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Nanoparticles play an active role in biomedical science due to their unique properties,
which cannot be obtained from bulk materials. Therefore, understanding and controlling
the physicochemical properties of nanoparticles are gaining increasing importance for their
practical applications. Surface coating is an important technique that controls the physical
properties of nanoparticles since the coating is the first part of the nanoparticle that is in
contact with the environment. Additionally, the coating creates robust targeting, therapy,
imaging, and sensing opportunities. This review first introduced two recently developed
outstanding coatings, namely, hyperbranched polyglycerol and polydopamine, and the
research achieved by the polyglycerol/polydopamine-coated nanoparticles was then
highlighted.
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INTRODUCTION

Nanoparticles (NPs) are gaining popularity in biomedical applications. They are defined as particles
smaller than 100 nm in size, with numerous types reported to date comprising organic, inorganic,
and metal NPs (Mcnamara and Tofail, 2016; Maiti et al., 2018; Aflori, 2021). Additionally, NPs show
unique chemical, physical, and/or optical properties compared with bulk materials attributed to their
nanometer size and large surface-to-volume ratio. These properties vary significantly in size, shape,
structure, and composition. For example, the energy level of electrons becomes discrete when they
are confined to a nanometric region, revealing peculiar electrical, and optical properties. Also, in the
medical field, NPs are useful carriers of biomolecules and/or drugs in certain parts of the body for
diagnosis and therapy (Brigger et al., 2012). They also passively accumulate in tumors through their
enhanced permeability and retention (EPR) effect (Shi et al., 2020). Recently, crystal defects in
inorganic NPs, such as diamond NPs, have attracted new imaging, and sensing applications (Basso
et al., 2020). Additionally, small molecules, polymers, and biomolecules modify the surface of NPs.
These special properties allow NPs in advanced biomedical applications, such as targeting, therapy,
imaging, and sensing (Figure 1A) (Davis et al., 2008; Holzinger et al., 2014; Yang et al., 2019;Mitchell
et al., 2021).

Surface coating with organic polymers is crucial to controlling the properties of NPs since it
determines the interaction between NPs and the environment. For example, the colloidal stability of
NPs at different pH values or in the presence of salt greatly depends on the coatings, including an
adequate coating that contributes to the aggregation inhibition. Additionally, the coating provides
prospects for further functionalization, e.g., imaging probes, targeting agents, biomolecules, and
drugs. There are numerous combinations of NPs and surface coatings; thus, the potential
applications of hybrids of NPs and polymers are vastly robust. Common approaches applied for
surface coating include the atom transfer radical polymerization or reversible addition-
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fragmentation chain transfer polymerization (Zoppe et al., 2017).
However, these methods involve multiple organic synthesis steps,
are technically difficult and require transition metal catalysts,
such as Cu+ ions, and for polymerization. However, their use in

synthesis is best avoided due to the toxicity of these transition
metal ions to living organisms. Recently, two surface coatings
have been developed with simple, versatile, robust, and metal-free
methods: hyperbranched polyglycerol (HPG; Figure 1B) and

FIGURE 1 | Schematic illustration of (A) nanoparticles focused in this review and their biomedical application and synthesis of (B) NP-HPG and (C) NP-PDA.
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polydopamine (PDA; Figure 1C) coatings. This article reviewed
the fundamental properties of HPG and PDA and recent
advances in the bioapplications of NPs with HPG and PDA
coatings. Supplementary Table S1 summarizes the size, surface
functionalization, and applications of NPs coated with HPG
and PDA.

SURFACE COATING

Polyglycerol
HPG is obtained through a ring-opening reaction of glycidol,
with a structure similar to the branched polyethylene glycol and
OH groups as a terminal (Khan and Huck, 2003; Wang et al.,
2008). As a result, HPG exhibits excellent hydrophilicity reduces
nonspecific absorption of biomolecules (Zhao et al., 2011; Zhao
et al., 2012; Sotoma et al., 2015; Jafari et al., 2020; Zou et al., 2020).
Additionally, HPG can be modified with various functional
groups from the terminal OH groups. Notably, Sandler and
Berg (Sandler and Berg, 1966) first attempted the
demonstration of the polymerization of glycidol, and later,
researchers devoted efforts to polymerizing glycidol using
various approaches.

In 2011, Komatsu and colleagues reported a simple method of
HPG coating on nanodiamond (ND) surfaces, where the ND and
glycidol mixture was heated at 140°C in argon atmosphere for
20 h without a catalyst, producing ND-HPG (Zhao et al., 2011).
The ring-opening reaction mechanism is the polymerization
reaction between an OH group and a carbon atom in the
epoxy group initiated from the nucleophilic groups on the
surface of NPs. Hence, nanoparticles must be designed to have
nucleophilic groups on their surface. The thickness of the HPG
layer is controlled by changing the reaction time and temperature
(Zou et al., 2020). The HPGmodification altered the hydrophobic
nature of the ND material such that ND-HPG showed extremely
high solubility not only in pure water but also in buffer solutions.
Furthermore, the HPG layer blocks nonspecific absorption, with
further functionalization with targeting moieties (antibody,
ligand, and among others), specifically targeting NPs to the
biomolecules of interest (Hsieh et al., 2019). Besides, Sotoma
and coworkers reported one-pot functionalization of COOH,
amine, and alkyne (Sotoma et al., 2018; Terada et al., 2018;
Hsieh et al., 2019). Zhou et al. also revealed that HPG-coated
metal quantum dots (QDs) are less toxic than pristine QDs due to
the biocompatible envelope of HPG on the QDs (Zhou et al.,
2009).

Polydopamine
PDA is a bioinspired polymer similar in capabilities with a
mussel’s adhesive foot protein that firmly attaches the mussel
to a surface, polymerizing on the NP surfaces (Lee et al., 2007).
Although the mechanism remains controversial (Liebscher
et al., 2013), dopamine self-polymerizes under basic
conditions (pH 8.5), creating a layer of PDA adhering
strongly to the surface of NPs without pretreatment. The
thickness of the PDA layer is easily controlled by changing
the dopamine concentration and reaction time. Also, PDA

possesses universal adhesion to any material or surface and
provides active platforms for further functionalization through
catechol/quinone groups (Liu et al., 2014). The notable feature
of PDA is its photothermal effect; PDA nanospheres achieved
40% photothermal conversion efficiency, much higher than
that of gold nanorods (GNRs) (22%) (Liu Y. et al., 2013; Jung
et al., 2018; Harvey et al., 2019). Hence, it is applied in
hyperthermia therapy against cancer (Zelasko-Leon et al.,
2015; Li D. et al., 2016; Ding et al., 2016; Cheng Y. et al.,
2017). Furthermore, PDA can be easily functionalized with
metal nanomaterials by reducing metal ions. Therefore,
various metal types can be deposited on the surface of PDA,
including Au, Ag, Pt, and Cu (Zeng et al., 2018; Lu et al., 2020).

NANOPARTICLES

Diamond
The diamond NP is a carbon-based nanomaterial with a broad
prospect for bioapplications. This review classified ND into three
types: detonation nanodiamond (DND), nanodiamond without a
nitrogen-vacancy center (ND), and ND with nitrogen-vacancy
centers (FND). The DND is a synthetic diamond obtained from
explosives with a 4–6 nm uniform size (Mochalin et al., 2011;
Dolmatov et al., 2020). Additionally, since DNDs exhibit tunable
surfaces, excellent biocompatibility, and large areas, they are
attracted as drug and gene carriers (Zhang et al., 2009; Huang
et al., 2010; Mochalin et al., 2011). However, the NDs produced
by chemical vapor deposition or high-pressure high-temperature
methods with a size of 30–100 nm are used for bioimaging
applications (Hui et al., 2010). Therefore, particular attention
is given to NDs containing nitrogen-vacancy centers (NVCs), e.g.,
FNDs (Yu et al., 2005). The FND fluorescence shows no
photobleaching or photoblinking, permitting single-particle
tracking and long-term fluorescence imaging (Yu et al., 2005).
Also, the magneto-optical property is another notable feature of
FND. The quantum states of the electron spins in NVCs are
optically read at room temperature via optically detected
magnetic resonance (ODMR) (Gruber et al., 1997; Degen
et al., 2017). The ODMR signal allows nanoscale sensing of an
electric field, magnetic field, temperature, and angle with high
precision (Wu et al., 2016; Zhang et al., 2021).

Magnet
Magnetic NPs (MNPs), such as Fe3O4, are conventional
nanomaterials that offer controlled size, size-dependent
magnetic property, manipulation externally, paramagnetic
properties, and heat generation in an alternating magnetic
field associated with hysteresis loss (Holzinger et al., 2014; Ali
et al., 2021; Materón et al., 2021). It is possible to synthesize MNP
with uniform size distribution using the bottom-up approach and
controlled particle size. Therefore, due to these properties, MNPs
are used for drug/gene delivery, protein separation, contrast
enhancement in magnetic resonance imaging (MRI), and
hyperthermia (Materón et al., 2021). It is also necessary to
employ a synthesis method that exposes OH groups on the
surface of MNPs for HPG coating.
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Gold
GNPs are among the most studied nanomaterials, with their
unique optoelectronic properties, indispensable for DDS probes,
catalysts, and sensors (Yeh et al., 2012; Elahi et al., 2018). Since
the physical, chemical, optical, and electrical properties change
with size and shape, various GNPs have been developed,
including sphere, rod, hollow, star, and cubic (De Berardis
et al., 2021). Principally, GNRs have two surface bands, a
short-wavelength band (TSPR: transverse surface plasmon
resonance) and a long-wavelength band in the near-infrared
region (LSPR: longitudinal SPR). The TSPR is generally
observed around 525–586 nm, whereas the LSPR is highly
dependent on the aspect ratio of the GNR (Nikoobakht and
El-Sayed, 2003; Runowski et al., 2019). Additionally, GNRs
generate heat used mainly for photothermal therapy of cancer
cells after absorbing light in the region of their TSPR or LSPR
(Huang et al., 2008; Zelasko-Leon et al., 2015; Du et al., 2017;
Riley and Day, 2017). The surfaces of the synthesized GNPs are
stabilized with citric acid or cetyltrimethylammonium bromide.
Also, the PDA coating applies to GNP even in the presence of
these stabilizers. However, HPG coating is not applicable because
GNPs do not have nucleophilic groups on the surface. Sotoma
et al. reported the possibility of growing HPG on NP-PDA since
PDA acts as a scaffold for the ring-opening polymerization of
glycidol (Sotoma and Harada, 2019). Therefore, subsequent HPG
coating overcomes the relatively low dispersity of NP-PDA.

Quantum Dot
QDs are 2–10 nmNPs with a fluorescence property because of the
quantum confinement effect. They have numerous potential
applications, including bioimaging, displays, solar cells, and
quantum communication. Various QDs have been developed,
including heavy metals, silicon, and carbon. Among them, QDs
made of heavy metals show cytotoxicity, requiring surface coating
to reduce the toxicity. Additionally, the wavelength of
fluorescence emission of QDs can be tuned by controlling
their sizes. These properties often contribute to bioimaging
and biodiagnosis (Kairdolf et al., 2013). Also, a recent study
reported that QDs serve as a nanometric temperature sensor, with
monitoring fluorescence intensity or fluorescence lifetime
(Medintz et al., 2005; Kalytchuk et al., 2017). However, since
PDA coatings absorb light and considerably reduce fluorescence,
limited research has been conducted on PDA QD coating.

Mesoporous Silica
Mesoporous silica NPs (MSNPs) are amorphous silica NPs with
numerous pores with sizes ranging from 2 to 50 nm (Narayan
et al., 2018) that have gained increasing attention due to their
catalytic and biomedical applications. Several types of
mesoporous silica depends on the morphology, such as SBA,
LMU, FSM, MCM, among others, and including varying particle
properties (Moritz and Geszke-Moritz, 2015). Molecules can be
loaded into the pores and slowly released, with their properties
often used for DDS (Narayan et al., 2018; Niculescu, 2020).
Although surface modification of MSNPs is relatively easy
through silane reagents, HPG-coated MSNPs have not been
reported to date.

APPLICATION

HPG-Coated NPs
HPG coating is used to increase dispersity and actively target
DND (Zhao et al., 2014c; Zhao L. et al., 2015; Li et al., 2018; Li
et al., 2019; Yuan et al., 2019; Chen et al., 2020), ND (Zhao
et al., 2011; Zhao et al., 2014a; Yoshino et al., 2019; Zou et al.,
2020; Zou et al., 2021), FND (Boudou et al., 2013; Sotoma et al.,
2015; Sotoma et al., 2016; Torelli et al., 2019; Barton et al.,
2020; Suarez-Kelly et al., 2021), or MNP (Wang et al., 2008;
Wang et al., 2009; Wang et al., 2011; He et al., 2015). Reports
have shown that the aggregation property of DND, which is
stronger than that of NDs, is overcome by HPG coating
(Sotoma and Shirakawa, 2016). Previous MNP experiment
with HPG originates from Zhao et al., who revealed that
the HPG layer suppresses nonspecific adsorption of proteins
on the MNP surface to a level comparable or superior to
commonly used polyethylene glycol (Zhao et al., 2012). In
the latter study, Zou et al. reported that the 30 wt% HPG layer
on the surface of NPs prevented protein corona formation,
thus indicating its stealth effect (Zou et al., 2020). These
properties enable the HPG-coated NPs for targeted therapy,
imaging, and sensing.

NP-HPGs are used for selective delivery of dox or cisplatin to
A549, U937, U87MG, glioblastoma, and breast cancer cells (Zhao
et al., 2014b; Zhao et al., 2014c; Li et al., 2019), indicating the
enhanced therapy efficacy. For example, Zhao et al. developed
ND-HPG further functionalized with RGD peptide as the
targeting moiety and platinum as a drug, i.e., ND-HPG-RGD-
Pt (Zhao et al., 2014c). Furthermore, the group showed that ND-
HPG-RGD-Pt was preferentially assimilated by specific U87MG
cells expressing RGD peptide receptors and revealed cytotoxicity,
illustrating its potential as a chemotherapy agent.

Additionally, Hsieh et al. used FND-HPG for single-particle
tracking. The group selectively targeted FND-HPG to membrane
glycoprotein through click chemistry and continuously
monitored the protein movements on/in live cells for over 2 h
(Hsieh et al., 2019). These results affirm the potential for
biomedical applications at the single-molecule level. Finally,
Arsalani demonstrated the application of the MNP-HPG for
MRI of the liver and kidney in vivo. They found that the
particles produced a strong negative contrast, which persisted
in the liver and kidney for 80 and 110 min, respectively (Arsalani
et al., 2012).

Igarashi et al. reported a unique sensing application by
tracking the three-dimensional rotational motion of F1-
ATPase using FND-HPG with angular uncertainty of ±3 with
a time resolution of 1.7 s (Igarashi et al., 2020).

Additionally, regarding other NPs, HPG coating has been
reported for TiO2 (Qin et al., 2016), CdTe (Zhou et al., 2009),
CdSe-ZmS (Panja et al., 2017), Mn-ZnSeS (Panja et al., 2017),
silicon NPs (Das and Jana, 2014), and carbon dot (Li et al., 2017).

Also, Panja et al. used silica coating on CdSe-ZnS, Mn-ZnSeS, γ-
Fe2O3, and gold particles as a scaffold for HPG coating. These
studies reported that HPG modification does not interfere with
QD fluorescence, has high dispersibility, reduces QD cytotoxicity,
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and improves hemocompatibility. Furthermore, Das et al.
succeeded specifically targeting glioblastoma and cervical
cancer cells with overexpressing αvβ3 integrin by modifying
the HPG surface on silicon QDs with (cRGDfK) peptide (Das
and Jana, 2014).

PDA-Coated NPs
The dispersibility and stealth effect of PDA were not high.
However, its surface modification was easy, with its
dispersibility, and stealth effect enhanced by modifying it with
PEG or other chemicals. Additionally, tumor accumulation due
to the EPR effect was observed. The high scalability permits
nanoparticles to be conjugated and expands the multifunctional
application in therapy, imaging, and sensing.

MNP-PDA has absorption properties used for eliminating
metals and dyes (Liu R. et al., 2013; Xie et al., 2014; Zhao Y.
et al., 2015; Li J. et al., 2016). Zhang et al. reported a protein-
imprinted MNP-PDA that improved binding ability of the
respective targets using the absorption property,
demonstrating high potential for proteomics and drug
delivery (Zhang et al., 2012). Moreover, MNP-PDA serves
as an imaging/therapy platform (Lin et al., 2014; Zheng et al.,
2015; Xue et al., 2017). Lin et al. revealed that PDA
exhibited strong NIR absorbance, high fluorescence
quenching, and high functionality. Additionally, the group
illustrated that MNP-PDA act as a multifunctional agent for
intracellular mRNA detection and synergistic MRI and
photoacoustic dual-modal imaging-guided photothermal
therapy (Lin et al., 2014).

PDA coating is reported for GNP (Choi et al., 2015; Wang C.
et al., 2016; Xu et al., 2019), GNR (Black et al., 2013; Zelasko-Leon
et al., 2015; Wang S. et al., 2016), hollow (Ju et al., 2015), and
nanostar (Li D. et al., 2016; You et al., 2019). Liu et al. assessed
GNP-PDA’s cellular uptake and biodegradability in vivo and
in vitro (Liu X. et al., 2013). TEM observation revealed that no
significant change was affected by the GNP-PDA structure in the
lysosomes or cytosol within cells over a 24 h incubation period
and in the liver or the spleen from 1 day to 6 weeks after injection.
Zhang et al. synthesized GNR-PDA-loaded RGD peptide,
cisplatin, and iodine-125 for an image-guided combination
chemo-thermal therapy platform (Zhang et al., 2016). The
hybrid particles target the tumors, and upon internalization
into cells, the particles release cisplatin into endosomes. The
particles can be visualized via CT imaging and photoacoustic
imaging.

Additionally, MSNPs with PDA shells realize unique DDS
applications (Cheng et al., 2017b; Wei et al., 2017; Lei et al.,
2019; Shi et al., 2019). Zheng et al. developed a system for drug
release control through coating drug-loaded MSNPs with PDA
(Zheng et al., 2014). Notably, the system uses PDA as a
gatekeeper mechanism to inhibit drug release. Once the
particles are placed under acidic conditions such as
endosomes, the PDA disassembles, gradually release the
drugs into the cell. Cheng et al. developed a nanocarrier
system of PDA-coated MSNPs functionalized with d-a-
tocopheryl polyethylene glycol 1,000 succinate (TPGS)
(i.e., MNSs-DOX@PDA-TPGS). The groups

demonstrated that MSNs-DOX@PDA-TPGS displays
exceptional overcomes multidrug resistance with better
therapeutic efficacy in vivo than free DOX and DOX-
loaded NPs without TPGS ligand modification (Cheng
et al., 2017a).

FND-PDA functions double-sided since PDA exhibits
photothermal properties in nanoheater/thermometer and is
also used for intracellular thermal conductivity measurements
(Sotoma et al., 2021). Therefore, the measurement of
intracellular thermal conductivities of HeLa and MCF-7
cells was examined, revealing a mean conductivity of the
two separate cell lines of 0.11 ± 0.04 Wm−1 K−1 (95%
confidence) with similar accuracies, significantly lower than
that of water (0.6 Wm−1 K−1). Therefore, the latest study group
fabricated a composite quantum sensor containing FND, PDA,
GNP, and HPG as a dual-purpose, enhanced nanoheater/
thermometer (Sotoma and Harada, 2021).

Other interesting bioapplications of NP-PDA have been
reported and summarized in excellent papers such as protein
sensing (Xia et al., 2013), stimuli-responsive molecule release
(Yang et al., 2021), biocatalyst (Liu R. et al., 2013; Xie et al.,
2014; Landarani-Isfahani et al., 2015; Deng et al., 2016; Liu
et al., 2017; Lu et al., 2020), molecule removal from a solution
(Xie et al., 2014; Li J. et al., 2016; Baghban et al., 2018), immune
assay (Lai et al., 2013), antibacterial (Fu et al., 2021), wound
healing (Zheng et al., 2021), and tissue engineering (Tang et al.,
2021).

CONCLUSIONS AND PERSPECTIVES

This review described how HPG and PDA coatings affect the
properties of the NPs, including the current applications of
HPG/PDA-coated NPs. The ease of coating and
functionalization and excellent biocompatibility have
greatly improved and broadened the application of the
numerous NPs in biomedical science, including targeting,
therapy, imaging, sensing, and technologies that
combine them.

Nevertheless, HPG and PDA have several hurdles to
overcome for future study. For HPG coating, nucleophilic
groups on the surface of NPs are necessary for the coating.
To overcome this limitation, NPs without nucleophilic groups
on their surface must introduce appropriate scaffolds. Also,
care must be taken to ensure that this scaffold does not affect
the intrinsic properties of the NPs. Despite increasing
investigations, PDA’s polymerization mechanism remains
controversial. Notably, the structure is vital in
understanding its physical properties; however, a deeper
understanding will better control the strategy for later
functionalization.

HPG and PDA are reported to be less toxic and reduce the
inherent toxicity of NPs in biological systems. However, there
are limited reports on the interaction of HPG and PDA
coatings, which affects cellular functions. Additionally, their
long-term stability, and biodegradability in vivo are not fully
understood. The systematic investigation on the HPG-NPs
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and PDA-NPs in animal models accumulate safety knowledge
and perspectives, thus increasing potential clinical
applications.

Once the abovementioned issues can be addressed, HPG
and PDA coatings will greatly impact the biomedical field.
Furthermore, the trend of future research will be the
combination of NP functions with those of polymers to
create nanorobots with multifunctional properties that
modify their functions according to external signals and/or
the local environment, subsequently establishing a new
diagnostic system, and tailor-made medicine. Therefore, I
believe the interest in these coatings is expected to increase
substantially in the next decades.
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