide a

theoretical guidance for the structural design of nano-optical antenna.
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1 Introduction

Solar energy is one of the most abundant and least polluting renewable resources, so

the development of efficient broadband solar absorption device is essential (Hong et al.,

2014). At present, solar energy is collected mainly by using solar cells, which work on a

photovoltaic effect basis. Because of the limited band gaps of the semiconductor materials,

it is difficult to improve the absorption efficiency of solar cells any further. Based on the

wave-particle two-phase characteristic of sunlight, some researchers have begun to design

nano-scale antennas to receive sunlight which can be considered as a high-frequency

electromagnetic wave. Such as nano-dipole (Baldassarre et al., 2015), Slot Yagi nano-

antenna (Li M et al., 2019), U shaped nano-antenna (Hubert et al., 2005), bow-tie (Ding
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et al., 2010), triangular (Xiao et al., 2016) and nano-hole arrays

(Du et al., 2011; Jérusalem et al., 2012; Najiminaini et al., 2012).

These nano-optical antenna theoretically has higher

absorption efficiency and wider absorbable solar spectral range

than solar cells. With the development of material field, the

design of nano-optical antenna has more and more broad space.

Due to its unique electromagnetic characteristics, the

metamaterial has been widely used in the design of solar

energy collection devices (Xue and Song, 2021; Li M et al.,

2019; Gao et al., 2019; Li Y et al., 2019).

Ming hui (Luo et al., 2017) introduced a newmetamaterial nano

absorber, whichwas composed of periodic cylindrical array of nickel

(Ni) film. Long Ma et al proposed a periodic Yagi–Uda antenna

array to improve the divergence and directivity of the laser beam

(Ma et al., 2016). It realized the polarization independent absorption

with an average absorption rate higher than 90% in the whole visible

region (400–700 nm). Li jun shuai’s team from Nanyang

Technological University in Singapore studied the application of

the structure of Si nano column plated on Si film in solar energy

absorption. Its high absorptivity is concentrated in the shorter

wavelength band scope from 300 nm to 400 nm (Li et al., 2009).

The University of Chinese Academy of Sciences reported the

broadband and efficient light absorption characteristics of a

metamaterial sub wavelength nano ring array in the visible

region, and the average absorption rate is 97% (Cao et al., 2014).

Furthermore, Cao et al. proposed a nano column array based on a

complex two-dimensional metamaterial (Cao et al., 2013), with an

average absorption rate of 95% in the visible band. However, above

studies havemainly focused on the visible or infrared light, andmost

have complex structures (Yang et al., 2016; Tian and Li, 2016;

Yoshikawa et al., 2017; Li and Valentine, 2014). In summary, the

introduction of metamaterials provides an effective new solution for

the design of nano-optical antennas. Due to the limitation of the

current micro-and nano-scale fabrication technology, the antenna

structure is too complex to be fabricated. The theoretical study of

this nano-optical antenna is much more advanced than the

experimental study. The simplification of the structure and the

improvement of the performance are the only way to make the

nano-optical antenna more practical.

Based on the theory of Surface Plasmon Polaritons (SPS), a kind

of feasible nano-ring-cylinder array antenna is designed, in which

tungsten is used as the metal layer and alumina is used as the

insulating layer. The average absorption rate of the system is up to

96.93%, and it is insensitive to the polarization state of the light.

2 Basic theory of antenna structure
design

At present, the Metal-insulator-metal (MIM)

metamaterial structures is chosen to absorb the sunlight (Li

et al., 2009; Cao et al., 2014; Cao et al., 2013). When the

frequency of the incident wave changes, the free electrons in

the metal will oscillate collectively, and when the frequency

reaches a certain value, the amplitude will reach a peak, which

is called surface plasmon effect (Barnes et al., 2003). Surface

Plasmon is a kind of electromagnetic wave excited at the

junction of medium and metal. It is only affected by the

incident wave propagating in the vertical direction. Based

on the surface plasmon effect, the wave vector relation

between medium and metal is given for transverse

magnetic wave TM:

{Kz1Ex1 − iβEz1 � iωμ0Hy1, z> 0
−Kz2Ex2 − iβEz2 � iωμ0Hy2, z< 0

(1)

{Kz1Hy1 � iωε0ε1Ex1, z> 0
−Kz2Hy2 � iωε0ε2Ex2, z< 0 (2)

iβHyi � −iωε0εjEzj (3)

FIGURE 1
(A) Schematic diagram of nano ring array antenna of MIM metamaterial; (B) Cross-sectional view of a single nano ring with W/Al2O3 stack and
top view of nano ring.
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Kz1Hy1

−Kz2Hy2
� iωε0ε1Ex1

iωε0ε2Ex2
(4)

in where kz1 is the z-directional component of the metallic

wave vector, kz2is the z-directional component of the

dielectric wave vector, β is the propagation constant, ε1 is

the dielectric constant of the medium, ε2 is the dielectric

constant of the metal.

The tangential boundary condition are satisfied as follows:

Hy1 � Hy2, Ex1 � Ex2 (5)

And

Kz1

Kz2
� −ε1

ε2
(6)

A combination of Formulas (1), (2) and (3)

K2
zj � β2 − K2

oϵj (7)

The surface plasmons dispersion characteristics are related as

follows:

β � k0

������
ε1ε2

ε1 + ε2

√
� ω

c

������
ε1ε2

ε1 + ε2

√
(8)

in where, ω is the angular frequency of the incident light, c is

the speed of light, k0 is the wave vector in vacuum.

From the above equation, it can be seen that the wave vector

of surface plasmon polaritons varies with the metal dielectric

constant at different frequencies and has certain dispersion

characteristics. Its absorption rate can be calculated as:

A(λ) � 1 − R(λ) − T(λ) (9)

whereλis the wavelength of the incident wave, and R(λ),
T(λ), andA(λ)are the wavelength dependent reflectivity,

transmittivity, and absorptivity of the absorber, respectively.

Based on the above basic theory and the other researchers work

(Wang et al., 2017), the highest absorption rate is taken as the design

goal, a MIM metamaterial nano-ring-cylinder array antenna with a

high dielectric constant imaginary part and refractive index of

metallic tungsten was designed. The schematic diagram of the

antenna based on micro-metamaterials presented in this paper is

shown in Figure 1A. The nano cyclic array is a two-dimensional

periodic structure with a 200-nm-thick W/Al2O3 stack on top. The

specific structural dimensions are shown in Figure 1. Aluminum

oxide has a high refractive index of 1.75 and it is selected as an

insulating material. Researchers have found that high refractive

index metal (e.g., tungsten) materials are effective in broadening

the absorption bandwidth of metamaterial antennas over a range of

wavelengths. As seen in the material library of FDTD Solutions, the

refractive index of metal W in the 400–1,600 nm band is almost

always greater than 2. So this paper chooses tungsten as the metal

FIGURE 2
Absorption spectra of the MIM nano ring array antenna under normal incident light for various conditions. (A) for different periodicity P when
h1 = 160 nm, r = 80 nm, R = 115 nm; (B) for different h1 when P = 400 nm, r = 80 nm, R = 115 nm; (C) for different r when P = 400 nm,
h1 = 160 nm, R = 115 nm; (D) for different R when P = 400 nm, h1 = 160 nm, r = 80 nm.
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material of antenna. This MIM nano-ring-cylinder array antenna

proposed is fully compatible with standard semiconductor

fabrication processes. All layers can be deposited by magnetron

sputtering, and then patterned with specific details of the structure

by electron beam lithography or focused ion beam.

3 Antenna structure design scheme

The specific structure size of the antenna is determined by the

influence of different structure parameters and the absorption

efficiency of the antenna. As shown in Figure 2, the paper

employs finite-difference time-domain (FDTD) method to

analyze the absorption characteristics of MIM nano ring array

antenna. Firstly, as shown in Figure 2, the influences of physical

dimension to the absorption rate of MIM nano-ring-cylinder array

antenna are analyzed in the following study. Figure 2A illustrates the

absorptivity against period P of the antenna. The highest average

absorptivity is obtained for a 400-nm period. When the period P is

larger than 400 nm, the absorptivity becomes worse, which is

consistent with previous studies, indicating that the period of the

structure is smaller than the wavelength of incident light to avoid

scattering. Figure 2B shows the effect of W thickness h1 on the

absorptivity. With the increase of h1, the average absorptivity

becomes larger. When h1 increases to 160nm, the average

absorption rate does not increase significantly. Figure 2C

describes the influence of the component of inner radius (r) on

absorptivity. Figure 2D shows the effect of the outer radius (R) on

the absorptivity. It is found that when r = 80 nm, R = 115 nm the

absorptive effect reaches the optimum. When the W layer

thickness is close to 130 nm, there is nearly no transmission

in the optical regime and light can only be absorbed or reflected

by this structure because of the existence of the alternatively

layeredW thin film. The periodic of the nano-ring pillar array is

set to 400 nm. For a single nano ring, its thickness h1 = 160 nm,

outer diameter R = 115 nm, inner diameter r = 80 nm, as shown

in Figures 1B,C. The substrate is composed of medium Al2O3

and metal W, the thickness of medium h2 = 70 nm, the

thickness of metal h3 = 130 nm.

4 Performance improvement method
of absorptivity

In order to find an effective method to improve the

absorptivity of the nano-ring-cylinder array antenna, effect of

the relative factors on the absorptivity is analyzed.

4.1 Relationship between the absorptivity
and incident light

In order to fully describe the relationship between the

absorptivity of sub nano-ring-cylinder array and incident

light, the state and incident angle of incident light are

analyzed and calculated. Figures 3A,B show the absorptive

spectra at various incident angles for TE and TM wave,

respectively. Although the absorptivity decreases at 550 nm

wavelength, the average absorptivity retains a value up to 91%

over a wide incident angle of ±60° and ±40° for both TE and TM

polarization, respectively. Such results show that our nano-ring-

cylinder structure is insensitive to the form and angle of incident

light.

To gain a better understanding of the absorption mechanism,

the electric field in x–z plane at y = 0 distribution |Ex| for

different incident wavelengths is calculated and shown in

Figure 4. The hotspot of the concentrated electric field is

located at the edge of the nano-ring-cylinder. The localized

FIGURE 3
Absorption spectra of MIM nano ring array antenna under various conditions. (A) different incident angles of 20°, 40° and 60° for a TE wave;
(B) different incident angles of 20°, 40° and 60° for a TM wave.
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surface plasmon enhancement effect results in the hotspot’s

appearance. As can be seen from Figure 4, the electric field

intensity at the edge of the nano ring is enhanced. The reason is

that the surface plasmon propagates only along the W interface.

When the incident wavelength is less than 700 nm, in Figures

4A–C, the hot spots are located at the edges of the nano-ring-

cylinder, mainly at the upper and right sides, and the electric

field intensity is gradually enhanced at the upper and lower

edges of the nano-ring-cylinder with increasing wavelength.

This implies that the surface plasmon resonance occurs mainly

on the nano-ring-cylinder and the electric field on the

structure is enhanced. In contrast, in Figures 4D–F, when

FIGURE 4
Electric field Ex distribution at y=0 plane for different-wavelengths.*(A) λ = 400 nm; (B) λ = 600 nm; (C) = 700 nm; (D) λ = 1000 nm;
(E) λ =1300 nm; (F) λ =1600 nm.

FIGURE 5
Electric field in x-y plane for different wavelengths. (A) z = 200 nm, λ =560 nm, (B) z = 200 nm, λ = 1060 nm, (C) z = 200 nm, λ = 1600 nm,
(D) z = 360 nm, λ =560 nm. (E) z = 360 nm, λ =1060 nm, (F) z = 360 nm. λ = 1600 nm.
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the incident wave grows longer than 700 nm, the hot spot of

the concentrated electric field is almost at the edge of the

contact with Al2O3 and the nano ring almost lose its function.

At this time, the surface plasmon resonance occurs mainly at

the place where the nano-ring-cylinder are in contact with

Al2O3. Especially at the wavelength of 1,600 nm, the electric

field is almost entirely concentrated at the contact between the

nano-ring-cylinder and Al2O3, and the electric field intensity

reaches up to 6 V/m.

4.2 Relationship between the absorptivity
and surface plasmon resonance effect

In addition, the electric field in x–y plane at z = 200 nm and

z = 360 nm distribution |Ex| for different incident wavelengths is

calculated and shown in Figure 5. From Figure 5, it is shown that

the hotspots of the concentrated electric field at the bottom of the

nano-ring-cylinder is very strong. These hotspots can be

attributed to the surface plasmon resonance. The free

electrons in the metal material resonate with the incident

light, and then the surface plasmon polaritons are generated

and propagated along the surface of the metal and medium.

Therefore, the electric field intensity is enhanced at the bottom of

the nano ring.

To further find out the absorbing mechanism from other

aspects, we investigate the y-component of the normalized

magnetic field distribution |Hy| in the plane of y = 0 at

different wavelengths, as shown in Figure 6. With the increase

of the wavelength, the magnetic energy flow converges slowly,

and the dielectric layer Al2O3 is the strongest distribution

position of the magnetic field |Hy|. As shown in Figures 6B,C,

strong magnetic fields are confined in the dielectric gap between

the top metal disks and the bottom metal film, which are typical

magnetic resonances contributing to high absorption. The

electromagnetic field is mainly concentrated in the medium

between the upper metal film and the lower thick metal layer.

There is a parallel reverse current between the two layers.

This is because there is a parallel reverse current between the

upper metal array and the lower thick metal. Its current can

form a displacement current circuit between the upper and

lower metals. This displacement current circuit interacts

with the incident electromagnetic field to produce magnetic

moment. As shown in Figure 6A, at 560 nm wavelength, the

strong magnetic field is limited to the interface between the

dielectric and the bottom metal film, which indicates that a

typical antireflective resonance is generated. When a

quarter-wavelength incident light strikes a metal film, the

reflected electric field from the surface of the metal exhibits a

phase opposite to the incident electric field. Therefore, the

two cancel each other in the thin film media, resulting in a

sharp decline in reflectivity. It is also proved that the

absorption rate decreases at about 550 nm. Moreover, the

resonance formed at the wavelength of 1600 nm is further

analyzed, the analysis found that the Fabry-Perot (F-P)

resonance leads to the occurrence of this phenomenon.

The period of the F-P resonance at λ = 1,600 nm was

calculated to be 400 nm by FDTD methods, and the

effective refractive index of the MIM nano ring antenna

array was Re(neff) � 2.08. Hence, the period of the F-P

resonance mode is very close to λ/2Re(neff) � 385nm.

Therefore, F-P resonance is an important reason for the

high absorption of nano-ring-cylinder at 1,600 nm

wavelength.

5 Conclusion

In this paper, a metal-insulator-metal (MIM) nano-ring-

cylinder array absorption antenna based on metamaterial is

proposed. The antenna has a simple structure, while achieving

a higher absorption rate of 96.93% in the 400–1600 nm band.

The simulation results demonstrate that the antenna is

insensitive to the light polarization state and retain the

average absorptivity of 91% at a very large incident angle

of ±60°. Compared with the nano ring column array absorber

FIGURE 6
The normalized magnetic field distribution Hy in the plane of y = 0 at different wavelengths. (A) λ = 560 nm: (B) λ = 1000 nm: (C) λ = 1600 nm.
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reported in reference (Cao et al., 2014), the antenna proposed

has a significant advantage in high absorptivity in broadband.

This high light absorptivity of the MIM nano ring array

antenna can be explained as the synergetic effect of

Fabry–Perot resonance as well as localized plasmonic

resonance enhancement. The proposed MIM nano-ring-

cylinder array antenna is fully compatible with standard

semiconductor manufacturing processes. With the vast

demand for sustainable and green energy, we believe that

the structure proposed in this paper will be applied in the

fields related to solar energy collection.
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