
A safety assessment approach to
pressure vessels based on
machine learning

Xing Zhang1, Yifeng Hu1*, Junping Shi1, Hao Liang2, Yong Xu2

and Xiaoshan Cao1

1Department of Engineering Mechanics, Xi’an University of Technology, Xi’an, China, 2China Academy
of Engineering Physics, Mianyang, China

The safety assessment of a pressure vessel with a surface crack is an important

part of the safety assessment of engineering equipment. However, the existing

methods are mostly based on the assumption of plane specimens and the K

criterion applicable to brittle fracture, which may lead to unacceptable errors

when applied to a fracture problem in an elastoplastic pressure vessel. In this

article, based on the finite element method (FEM) and artificial neural network

(ANN), the elastic-plastic three-dimensional J-integral of a crack tip in a

pressure vessel with an axial semi-elliptic crack on the surface under the

loading of internal pressure is studied. First, the influence of the vessel

geometry, the crack size, and internal pressure on the three-dimensional

J-integral is analyzed. Second, the machine learning dataset is constructed

based on the results of 1,200 cases of FEM calculation; then ANNs are used to

discover the potential relationship between multiple parameters and the three-

dimensional J-integral. The results show that the neural network constructed in

this article can well predict the elastoplastic three-dimensional J-integral of a

pressure vessel surface crack.
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Introduction

Safety assessment of pressure vessels with crack

Many investigations and studies on the failure accidents of pressure vessels show that

the leading reason of the failures is crack propagation induced by a surface flaw under

loading (Holtam et al., 2011). During the manufacturing and servicing process of pressure

vessels, surface flaws happen and accumulate, due to factors such as the raw material

rolling process, welding stress concentration, fatigue, and erosion. Previous studies have

indicated that flaws are mostly concentrated near the surface. Flaws usually extend along

the axial direction of the vessel and are usually semicircular or semi-elliptical in shape

(Thresher and Smith, 1972; Bloom, 1983). Among the many kinds of surface flaws on

pressure vessels, a surface crack is the most harmful and common, which seriously affects
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the safety of the equipment (China Special Equipment Inspection

& Research Institute, 2021). To evaluate the influence of cracks

on structural strength and to quantify the strength of stress fields

at the crack tip, fracture parameters such as critical load (Ge et al.,

2005) and stress intensity factor K (Nabavi and Shahani, 2008;

Akhi and Dhar, 2021) are employed to establish the

corresponding fracture criteria, which can deal well with the

brittle fracture of containers made of high-strength materials.

Normally, most pressure vessels in engineering are made of

materials with good toughness, which means that crack

propagation is often accompanied by a considerable yield area

in those cases with high design stress or weld residual stress. The

size of the plastic zone at the crack tip is often close to or exceeds

the size of the crack, making crack propagation different from

that in a brittle fracture. In these cases, the K criterion based on

linear elastic fracture mechanics cannot account for the stress

distribution around the cracks. Nevertheless, the application of

the elastic-plastic fracture theory, such as J-integral theory, to

evaluate the safety of pressure vessels has been insufficiently

studied. A few relevant works focus on the simplification of the

issue by using a two-dimensional model with cracks (de Souza

and Ruggieri, 2015; Duan and Zhang, 2020).

As is well known, within the scope of plane fracture problems

in elastoplastic materials, the J-integral possesses clear physical

meaning, and meanwhile the fracture criteria based on it have

been widely used. There are many crack propagation criteria and

corresponding engineering estimation methods to quantify the

effects of the cracks on structure strength based on their industry

standards, such as EPRI-NP-2431 (Bloom and Malik, 1982),

CEGB-R6 (R6, 2013), and GB/T 19,624-2019 (China

Standardization Committee on Boilers and Pressure Vessels,

2019). However, a pressure vessel is a non-planar structure,

and crack propagation in it is essentially a three-dimensional

(3D) problem. Most of the present studies use the direct

extension of a two-dimensional fracture, which cannot

accurately express the stress characteristics of the crack front.

It is more practical to use the 3D J-integral to study the impact of

the external surface crack on the strength of pressure vessels, but

limited research has applied the 3D J-integral to study the safety

of pressure vessels, hence the demand for a prompt solution.

J-integral in two and three dimensions

The J-integral is one of the core concepts of elastic-plastic

fracture theory, which was first proposed by Rice as the energy

flux criterion of crack propagation in the fracture process (Rice,

1968). For quasistatic loading of power hardening elastoplastic

materials with cracks, Hutchinson (Hutchinson, 1968) and Rice

and Rosengren (Rice and Rosengren, 1968) proposed the HRR

singularity at the static crack tip and pointed out that the

J-integral could be used as a single strength parameter for the

singular stress and strain field. After the development and

improvement of a large number of studies, the theory of the

J-integral becomes clearer andmore widely applied (Sumpter and

Turner, 1976; Begley and Landes, 1972; Knowles and Sternberg,

1972). Kishimoto et al. (Kishimoto et al., 1980) and Bui (Bui,

1978) developed amethod to calculate the 3D J-integral of a point

at the crack tip by considering the out-of-plane stresses and

strains. After that, several definitions of the 3D contour integral

(Blackburn, 1972; Strifors, 1974; Atluri, 1982) were reported, but

the physical meanings and application fields are different. Dodds

et al. (Dodds, 1987; Dodds and Vargas, 1988; Dodds and Read,

1990) and Carpenter and Read (Carpenter and Read, 1984)

conducted a more detailed study on the domain integral and

contour integral of the 3D J-integral. The results show that the 3D

J-integral is one of the few parameters that can accurately

characterize crack propagation behavior for obvious non-

planar cracked body structures, regardless of whether the

material near the crack is in an elastic state or whether large-

scale yielding occurs.

However, the complex stress distribution of the crack tip in

elastoplastic materials brings a new problem to the calculation of

the 3D J-integral. Especially for the surface crack in pressure

vessels, the complicated mutual influences of the elastoplastic

constitutive, pressure vessel structure, crack geometries, and

loading level lead to a nonlinear relationship between

J-integral values and those parameters. In addition, in a

practical calculation, the contour integral and domain integral

mostly depend on FEM analyses which can give accurate values

of the 3D J-integral (Dodds and Vargas, 1988). Nevertheless,

FEM analysis usually requires more complex calculations by

professionals, bringing a new problem to rapid safety assessment

in projects. To overcome this problem and implement the rapid

assessment of the strength of pressure vessels with a surface

crack, ANNs have been established to discover the complex

relationship between multiple parameters and the 3D

J-integral in this study.

Applications of an artificial neural network
in safety assessment

In a study by Liu et al. (2020), machine learning models and a

neural network surrogate model were built to predict the KΙC

(plane strain fracture toughness) at the crack tip during fracture

toughness measurements which are feasibile and efficient,

compared to an analytical or empirical solution within their

physical problem domains. Research by Liu et al. (Liu et al., 2020)

has stressed that for practical engineering problems, it is

impossible to derive analytical or empirical solutions that are

highly accurate over the full range of relevant sample dimensions,

and it is time-consuming and impractical to obtain accurate

solutions through FEM simulation of a large number of samples.

Due to the advantages in dealing with the nonlinear and complex

relationship among high-dimensional physical quantities,
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artificial neural networks (ANN) become a worthwhile method,

with the feature of portable deployment (comparable to

analytical or empirical solutions) and high accuracy

(comparable to FEM simulations).

In fact, ANNs have been applied for years to solve problems

of pressure vessels. For the sake of evaluating the safety of ocean

engineering pressure vessels, Ma et al. (Ma et al., 2015)

established the neural network combined with the grey

prediction method to predict the crack growth rate with

service time; Yu and Lin (Yu and Lin, 2017) adopted

uncontrollable environmental factors as an evaluation index

obtained by the expert scoring method to establish a safety

evaluation system, and built a BP neural network combined

with the genetic algorithm method to learn the relationship

between indexes with results, which achieved a high

prediction accuracy. Young et al. (Young et al., 2019) applied

the deep neural network (DNN) method to predict the pressure

vessel water level, which is an accident-monitoring variable

directly related to severe reactor accident. Consequently, the

DNN model can provide supporting information accurately to

operators in a serious accident. Moreover, in the study of

materials used in pressure vessels in nuclear engineering,

Kemp et al. (Kemp et al., 2005) and Castin et al. (Castin

et al., 2011) accurately predicted the change in the yield stress

of reactor-pressure-vessel steels induced by neutron radiation by

using ANNs, and the importance of some input variables was also

studied. However, the study of ANNs on elastoplastic fracture of

pressure vessels has not yet been reported.

In this work, the elastoplastic 3D J-integral of a crack tip in a

pressure vessel with a surface crack loaded by internal pressure is

studied, and the ANNs-based safety assessment approach are

implemented. In the Basic concepts section, the concepts of the

3D J-integral and ANN are briefly introduced, and the ANNs-

based safety assessment approach are established. In the Finite

element analyses section, the 3D J-integral is analyzed based on

FEM analysis. In the BPNN training and results section, the

training results of neural networks are analyzed. Finally, in the

Discussion and conclusion section, the conclusions reached are

enumerated.

Basic concepts

3D J-integral

The 3D J-integral is used to characterize the intensity of

stress and strain fields induced by local translations of the

crack front (mode I) in a three-dimensional structure, by

considering the inelasticity of the material. The first

published point-wise J-integral value for a curved crack

through contour integral was given by Amestoy et al.

(Amestoy et al., 1981). They proposed the JnΙ (s) integral

which introduced an area integral term and indicated that

the J-integral could be extended to three-dimensional

configurations. For linear elastic or nonlinear elastic

materials, JnΙ (s) represents the energy release rate of a

point s at the crack front propagating along its main

normal direction. Sakata proposed another integral suitable

for three-dimensional configurations of elastoplastic

materials: Ĵ(s) (Sakata et al., 1983). When the problem is

two-dimensional and elastic, the expression is equivalent to

Rice’s J-integral. Through the derivation of the energy change

of a cracked body, Carpenter et al. (Carpenter et al., 1986)

pointed out that for the material adopting the incremental

plastic model, JnΙ (s) and Ĵ(s) is not strictly equal to the energy
release rate of the unit crack growth. Under the assumption of

the local translation of the crack front per unit length of the

three-dimensional crack along the main normal direction in

Amestoy et al. (Amestoy et al., 1981), the complete 3D

J-integral physical meaning was given: the negative value of the

change rate of the total potential energy when the crack front

extends along the outer normal direction for a unit length. Later,

Dodds (Dodds, 1987) verified the conservation of the path

integration on the basis of Carpenter et al. (Carpenter et al.,

1986), and further studied the contribution of each term of the

expression to the integral value; in Dodds et al. (Dodds et al., 1988),

the accuracy of the 3D J-integral was experimentally verified;

finally, in Dodds and Vargas (Dodds and Vargas, 1988), the

method of 3D J-integral calculation by FEM was described in

detail.

This study adopt the 3D J-integral method proposed by

Dodds (Dodds, 1987) and Carpenter et al. (Carpenter and

Read, 1984). A local value of the mechanical energy release

FIGURE 1
Calculation of the pointwise 3D J-integral of the crack front.
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rate, denoted as J(s), is given by Eq. 1. s denotes an arbitrary

point along the crack front. J(s) is the sum of two terms; a

contour integral along a path Γ (JC) is closed around the crack tip
and a surface integral in the area A(JA) bounded by Γ.

J(s) � JC + JA (1)

JC � ∫
Γ

[Wepn1 − σ ijni
zuj

zx
]dΓ (2)

JA � −∫
A
[zWp

zx1
− σ ij

zεpij
zx1

+ z

zx3
(σ i3zui

zx1
)]dA (3)

The crack front at x1 � 0, x2 is perpendicular to the crack

surface, and the crack lies in the x2 � 0 plane. The counter-

clockwise contour Γ lies in the x1-x2-plane at the s beginning at

the bottom of the crack face and ending on the top face, n is the

outward normal to Γ. Wep � ∫ε

0
σdε is strain energy density

through the elastic and plastic strains (superscripts e and p

denote elastic and plastic strains, respectively). σ ij and ui are

the Cartesian vector components of stress and displacement (as

shown in Figure 1).

If the material is nonlinear elasticity, zWzx ≡ σ ij(zεijzx1
), the first

two terms of the area integral (in Eq. 3) are zero.

If the material is nonlinear elastic and the condition is either

plane-stress or plane-strain, 2) and 3) degenerate to the original

two-dimensional form of the J-integral, as defined by Rice. The

J-integral characterizes the behavior of crack propagation by the

stress-strain state around the crack tip. In the case of a two-

dimensional problem, the path-independence of the J-integral is

easy to prove (Rice, 1968). The term JA is of great significance to

maintaining the path-independence of JC (Dodds, 1987). In the

numerical evaluation of JA over the crack tip elements, the third

term of the area integral (in Eq. 3) tends to disappear, while the

first two terms are large. The contour integral away from the

crack tip avoids the analysis difficulties caused by the complex

singular elements at the crack tip. Carpenter and Read

(Carpenter and Read, 1984) indicated that the area integral

value is very sensitive to the size of the specimen. For three-

dimensional structures, the freer the deformation, the larger the

area integral value is. Therefore, it is quite appropriate to

calculate the 3D J-integral by using the area integral as

correction terms to characterize semi-elliptical external surface

cracks (Hakimelahi and Soltani, 2010).

In the research of Newman and Raju (Raju and Newman,

1979), in order to characterize the relationship between surface

crack stress intensity factor K and structure size, they fitted data

and constructed a boundary correction factor containing six

polynomials. Although it has great potential engineering

value, there are too many parameters, and the scope of

application of the expression is not broad enough. In this

study, the calculated 3D J-integral results are not directly

related to the characteristic parameters. In order to establish

the relationship between the vessel geometry, material properties,

crack morphology, internal pressure load, and the J-integral

value, a correction factor is proposed in this study to

characterize the influence of the elastoplastic material

properties, crack tip singularity, and the geometric

characteristics of the container on the J-integral. In the

following study, we introduce the correction factor and study

the relationship between factor F and characteristic parameters

through ANNs.

According to the research of HRR (Hutchinson, 1968; Rice

and Rosengren, 1968), the stress of the crack tip has stress

singularity.

σ ij � σ0( J

ασ0ε0Inr
) n

n+1~σ ij, (4)

where σ0 and ε0 are the initial yield stress and strain, respectively.
~σ ij � [~σr, ~σθ , ~τrθ] is a dimensionless stress distribution function

in polar coordinates. In � f(n) is a dimensionless constant. It

can be seen from Eq. 4 that the strength of the singular stress field

can be characterized by J-integral.

J → (σ ij
σ0
) n+1

n (5)

This study constructed the factor F as follows:

F � J

α(PRσ0t) n+1
n (π a

Q). (6)

The term (PRσ0t)
n+1
n reflects the singularity of stress field at the

crack tip, where PR/t is the average hoop stress of an

uncracked vessel under internal pressure, the standard

atmospheric pressure P0 � 0.1MPa. Q denotes the shape

factor for an elliptical crack, which is the square of the

complete elliptic integral of the second kind and is

approximated by Raju and Newman, and Akhi and Dhar

(Raju and Newman, 1982; Akhi and Dhar, 2021)

Q � 1 + 1.464(a
c
)1.65

, for a≤ c. (7)

Artificial neural networks (ANNs)

ANNs (Bishop, 1996) are calculation models formed by the

interconnection of a great number of neurons. ANNs map the

input to the output through being transformed repeatedly, to

identify the highly complex and nonlinear relationship between

data. Figure 2 shows the basic structure of NNs, which are

composed of an input layer, a hidden layer, and an output

layer. A single neuron consists of a set of weighted inputs, a

bias term, a nonlinear activation function, and an output.

Weights denote the importance of the corresponding input to

the output, the bias term compensates the weighted average sum,

and the activation function adds a nonlinear relationship to a

single artificial neuron.
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Among the commonly used NNs, the back-propagation

neural network (BPNN) proposed by Rumelhart et al.

(Rumelhart et al., 1988) has generally been adopted to deal

with complex issues. BPNN is based on a back-propagation

algorithm. This algorithm calculates the gradient of the loss

function for all weights in the network, and this gradient is

fed back to the optimization which can update the weights to

minimize the loss. The calculation process is divided into two

FIGURE 2
Single hidden layer neural network.

FIGURE 3
Flow diagram of safety assessment.
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steps: feed-forward and back-propagation. In the feed-forward

step, the network transfers the input data layer by layer. Then, the

output layer collects signals from the last hidden layer to predict

outputs. In the back-propagation step, if outputs are different

from the target values, the loss is calculated through the loss

function. The loss is returned along the original connection path,

and the corresponding weights and biases are modified to

minimize the loss. The detailed training process for BPNN is

stated as follows:

First, all weights and biases are initialized to small values (He

et al., 2015). wl
jk denotes the weight on the connection from kth

neurons in the (l − 1)th layer to jth neurons in the lth layer. blj
denotes the bias of jth neurons in the lth layer. Then, the outputs

(al−11 , al−12 , . . . , al−1m ) in the (l − 1)th layer cause the output of the
jth neurons in the lth layer to be

alj � f⎛⎝∑m
i�0
wl

jia
l−1
j + blj⎞⎠, (8)

where summation is performed on all k neurons in the (l − 1)th
layer. The ReLU rectifier function is used as the activation

function, which is expressed as

f(x) � max(0, x). (9)

A set of inputs are transmitted to the output layer, and finally

a prediction output ypred
i is generated. The loss is obtained by the

mean square error between outputs ypred and target values ytrue:

MSELOSS � 1
m
∑m
i�0
(ytrue

i − ypred
i )2, (10)

where ytrue
i and ypred

i , respectively, represent the ith target value

and output of the sample. m is the number of samples. When

LOSS → 0, namely, the overall prediction outputs ypred are close

to target values ytrue, it means that the network learned the

relationship between the inputs and target values effectively,

namely, the network has appropriate weights and biases.

When LOSS is large, the gradient descent algorithm is used to

calculate the error on hidden layers. It is assumed that the last

hidden layer is the lth layer, and the error of the jth neurons is

δlj �
z(LOSS)

zalj
. (11)

Then the error of kth neurons in the (l − 1)th layer (supposing
there are m neurons in total) is calculated by the error of jth

neurons in the lth layer being

δl−1kj �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(wl
jk)2∑m

i�0(wl
ji)2δ

l
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where wl
ji means the connection weight from ith neurons in the

(l − 1)th layer to jth neurons in the lth layer.

The formulas of correction for the connection weights and

biases are given by

wl
jk � wl

jk − η
zδl−1kj

zwl
jk

, bl−1k � bl−1k − η
zδl−1kj

zbl−1k

, (13)

where η ∈ (0, 1) is the learning rate, a positive scalar determining

the size of update step in each iteration. After updating all

weights and biases in the network, one training iteration

period was completed. The training process is repeated until

the final loss is small enough or the predefined training epochs is

reached.

The ANN-based safety assessment
approach

In the present study, the effects of vessel geometries,

material properties, crack size, and internal pressure on

the 3D J-integral of elliptical cracks on the external surface

of pressure vessels are investigated by FEM based on

elastoplastic fracture mechanics. The calculated J-integral

values and the vessel’s characteristic parameters are used

to train NNs. Trained NNs can give similar results to the

FEA for the unknown characteristic parameters of the

pressure vessel to be tested. Meanwhile, they can evaluate

the crack strength accurately and quickly. The process of

implementation is shown in Figure 3.

To build a reasonable training dataset of NNs, different

internal pressure, geometric size of vessels, and crack size are

considered. For each model, the static analysis is carried out

and the J-integral values in the depth direction of crack

propagation are calculated. The reasons for using the

depth direction of J-integral are as follows: 1) mode Ι

propagation of surface crack is common and dangerous, 2)

the thickness of the vessel wall is generally much less than the

length, and the crack propagation in the depth direction is

more dangerous, and 3) the driving force of the surface crack

propagation along the depth direction is much greater than

that along the surface direction. Therefore, the J-integral in

the crack depth direction is more important to the safety

assessment.

TABLE 1 Material parameters.

Parameter Value

Young’s modulus E (GPa) 209

Poisson’s ratio ] 0.3

Initial yield stress σ0(MPa) 406.5

Hardening coefficient α (MPa) 351

Hardening exponent n 0.36
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Finite element analyses

Material, modeling, and meshing

Ferritic low alloy steel A508-3 usually used for the pressure

vessel in nuclear engineering. The material property at room

temperature (22°C) is shown in Table 1 (Yang et al., 2021). The

hardening behavior is described by the isotropic Ludwik’s

hardening law (Ludwik, 1909) given by (Eq. 14)

σys � σ0 + αεnp, (14)

where σys denotes yield stress, εp denotes plastic strain, and α and

n are Ludwik’s hardening coefficient and exponent, respectively.

The simplified semi-elliptical crack morphology on the

external surface of the pressure vessel is shown in Figure 4.

The depth and length of the semi-elliptical crack are denoted as a

and 2c.

The commercial FE software COMSOL Multiphysics was

used for the analyses. Since themodel consists of a cylinder with a

horizontal crack on its midplane, only a quarter of the whole

geometry is built (as shown in Figure 5). R denotes the inner

radius of vessel. t denotes the wall thickness. For better accuracy

in computing the 3D J-integral, a wedge-shaped mesh-controlled

region is built to generate a swept mesh by the free triangular

elements along the crack front. In this region, the refined mesh

size is controlled between 1/150 and 1/100 of the crack depth a.

The region for the integral of the 3D J-integral is located in the

plane of the normal direction of the propagation of each point at

the crack front.

Numerical results

F is derived by Eq. 6 after the value of the J-integral is

calculated. Parts of F-P curves are shown in Figure 6. In (A), (B),

and (C), while keeping the vessel geometries (R, t) unchanged,

the influence of the different crack aspect ratio a/c on F-P curves

is shown with the increase of crack depth a. In (A), the case of

shallow cracks, different a/c values have little effect on F. As the

crack depth a increases in (B) and (C), the impact of a/c on F

gradually increases, and the large a/c value limits the increasing

trend of F. (D) and (E) show that the change of a/t has little effect

on the relationship between the thickness radius ratio t/R and F

when a/c and R are the same. Compared with (D) and (F), it can

be seen that in the case of a shallow crack, the change of a/c has

little effect on the relationship between t/R and F. t/R �
(0.1, 0.01, 0.07) indicates that the values of t/R are 0.1,

0.09,0.08, and 0.07.

FIGURE 4
Semi-elliptical crack on the external surface of pressure
vessels.

FIGURE 5
Finite element model and the mesh.
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FIGURE 6
F-P curves from FEA. (A) F-P curve at different t/R (semi-elliptical, a/c=0.5; shallow, a/t=0.2); (B) F-P curve at different t/R (semi-elliptical, a/c=
0.5; deep, a/t=0.2); (C) F-P curve at different a/t (semi-elliptical, a/c= 0.5; thin-walled, t/R= 0.07); (D) F-P curve at different a/t (semi-elliptical, a/c =
0.5; thick-walled, t/R= 0.1); (E) F-P curve at different a/c (relatively thick-walled, t/R= 0.09; shallow, a/t= 0.2); (F) F-P curve at different a/c (relatively
thick-walled, t/R = 0.09 ; deep, a/t = 0.6).
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A brief analysis of the data shows that 1) the influence of the

geometric parameters (including vessel and crack) on F obviously

decrease rapidly at first and then become flat. The change may be

caused by the rapid propagation of the plastic zone area at the crack

tip as shown in Figure 7 (surrounded by 0.2% equivalent plastic

strain isoline), namely, the dominant factor of J-integral changes

from geometry to plastic behavior. When the plastic zone is large,

the F values of different geometries tend to be consistent. 2)With the

complex interaction of the load, crack-front constraint, and material

behavior result within, it is hard to find a generalized and explicit

function to account for the relationship between F and characteristic

parameters. Therefore, this study considers using the NNmethod to

quantify the relationship.

BPNN training and results

A better dataset plays a prominent part in training ANNs,

including the combination of input variables and target values.

The way that these data are defined canmarkedly affect the result.

The importance of the dataset design has also been repeatedly

emphasized by Liu et al. (Liu et al., 2021), and they also pointed

FIGURE 7
Plastic zone area at the crack tip under different internal pressure.

FIGURE 8
BPNN with 3 hidden layers.
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out that a tailored machine learning method enables accurate

knowledge extraction, even in a data-limited regime.

The correction factor F indicated that it is inversely

proportional to the internal pressure P to a certain extent.

The ratio depends on the model’s size {R, t, a, c}, elastic-

plastic properties {E, ], σ0, α, n}, and inner pressure {P}.
Dimensional analysis indicates that six independent

dimensionless variables {ac, at, tR, RL, P
P0
, F} are relevant. Based on

this, the following structure of the dataset is employed:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Input variables : x � (x1, x2, x3, x4, x5) � (a
c
,
a

t
,
t

R
,
R

L
,
P

P0
)

Targets : ytrue � F � J

α(PR
σ0t

) n+1
n (π a

Q
)

.

The value ranges of input variables are

a

c
∈ [0.4, 1], a

t
∈ [0.2, 0.6], t

R
∈ [0.05, 0.2], R

L
∈ [0.5, 1], P

P0
∈ [50, 250].

The parameters’ values of the dataset including 1,200 cases

comprises input x are listed in Table 2. In order to verify the

generalization ability and accuracy of BPNN, 90% of the dataset is

input into the ANN model for training, and 10% is reserved as the

validation dataset. Finally, the accuracy of the solutions is measured

by the mean absolute percentage error in the validation dataset.

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣∣
(ytrue

i − ypred
i )

ytrue
i

∣∣∣∣∣∣∣∣∣∣ × 100% (15)

Because the target variables in this problem are continuous

and bounded over the whole input variables space, the accuracy

of the BPNN over the continuous space can be reliably estimated

reliably by sampling these discrete points (Liu et al., 2020).

The architecture of the BPNN mode to compute the 3D J-

integral is illustrated in Figure 8. The open-source platform PyTorch

v1.9.0 was used to establish and train networks. ReLUwas used as the

TABLE 2 Values of parameters in FEA.

Parameter Value

t(m) 0.07, 0.08, 0.09, 0.1

a/c 0.4, 0.5, 0.6, 0.8, 1

a/t 0.2, 0.4, 0.5, 0.6

R/L 0.5, 0.6, 1

P/P0 50, 100, 150, 200, 250

FIGURE 9
Result of the (5-64-256-64-1) BPNN.

FIGURE 10
Accuracy of predicting unknown characteristic parameters.

FIGURE 11
Accuracy of BPNNs.
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activation function, MSE loss function, and the Kaiming normal

initialization method was adopted for the training process. The

number of hidden layers and neurons affected the performance of

NNs, which could only be tried repeatedly according to experience to

achieve satisfactory results. The results show that the network with

only three hidden layers and (5 − 64 − 256 − 64 − 1) neurons can
achieve high accuracy in the validation dataset (as shown in Figure 9).

Figure 10 illustrates the comparison between the FEA results and

predicted J-integral/F values, which shows that this BPNN can

accurately predict the characteristic parameters being tested which

were not in the dataset. The structure with fewer hidden layers or

fewer neurons does not learn enough about the relationship between

input variables and target values, namely, the accuracy is not

satisfactory. However, more hidden layers lead to overfitting on

the training dataset and insufficient generalization ability for

unknown data, as shown in Figure 11.

Discussion and conclusion

In this work, the three-dimensional J-integral of an axial semi-

elliptic crack on the external surface of an elastoplastic pressure vessel

was studied for pressure vessels made of A508-3 steel, and various

vessel sizes, crack sizes, and internal pressure loads were considered.

Then the BP neural network was trained on a large number of

calculated results to predict factor F, and the validation accuracy was

more than 95% in the three hidden layer network. Finally, a fast

pressure vessel safety evaluation framework based on the neural

network was proposed. This method can save the manpower and

time for repeated modeling and calculation, and achieve real-time

prediction of the corresponding crack tip J-integral of the pressure

vessel characteristic parameters.

The dimensionless correction factor F was used to represent

the relationship between the pressure vessel characteristic

parameters and 3D J-integral. Compared with using J-integral

value directly as the result of measuring load action, the interval

of F value was more stable, and its dimensionless property was

conducive to the construction of the dataset.

The BP neural network with three hidden layers can accurately

predict the 3D J-integral value. The constructed neural network can

quickly predict the driving force of the crack tip on depth direction

through the characteristic parameters of the pressure vessel to be

measured, which is of certain significance to realize the real-time

safety monitoring of the pressure vessel.

The traditional safety assessment method obtains the numerical

relationship of the influencing factors by analyzing specific cases. The

data collected is usually incomplete and inaccurate. The numerical

relationship obtained is often not universal, which can often be

modified again and again with the increase of cases. Themain idea of

this study is data-driven used in industrial automation, so we

consciously generated a large number of regular and high-

precision data. Based on the data, we studied the relationship

between characteristic parameters and fracture parameters

through machine learning methods, and realized the safety

assessment of pressure vessels based on machine learning.

At present, existing research only focuses on one or two

experimental materials, so it is impossible to construct a

reasonable material parameter space for neural network learning,

so such a single neural network does not have the ability to generalize

material properties. How to use a neural network to establish a

universally applicable relationship between material properties and

fracture parameters is a major obstacle for the application of the

neural network in pressure vessel safety assessment.
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