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Studying the impact of the environment on metal corrosion is of considerable

significance for the safety assessment of buildings and the life prediction of

equipment. We developed a new regional environmental corrosion model

(RECM) to predict the atmospheric corrosion of Q235 carbon steel based on

measured environmental data and corrosion rates obtained from one-year-

long static coupon tests. The corrosion of metals varies depending on the

environment; therefore, the ability of the model to distinguish such differences

is crucial for accurately predicting corrosion. Herein, the regions in which the

test sites were located were divided based on the basic principles of

atmospheric corrosion. Furthermore, random forest was used to assess the

importance of various environmental factors in the corrosion process within

each region, which established a close relationship between corrosion and

environmental conditions. Our results showed that the accuracy of the RECM is

higher than that of the dose-response function of the ISO9223-2012 standard.

The method of model construction can be realized automatically using a

computer.
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1 Introduction

Metals are ubiquitous in industries, such as construction and

manufacturing, and therefore, their safe and reliable use is crucial

for applications (Vazirinasab et al., 2018; Shi and Ming, 2017).

The corrosion of metals due to the environment reduces the

service life of buildings and equipment. This result in safety

concerns and a waste of natural resources (Melchers, 2019; Li

et al., 2022). The annual global economic loss caused by

corrosion is estimated to be approximately four trillion US

dollars (Li et al., 2015). To address this issue, corrosion

mechanisms must be understood, and reliable corrosion

models must be established, which will allow for better

material selection and corrosion protection (Faqih and Zayed,

2021; Deng et al., 2020).

The atmospheric corrosion of metals is influenced by

temperature, relative humidity (RH), rainfall, and various

pollutants (Cai et al., 2018; Wang et al., 2021). Many

corrosion models have been developed based on these

environmental factors and can be categorized as black-box

and gray-box models. Black-box models are obtained by

analyzing the characteristics of the input and output (Varol

et al., 2014; Díaz and López, 2007; Wen et al., 2009), while

gray-box models are established by statistical analysis based on

prior experience (Zhan et al., 2021). Black-box models consider

more influential factors and have higher accuracy than gray-box

models (Zhi et al., 2021). However, a major disadvantage of

black-box models is the complex and inexplicable internal

structure of the model. Conversely, gray-box models have

strong interpretability, simple structures, and low

requirements for modeling expertise (Panchenko et al., 2017).

Since the early 20th century, various types of mathematical

models within the gray-box model category have been

established to extrapolate changes in atmospheric corrosion

rates depending on a variety of environmental factors. The

models that were developed between 1968 and

1984 considered less than three environmental factors and

used relatively simple functional forms, such as linear and

power functions (Klinesmith et al., 2007). The dose-response

function (DRF) proposed in the ICPMaterials report was the first

functional model to predict the corrosion rate of metals

depending on atmospheric environmental factors (Tidblad

et al., 2001). This model combined power, exponential, and

linear functions. The DRF coefficients were modified to

integrate the data from the ISO CORRAG and MICAT

Programs (Mikhailov et al., 2004), rendering the model widely

accepted in the field of metal corrosion research. The

International Organization for Standardization incorporated

the DRF into the ISO9223-2012 standard to quantify the

corrosion loss of carbon steel, zinc, copper, and aluminum

after environmental exposure for 1 year.

Although the DRF was considered to have made significant

progress in revealing the mechanism of environmental corrosion,

several studies have shown major discrepancies between

predicted and actual corrosion rates. For example, the DRF

was found to be inaccurate in predicting the corrosion rate of

weathering steel, zinc, and copper at nine sites in Switzerland

considering a variety of environmental types (Leuenberger-

minger et al., 2002). The corrosion rates of four ISO9223-

2012 standard metal materials were measured at 15 test sites

in Iran and compared with the corresponding DRF values. It was

found that the DRF was not applicable inmost areas of Iran (Shiri

and Rezakhani, 2019). Similar results were obtained in a metal

corrosion study conducted in Cuba (Castaneda et al., 2018).

These discrepancies were primarily due to the two climatic

seasons (rainy season and winter season) in Cuba.

The inaccurate prediction of atmospheric corrosion rates using

theDRF can be attributed to twomain factors. First, most of the data

used in the DRF are obtained in Europe and South America (Chico

et al., 2017). Since geographical location directly impacts the

atmospheric environment (Noyes et al., 2009), the DRF cannot

be accurately applied to other areas, particularly those with

dissimilar climates. Second, the DRF considers four

environmental factors: temperature, RH, sulfur dioxide

concentration, and chloride concentration. However, other

potential environmental factors that may affect atmospheric

corrosion need to be incorporated to improve the generality of

themodel and to fully describe the complex corrosion phenomenon.

Herein, we developed a regional environmental corrosion

model (RECM) to predict atmospheric corrosion based on the

measured corrosion rates of carbon steel exposed for 1 year in

China. Our model includes nine different environmental factors:

temperature, RH, rainfall, SO2, NO2, O3, CO, particulate matter

(PM10), and chloride deposition. Themethod to build the RECM

includes four modules: data preprocessing, environmental region

division, key factor selection, and regional model generation. The

results from this study proved that the RECM of carbon steel has

high precision and can adapt to China’s environmental

characteristics. The entire model can be implemented

automatically using a computer.

2 Materials and methods

2.1 Data sources

Corrosion data were obtained from carbon steel atmospheric

corrosion tests conducted by the State Grid Corporation of China

over the course of 1 year at 2040 sites in 25 provinces in China.

The tests were performed according to the ISO9226-2012

standard. A standard sample of Q235 carbon steel was

ground, removed of oil, and exposed to the environment for

1 year. After the one-year-long exposure, all corrosion products

were removed, and the corrosion rate (Rcorr) of the sample was

calculated using the weight loss. Three parallel samples were set

at each site to find the average Rcorr value.
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TABLE 1 Unit of data.

Variable Unit Variable Unit

Rcorr μm/a NO2 μg/m3

Temperature °C O3 μg/m3

RH % CO mg/m3

Rainfall mm/a PM10 μg/m3

SO2 μg/m3 Chloride mg/m2·d

FIGURE 1
Schematic of abnormal data rejection rules.

FIGURE 2
Trend curve of mean change of Rcorr with respect to (A) temperature and (B) RH.
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Environmental data were obtained from

2,162 meteorological monitoring stations at the China

National Meteorological Science Data Center and 1,605 air

pollutant monitoring stations at the National Urban Air

Quality Real-time Publishing Platform of the China General

Environmental Monitoring Station. Chloride deposition was

FIGURE 3
Schematic of a small area causing potential modeling issues.

FIGURE 4
Process and results of region merging.
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measured according to the ISO9225-2012 standard using the dry

plate method. The annual average value of each environmental

data point was calculated, and Kriging interpolation was used to

calculate the values at each test site. All data used in this study are

summarized in Table 1.

2.2 Data preprocessing

Corrosion data obtained from long-term exposure tests

generally exhibit a high degree of scattering owing to the

difficulty of precisely controlling the testing conditions. In

certain cases, samples exposed to similar environmental

conditions may show large differences in corrosion rates,

sometimes the differences even exceed the two corrosion

grades defined in ISO9223-2012 standard. Herein, we used a

preprocessing step to correct for abnormal data and to improve

the quality of the prediction model.

This preprocessing treatment applies a distance threshold to the

K-means algorithm (Chiang andMirkin, 2010), which aggregates the

data based on similar environmental conditions and further

eliminates abnormal data. The process comprises the following steps.

(1)The parameters must be defined. The number of data groups

is represented by N. Each data group includes environmental

data (X) and Rcorr (Y). The number of cluster centers (K) is

generally defined as N/2<K< 2N/3. The distance (d) between

the two samples x1 and x2 in the sample space is represented by

d(x1, x2). The value of the threshold (Q) is dependent on

the data.

FIGURE 5
Box plots for dataset before and after data preprocessing.

TABLE 2 Results of environmental region division.

Region number Regional conditions Number of samples

1 T ≥ 16°C, RH>50%, Dc≥50 km 398

2 Temperature≥16°C, RH>50%, Dc<50 km 169

3 Temperature <16°C, RH ≥ 69%, Dc≥50 km 70

4 Temperature <16°C, RH ≥ 69%, Dc<50 km 24

5 Temperature >9°C, RH ≤ 50%, Dc≥50 km 89

6 Temperature≤9°C, RH ≤ 50%, Dc≥50 km 103

7 Temperature≤9°C, 50% < RH<69%, Dc≥50 km 315

8 9°C < temperature <16°C, 50% < RH<69%, Dc≥50 km 337

9 9°C < temperature <16°C, 50% < RH<69%, Dc<50 km 209
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FIGURE 6
Map of annual averages of (A) temperature and (B) RH, and (C) results of region division.
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(2) Normalize X.

(3) The constraints of the K-means algorithm are as follows:

(a) C � C1, C2 . . .Ck{ } denotes the initial cluster center
set. For Ci, Cj ∈ C, d(Ci, Ci)>Qmust be satisfied. If

d(Ci, Ci)≤Q, the identity of the cluster center of a

sample is removed randomly.

(b) CL denotes the cluster center of class L. For any CL

and sample n, if d(CL, n)≥Q, n is not classified in

class L.

(4) As shown in Figure 1, we designed the following rules for

eliminating abnormal data according to the corrosion

classification of ISO9223-2012 standard:

(a) If there is only one sample in the class, the sample

and class are retained.

(b) If there are two samples in the class and the

corrosion grade difference between them is more

than one grade, both are removed. If the corrosion

grade difference is one or less, both samples are

retained.

(c) If there are more than two samples in the class, the

corrosion grade with the largest number of samples

is considered the benchmark. If the difference

between a sample in the class and the benchmark

is more than one grade, the sample is removed.

2.3 Environmental region division

Owing to the complexity of the corrosion environment data,

a single model cannot accurately describe the relationship

between corrosion behavior and environmental factors

without data simplification. The environmental information

can be simplified by dividing the environmental regions based

on the basic law of corrosion. This allows data in the same region

to have a more uniform change law.

Because the regional division is based on environmental

indicators, it is directly related to Rcorr. Studies indicate that

temperature and RH are the main factors affecting the

atmospheric corrosion of carbon steel (Cai et al., 2018; Wang

et al., 2021; Soares et al., 2009; Cole et al., 2009; Li et al., 2019). To

explore their relationship with corrosion, the average Rcorr was

calculated for each unit of temperature and RH. This relationship

and the polynomial fitting of the mean change are shown in

Figure 2. Synergistic effects of temperature and RH on Rcorr are

observed. A significant change in synergy is detected between

Rcorr and temperature at approximately 10 and 15°C. This is

different from the results of a previous study (Tidblad et al., 2002)

that showed that a significant change in synergistic effects is only

observed at 10°C. The synergy between Rcorr and RH changes at

approximately 52% and 68% RH. Previously, the threshold of RH

was only considered where corrosion occurred (Roberge et al.,

2002). Based on these results, we set the boundaries of regional

division with respect to the temperature to 9–11°C and 14–16°C

and with respect to RH to 50%–54% and 66%–70%.

In addition to temperature and RH, the effect of chloride on

atmospheric corrosion is non-trivial (Bojórquez et al., 2021; Liu

et al., 2019). Chloride in the atmosphere originates from salt

spray generated by the ocean and can spread up to approximately

50 km from the coastline (Cole et al., 2003). Herein, the chloride

concentrations in inland regions more than 50 km from the

coastline were constant. Therefore, the distance from the coast

(Dc) was used as an environmental indicator for regional

division.

2.4 Key corrosion factor selection

All the environmental factors listed in Table 1 can affect

metal corrosion (Oesch, 1996; Chen et al., 2005; Corvo et al.,

2005; Syed, 2008; Rouillard et al., 2009; Li et al., 2013; Nguyen

et al., 2013; Nyrkova et al., 2013; Wang et al., 2013; Pei et al.,

2020), and coupling relationships exist among these factors

(Meng et al., 2021). The role of each environmental factor in

the corrosion of carbon steel depends on the region. Therefore,

key corrosion factors should be selected for each region.

Previous studies typically used correlation analysis to

evaluate the importance of environmental factors. However,

the correlation analysis method assumes that all other factors

are constant, which is not reflected in real-life corrosion datasets.

To address this issue, we used random forest (Breiman, 2001) to

assess feature importance and for feature selection in this study.

Random forest is based on the combination of decision trees and

measures the importance of factors by calculating the model

prediction error caused by incorrect input factors. While

considering the individual influence of each factor, we also

considered the multivariate interaction of other factors (Strobl

et al., 2008). The process we used is as follows.

(1) The dataset was divided into training and testing sets. The

random forest model was trained using the training data set,

and the model accuracy was verified using the testing data

TABLE 3 Key corrosion factors in each region.

Region Key corrosion factors

1 Temperature, rainfall, SO2, CO, PM10

2 Temperature, RH, NO2, chloride, PM10

3 Temperature, rainfall, SO2, CO, O3

4 Temperature, RH, O3, chloride, NO2

5 Temperature, RH, PM10, SO2, CO

6 Temperature, RH, SO2, NO2, O3

7 Temperature, RH, SO2, NO2, O3

8 Temperature, RH, SO2, PM10, NO2

9 Temperature, RH, SO2, chloride, NO2
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set. The root-mean-square error (RMSE, L) was used as the

evaluation index.

RMSE �
�������������
1
n
∑n
i−1

yi − yi
∧( )2

√
(2) The set of environmental factors is denoted as

F � F1, F2,/FI{ }. The observation sequence of Fi(i≤ I)
in the testing set was randomly shuffled. The sequence of

observations excluding Fi remained constant, and the

new test set was named DFi. This was repeated several

TABLE 4 Model of each region.

Region Region model

1 Rcorr � 0.570 · T − 0.616 · SO2 + 0.222 · PM10 + 3.498 · CO + 17.741 · ln(T · ln(Rain) · SO2) − 21.752 · ln(T · ln(Rain) · PM10) − 1.767 · ln(T · ln(Rain) · CO) + 11.868 · ln(Rain)
2 Rcorr � 9.009 · T + 1.605 · RH + 0.016 · Cl + 3.859 ·NO2 − 2.277 · PM10 − 140.864 · ln(T · RH ·NO2) + 115.31 · ln(T · RH · PM10) − 2.970 · ln(T · RH · Cl)
3 Rcorr � 0.366 · T + 5.641 · SO2 − 0.629 · O3 − 61.671 · CO − 83.123 · ln(T · ln(Rain) · SO2) + 37.950 · ln(T · ln(Rain) · CO) + 52.294 · ln(T · ln(Rain) · O3) + 0.135 · ln(Rain)
4 Rcorr � −2.105 · T − 1.030 · RH + 0.032 · Cl − 8.213 ·NO2 + 3.832 · O3 − 182.625 · ln(T · RH · O3) + 209.226 · ln(T · RH ·NO2) − 2.524 · ln(T · RH · Cl)
5 Rcorr � 1.396 · T + 0.868 · RH + 0.316 · SO2 − 0.024 · PM10 + 7.107 · CO + 1.558 · ln(T · RH · SO2) − 11.122 · ln(T · RH · CO) + 0.273 · ln(T · RH · PM10)
6 Rcorr � 2.922 · T + 0.387 · RH − 1.566 · SO2 + 3.981 ·NO2 − 0.877 · O3 + 37.076 · ln(T · RH · SO2) + 39.255 · ln(T · RH · O3) − 83.518 · ln(T · RH ·NO2)
7 Rcorr � −0.238 · T + 0.199 · RH + 0.133 · SO2 − 0.613 ·NO2 + 0.157 · O3 + 3.791 · ln(T · RH · SO2) − 17.662 · ln(T · RH · O3) + 16.574 · ln(T · RH ·NO2)
8 Rcorr � 0.966 · T − 0.007 · RH − 0.042 · SO2 − 0.015 · PM10 + 0.300 ·NO2 + 7.672 · ln(T · RH · SO2) + 3.040 · ln(T · RH · PM10) − 11.005 · ln(T · RH ·NO2)
9 Rcorr � −0.355 · T + 0.562 · RH − 0.034 · Cl − 0.039 · SO2 + 0.434 ·NO2 + 3.503 · ln(T · RH · SO2) − 8.203 · ln(T · RH ·NO2) + 2.967 · ln(T · RH · Cl)

FIGURE 7
Fitting results of RECM on (A) region 1, (B) region 2, (C) region 3, (D) region 4, (E) region 5, (F) region 6, (G) region 7, (H) region 8, and (I) region9.
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TABLE 5 Performance comparison between RECM and DRF.

Region Model RMSE MAE CA (%)

1 DRF 12.851 8.964 72.6

RECM 7.800 6.137 76.9

2 DRF 30.023 20.366 46.7

RECM 12.600 9.746 72.8

3 DRF 10.589 9.124 54.2

RECM 6.557 4.800 85.7

4 DRF 34.872 29.390 37.4

RECM 3.552 3.043 95.8

5 DRF 8.381 7.064 71.5

RECM 6.538 4.853 85.4

6 DRF 8.627 5.819 90.1

RECM 6.359 4.023 97.1

7 DRF 10.849 7.282 87.1

RECM 6.859 5.070 92.7

8 DRF 12.315 10.366 44.2

RECM 5.166 3.819 88.4

9 DRF 16.212 11.223 43.6

RECM 6.042 4.287 80.9

FIGURE 8
Corrosion map of Q235 carbon steel in China.
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times until every environmental factor in F had been

perturbed once and a new testing set DFi(i≤ I) was

obtained. The prediction accuracy FL �
FL1, FL2,/FLI{ } of the model on each test set in D �
DF1, DF2,/DFI{ } was calculated again, where FLi
corresponds to the prediction accuracy after the

observation sequence of scrambled factor Fi.

(3) N-fold cross-validation was performed in step (2). The

prediction results for any FLi, namely, FLij(j � 1, 2/n),

were obtained. The difference between L and FLij was used

to calculate the importance of features. The average value of

cross-validation was recorded in the set

IM � IM1, IM2,/IMI{ }, where IMi corresponds to the

importance of features of factor Fi:

IMi � 1
n

∑n
j

Lj − FLij( )⎛⎝ ⎞⎠

(4) The above equation was normalized to

IM � IM1, IM2,/IMI{ }, rendering values between 0 and

1. The result is the importance score of each feature.

2.5 Regional model generation

Two main methods can be used for constructing

mathematical corrosion models. One is to describe the effects

of environmental variables directly by combining linear

functions (Van den Steen et al., 2016). The other is to use the

non-linear transformation of the environmental variables for

modeling. An example of this method is the DRF in the ISO9223-

2012 standard.

The performance of a model is generally dependent on the

dataset. However, it is impractical to find a universal model that

can be applied to all datasets (Ho and Pepyne, 2002). Herein, we

FIGURE 9
Flowchart for constructing RECM.
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adopted a data-driven perspective with the objective of

combining as many environmental factors as possible in

limited quantities to improve the expression ability of our

model. We tested several model structures and chose the

following structure based on its performance.

Rcorr � ∑S
i�1
ωiAi + ωj∑S

j�1
ln Aj · T · P( ) + ω2S+1T + ω2S+2P

P � ln Rain( ), IMRain ≥ IMRH

RH, IMRain < IMRH
{

Where ω1,ω2,/ω2S+2 are undetermined parameters;

A1, A2,/AS are pollutant variables, and IMRH and IMRain

correspond to the factor importance of RH and rainfall

described in Section 2.4. In regions where rainfall has a higher

impact on corrosion than RH, P represents rainfall. Similarly, P

represents RH in regions where RH has a higher corrosion

impact than rainfall.

This model consists of two parts. The first part,∑S
i�1ωiAi + ω2S+1T + ω2S+2P, is a weighted sum of

environmental factors. The second part, ωj∑S
j�1ln(Aj · T · P),

is a combination of regulators to improve the non-linear fitting

ability of the model. Both parts together describe the overall effect

of the environment on the corrosion rate. Multiple linear

regression was used to obtain the undetermined parameters of

each regional model. The regional models were then combined to

form the RECM of carbon steel.

3 Results

In total, 326 groups of abnormal data were removed through

data preprocessing. As shown in Figure 3, a decrease in the

number of outliers is observed with the data preprocessing.

However, the overall distribution of the data remains

consistent. The remaining 1714 groups of data were used to

construct the RECM.

A key consideration during the regional division process is

the size of the region. Small regions may contain very few test

sites to construct the model and therefore will have a decreased

significance in practical engineering applications (Figure 4). The

most suitable combinations of regional boundaries obtained by

the computer program are 9°C, 16°C, 50% RH, and 69% RH.

Figure 5 shows the process of merging regions with small sample

sizes into conditionally adjacent regions, while Table 2 presents

the regional conditions and number of samples in each region.

Figures 6A,B show the maps of the annual average temperature

and RH, respectively. These maps were superimposed with

Geographical Information System (GIS) technology to

generate the regional division (Figure 6C). The key corrosion

factors selected by random forest for each region and the

mathematical model of each region are listed in Table 3 and

Table 4, respectively. In the equations in Table 4, the symbols of

air pollutants represent corresponding variables, T is the

temperature, Rain is rainfall, and Cl is chloride deposition.

The RMSE, mean absolute error (MAE), and classification

accuracy (CA) were used to evaluate the performance of each

regional model and were calculated as follows.

MAE � 1
n
∑n
i�1

yi − yi
∧

∣∣∣∣∣∣ ∣∣∣∣∣∣
CA � M

n

In these equations, yi is the value fitted by the RECM; yi
∧

is the

real value; M is the number of samples with fitted corrosion

grades that match the actual corrosion grade, and n is the total

number of samples.

Figure 7 shows the fitting results of the RECM for each

region. Within each region, the RECM shows good fitting within

a specific corrosion rate range, where the sample points have a

dense distribution, which leads to good overall performance of

the model. However, outside of this specific range, the fitting

performance is not satisfactory. As shown Figures 7F,G, the Rcorr

values measured in these two regions are mostly in the range of

0–20 μm/a and 0–30 μm/a, and the fitting results to the data in

this range are excellent. But beyond this range the fitting results

become suboptimal. This is mainly due to the limitations of low-

order functions in expressing non-linear relations. In addition,

the RECM does not distinguish the data near the boundary of

corrosion grade ideally, which results in the decline of

classification accuracy in some regions (Figures 7A,B). Overall,

the RECM outperforms the DRF in accurately predicting

corrosion rates in all nine regions (Table 5).

4 Discussion

4.1 Differences in key corrosion factors
between regions

Table 3 presents the key corrosion factors that specifically

impact each region. In every region, temperature has a

significant effect on corrosion. Because RH and rainfall are

highly correlated, one, but not both, of these factors were

assigned to each region. Temperature and RH were considered

appropriate factors for determining regional divisions.

Notably, regions 1, 2, 3, and 4 are in the same latitude

range. Regions 1 and 3 are non-marine sites. Therefore, it

was assumed that rainfall has a higher impact on corrosion

than RH. We assumed that the metal surfaces are wet at night

and during rainfall in the non-marine sites and that the RH

remains high for a long time in marine sites (Cole et al., 2009).

Chloride was selected as a key corrosion factor in the three

marine regions, which verified the effect of the marine salt

spray on corrosion.
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Additionally, we examined the concentrations of various

pollutants in each region and selected those with significant

concentrations as key corrosion factors in the corresponding

regions. The effect of SO2 on the atmospheric corrosion of carbon

steel is well established. In seven of the considered regions, SO2

was selected as a key corrosion factor. The concentration of SO2

in regions 2 and 4 was relatively low and therefore considered to

have an insignificant impact on corrosion. Similarly, PM10 was

chosen as a critical corrosion factor for regions 5 and 8 owing to

its significantly high concentration in those regions. Regions 2, 4,

and 8 had higher concentrations of NO2 as compared to other

regions owing to the many adjacent tall buildings and dense

traffic flow. NO2 had a significant effect on corrosion in these

regions. The concentration of O3 in the atmosphere is affected by

many factors, such as solar radiation intensity, temperature, and

RH. Regions 6 and 7 contain high concentrations of O3 owing to

the plateau terrain areas, rendering it an important corrosion

factor in these regions.

Other pollutants can also indirectly influence atmospheric

corrosion. For example, CO can react with other air pollutants

and lead to corrosion. Notably, COwas included as a key factor in

regions 1, 3, and 5. The concentrations of other various pollutants

were high in certain regions but were not considered key factors

leading to corrosion. As compared to conventional correlation

analysis, the method proposed herein can better identify non-

linear relationships in the data and the factors that have the

highest influence on corrosion.

4.2 Corrosion map

The corrosion of Q235 carbon steel was calculated using the

RECM for regions throughout China. These results were paired

with visualization technology to develop a corrosion rate map

(Figure 8). The Rcorr values decrease from low to high latitudes,

which is consistent with the trend of temperature variation with

latitude. Areas with a higher number of heavy industries in the

north, such as the Shanxi Province and Hebei Province, have

higher Rcorr values. The Rcorr values in marine areas are generally

higher than those in non-marine areas because of higher

atmospheric chloride concentrations. The Rcorr values of

marine areas near the Bohai Sea, such as the northern part of

Shandong Province, eastern part of Tianjin City, and

southwestern part of Liaoning Province, are relatively low.

This could be because the Bohai Sea is an inland sea with

fewer waves, and therefore, lower amounts of chloride are

present. In central Inner Mongolia, high elevation variations

and large diurnal temperature differences (Hu et al., 2015) lead to

frequent dry-wet processes on the metal surface, which may

result in high Rcorr values in this region. This mathematical

model can be adjusted to suit specific geographical locations and

used to predict the Rcorr values in those regions to adopt targeted

corrosion protection measures.

4.3 Computerization

The method of constructing the RECM is modularized such

that the computer program can automatically generate the

RECM, as shown Figure 9. This is of considerable significance

for corrosion assessment and protection in buildings and

production. Significantly, some parameters need to be set

according to different materials and data, such as the

threshold (Q) in data preprocessing and the parameters of

random forest in the selection of key factors.

5 Conclusion

In summary, we developed an RECM for estimating the

corrosion of Q235 carbon steel in China. This model is suitable

for predicting carbon steel corrosion in China and addresses

issues related to existing approaches. The following conclusions

can be drawn from this study.

(1) We simplified large datasets and complex information

through data preprocessing and environmental region

division. Samples with similar environmental conditions

were aggregated, which resulted in a close relationship

between the corrosion rate and environmental factors.

(2) Considering the coupling effect of various environmental

factors in metal atmospheric corrosion, random forest was

used to replace the common correlation analysis method.

This allowed for an accurate calculation of the degree of

influence of various environmental factors on corrosion.

(3) A mathematical regional corrosion model was constructed

using key corrosion factors as input variables.

(4) The method for constructing the RECM is modularized and

can be automatically implemented by a computer. This

implies that the model can be applied in the construction

of mathematical models for the environmental corrosion of

other materials.
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