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Currently, people pay more and more attention to road maintenance, and the

traffic characteristics of vehicles play an important role in road quality evolution

and maintenance decision, which commonly depends on the collection and

analysis of traffic data. Nevertheless, the rationality of traffic data analysis and

the scientificity of maintenance decision are deficient. This study carries out a

research on the data fusion of multisource traffic data including toll data and

video surveillance data. First, the information of vehicle type and axle load is

acquired from the toll data, and the lane, speed and temporal information are

obtained from the video surveillance data. A Bayesian method is used to train

toll data and video surveillance data to recover missing data. The vehicle type

distribution probabilities of traffic volume during different periods and speeds in

different lanes are investigated. Next, the number of equivalent standard axle

load (ESAL) at different lanes, time periods, and speeds are estimated based on

the axle load conversion relationship between different vehicle types. Then the

axle load spectrum and distribution characteristics of traffic in different sections,

lanes, speeds, and time periods are analyzed. Finally, the comparison of rutting

depth from the multisource data fusion and specification is carried out, and it

shows an apparent difference (e.g., beyond 20%) when the lateral distribution in

lanes is taken into account. Although the difference is less than 10% by

considering vehicle speed and time periods, the time to reach the same

value of rutting depth maybe more than 1 year. Therefore, it greatly affects

accurate determination of preventive maintenance timing. As a whole, this

study provides beneficial information for accurately understanding the

preventive maintenance opportunities and making reasonable maintenance

decisions.
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1 Introduction

1.1 Background

At present, the concept of preventive maintenance is

gradually recommended by maintenance managers, which

means good pavement maintenance can prolong the service

life of the pavement and it can reduce the impact of

maintenance wastes on the environment (Shi et al., 2019; Dan

et al., 2022a; Liu et al., 2022). However, the reasonable decision of

preventive maintenance closely depends on the accurate

understanding of the traffic volume and the accurate grasp of

deterioration law of pavement performance (Tarefder and

Rodriguez-Ruiz, 2013; Cirilovic et al., 2015; Dhatrak et al.,

2020; Dan et al., 2022b). Traffic volume and axle load data

are important basic parameters in pavement maintenance

planning and design (Song et al., 2019). Meanwhile, it is well

known that traffic loading is an important factor for road

performance degradation and pavement damage (Dan et al.,

2019; Perez-Acebo et al., 2019). Under the same conditions,

the larger the equivalent standard axle load (ESAL) is, the faster

the road condition deteriorates. Therefore, the analysis of

highway traffic load is one of the most important references

for pavement performance prediction and maintenance

(Amorim et al., 2015; Dos et al., 2019).

Generally speaking, the traffic designers used the axle load

spectrum (i.e., the percentage of different axle loads) to describe

traffic loading, which is the main data source of traffic parameters

in pavement design methods in developed countries (Ali et al.,

2018; Dinegdae and Birgisson, 2018). To analyze the variation in

traffic load and traffic volume, both the United States and

Germany adopted the method of combining long-term

observation with short-term observation to investigate the

highway traffic volume and load distribution. It is mainly

based on long-term observations and is supplemented by

short-term sampling observations (Tang et al., 2019; Wang S.

L et al., 2019). As for the influence of traffic loading on the

pavement, researchers always attached great importance to the

distribution of the actual axle load on the road. The designers

often adapted an established wheel load as the standard design

load in flexible pavement design methods in various countries

(Heymsfield and Tingle, 2019). In the 1950s, the conversion

coefficient was obtained for converting the mixed load into a

single load by carrying out large full-scale road tests in the

United States (Yin, 2015). In 2004, the mechanistic–empirical

(M-E) design method was introduced by replacing the equivalent

number of axle loading times with the axle load spectrum to

characterize traffic loading for the pavement structure design in

the United States, and a new road mechanics empirical design

method based on the axle load spectrum was developed

(AASHTO, 2020). The mixed traffic bearing capacity of the

road was converted into the equivalent standard axle loads

(ESALs) in current pavement structure design method in

China (Wang et al., 2007; Wang and Zhang, 2016; Gao et al.,

2019).

For some studies, the axle load spectrum and the traffic flow

information were obtained by artificial statistics, which is difficult

to calculate and restricted with poor accuracy (Haider et al., 2010;

Mai et al., 2014). Certainly, they did not take some factors such as

the distribution of traffic flow in different road sections, lanes,

time periods (day and nights), and vehicle speed into

consideration at the same time. Nevertheless, with the

development of radio frequency identification technology,

dynamic weighing technology, and high-definition image

recognition technology, network tolling systems, weight-

calculating charge systems, and high-definition video

surveillance systems have been widely used in highway

operation management faced with increasing traffic volume

(Abbas et al., 2014; Ren et al., 2019; Feng et al., 2020).

Massive traffic data are being collected on every expressway

FIGURE 1
Location of expressway sections in Guangdong province, China (the legends represent the section names between toll stations).
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every day. The daily raw data generated by expressway tolling

systems and video surveillance systems have the features of large

quantity, various types, high speed of generation, and strong real-

time performance, which are the characteristics of typical big

data. If the traffic flow information of different sections, different

lanes, different time periods, different speeds, and different

vehicle types can be extracted from the massive tolling data

and video surveillance data, the problem of difficulty in obtaining

and analyzing traffic load information in pavement performance

prediction can be effectively solved (Mai et al., 2013; Tarefder and

Hasan, 2016). Furthermore, according to the Chinese standard

(specification for design of highway asphalt pavement JTG D50-

2017), the lane coefficient is determined by counting the number

of vehicles including passenger cars and trucks on different lanes

in the design direction according to the traffic volume

observation data. Similarly, for the American standard

(AASHTO 2020), the lane coefficient is the percent of trucks

in the design direction that are expected to travel in the design

lane. This percentage is used to calculate the total number of

trucks in the design lane. It is unfortunate that the lane factor

does not truly and completely reflect the traffic flow distribution

of different lanes. As a matter of fact, due to the influence of

channelized traffic, the distribution of vehicles and the speed on

different lanes is extremely varied, which makes the degradation

of pavement performance different. Especially, there are many

heavy-duty vehicles on the expressway, and the existing axle load

spectrum cannot truly reflect the complex traffic axle load

characteristics as well.

Therefore, a large number of traffic data through the traffic

information acquisition system, the data fusion analysis can be

carried out to provide a better way to accurately understand the

characteristics of traffic volume and axle load distribution.

1.2 Objective and scope

The main objective of the study is to integrate toll data and

video surveillance data to analyze, and the traffic distribution

characteristics will be refined and understood through data

integration analysis, disassembling, and processing the data in

terms of road section, vehicle type, axle type, axle load, lane,

speed, and time. Furthermore, the significance of the traffic data

fusion analysis will be highlighted through the application of the

presented method, and it also provides crucial information and

approach for management department of expressway to

rationally take use of traffic data.

2 Methodology

2.1 Data source and description

Themain data used in this study were derived from toll, video

surveillance, maintenance service, and meteorological data from

the transportation department of Guangdong province in China.

The traffic axle load data were collected from a section of

expressway (about 289.7 km) in Guangdong province, which

is shown in Figure 1, and the data information are listed in

Table 1. It is pointed out that the abbreviations in Figure 1 are the

names of toll stations. The distance between toll stations is the

expressway section and the full name is listed as follows:

YB-DQ: Yuebei–Daqiao, DQ-RY: Daqiao–Ruyuan, RY-SG:

Ruyuan–Shaoguan, SG-SX: Shaoguan–Shaxi, SX-DZ:

Shaxi–Dazhen, DZ-TT: Dazhen–Tangtang, TT-BX:

Tangtang–Beixing, and BX-TH: Beixing–Taihe.

TABLE 1 Data for analysis.

Data type Data component Data period Data volume

Toll data Toll flow data of export 01 July 2014–30 June 2017 About 135 million records, and 68.8 Gb

Coded data of a road section 01 July 2014–30 June 2017 About 156 million records, and 22.9 Gb

Coded data of a toll station Static data —

Toll station coding data Static data —

Video surveillance data Flow data of the high-definition camera 01 July 2014–30 June 2017 About 33.64 million records, and 4.56 Gb

Coded data of the high-definition camera Static data —

FIGURE 2
Schematic diagram of axle type of vehicles.
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The traffic data mainly include toll data and video

surveillance data.

(1) The toll data include toll flow data of export, coded data of a

road section, and the coded data of a toll station. The main

axle types and model type of vehicles are shown in Figures 2,

3, respectively.

It should be pointed out that the maintenance and

meteorological data are not listed and analyzed in this study

because the mechanics and performance analysis of pavement is

beyond the scope of this study.

2.2 Data disassembly of data from
different sources

As a matter of fact, the video surveillance data, toll data,

meteorological data, and maintenance data have different data

formats. It is difficult to directly extract the traffic information of

a certain road section. To establish the connection between

different types of data, the road section code is used to unify

different types of data in the road network model (Figure 3), and

the specific link information of each type of data is shown in

Figure 4. The specific process is as follows.

First, the video surveillance data are imported and the high-

definition camera code is extracted by programming with

MATLAB and R language. Then the HD camera code is

converted into the corresponding road section code in the

road network. Furthermore, the detailed toll data are

imported and disassembled to acquire the corresponding

number and name of each toll station through programming.

Basically, every single data contain the license plate information

of vehicle, and it can be linked to the video surveillance data. That

is the vehicle flow in the road section can be clarified. Finally, the

toll station code is also linked to the corresponding road section

code in the road network. Likewise, the meteorological data

collected in the region of administration division, pavement

FIGURE 3
Schematic diagram of model type of vehicles.

FIGURE 4
Data model of road section coding.
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structure data, and the testing data of road performance can be

easily referred to the road section and road section code.

Therefore, all the provided data can be unified by the road

section code and then can be disassembled into the target

data, which is shown in Figure 5. The following process can

be specified as below.

First, the toll data is disassembled to acquire the axle type,

vehicle type, and the traffic flow distribution. Second, the video

surveillance data is similarly disassembled to obtain the vehicle

speed, passing time, and lane information of each vehicle. Finally,

the traffic flow distribution can be obtained by taking in

consideration the vehicle speed, passing time, and lane

information of all vehicles.

2.3 Refined computing method of
multisource traffic data

In general, the distribution of axle weight and total weight in

each road section (between toll stations) can be calculated

through toll data, and the vehicle speed, passing time, and

traffic flow in different lanes can be calculated using the video

surveillance data. However, as a matter of fact, the volume of

video surveillance data is smaller than that of toll data to some

extent due to the absence of video surveillance data by HD

camera. Therefore, accurate traffic information cannot be linked

just by using the existing video surveillance data and toll data. To

solve this problem, the traffic flow distribution of different

vehicle in different lanes are obtained using the Bayesian

decision method (Tang and Huang, 2019; Wen et al., 2019;

Fleischhacke et al., 2020) by training partial toll and video

surveillance data.

Several studies have previously employed the Bayesian

method in the analysis of traffic to express certain

relationships between the different factors (Chen, et al., 2019;

Febres et al., 2019; Wang F. Y et al., 2019). Therefore, the toll and

video surveillance data are trained to obtain the posterior

probability of the data (i.e., the probability of traffic

distribution of different lanes of vehicles in different sections,

time periods, and speeds; and the probability of different vehicle

types). According to the probability, the vehicle flow distribution

and the number of axle load in each road section are restored.

Then the vehicle flow distribution characteristics of different

road sections, and lanes, vehicle types are obtained at different

speeds and in time periods. Specifically, the process is as follows.

Referring to the road network model, the toll data is

disassembled to acquire the axle and vehicle type as well as

the vehicle flow distribution of different vehicle types (see

Figure 6). Then the video surveillance data is disassembled to

obtain the vehicle speed, driving time and lane information of

each vehicle.

First, a priori distribution probability of the axle load

spectrum is defined, and then the likelihood function of the

axle load spectrum is determined. Then the toll data and

video surveillance data are trained to obtain the posterior

probability, including the different vehicles in different

FIGURE 5
Schematic diagram data disassembly model.
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sections, time periods, and vehicle speeds. Furthermore, the

probability of vehicle flow distribution of lane as well as the

vehicle types is obtained to calculate the loss function and

prior probability, of which the expected value of the loss

function is the largest. Finally, according to the probability,

the vehicle flow distribution and the number of axle load of

each road section can be restored. Accordingly, the axle load

spectrum can be obtained including the statistics on the

speed, driving time, and lane information of all vehicles

(see Figure 7).

3 Results and discussion

3.1 Distribution characteristics of traffic in
different sections

The traffic data are refined according to the steps in Section

2.3. The ESALs (equivalent standard axle loads) of the eight

sections of an expressway in Guangdong province are obtained

by converting the obtained data, as shown in Figure 8 and

Figure 9 as below.

It can be seen in Figure 8 that the traffic volume decreases

as road sections sorted from top to bottom. In addition, the

traffic volume decreases substantially after September

2014 because another double-track expressway was opened

to traffic, which causes a very significant diversion to an

expressway in Guangdong province at the end of September

2014. The diversion volume is approximately 80%. The only

unaffected part is the southbound lane of the BX-TH section,

which has a stable traffic flow and little change. The traffic

flow of the whole line is basically stable after October 2014.

The annual traffic flow has a small trough in the Spring

FIGURE 6
Acquisition process of vehicle flow distribution for different
vehicle types.

FIGURE 7
Acquisition process of vehicle flow distribution for different lanes.
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Festival of China, and the traffic flow is basically stable in the

rest of the year.

As shown in Figure 9, the cumulative ESAL times of eight

sections in 3 years change greatly, and the maximum difference is

4.07 times, indicating that the traffic flow varies greatly between

different sections. Due to the different traffic flow of sections, the

pavement performance attenuation rate of is not the same, and

the timing for preventive maintenance of each section is also out

of step (Mohammed et al., 2018). Therefore, it is necessary to

refine the traffic flow in different sections, and accurate traffic

volume information is obtained as the input of the pavement

performance prediction model of each section, which can

scientifically guide the maintenance department to carry out

preventive maintenance in a timely manner.

FIGURE 8
Statistics of accumulative ESAL of eight southbound sections of an expressway in Guangdong province from July 2014 to June 2017.

FIGURE 9
Cumulative ESAL of eight southbound sections from July 2014 to June 2017.

FIGURE 10
Schematic diagram of lanes for an expressway in Guangdong
province, China.
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3.2 Distribution characteristics of traffic in
different lanes

Most sections of expressways in Guangdong province are

bidirectional six lanes (e.g., SG-SX, SX-DZ, DE-TT, TT-BX, and

BX-TH sections), and a few sections are bidirectional four lanes

(e.g., YB-DQ, DQ-RY, and RY-SG sections). Taking bidirectional

six lanes as an example, the form of lanes is shown in Figure 10.

The axle type and number of vehicles in each lane are

obtained by separating the vehicle information data, which are

acquired by a high-definition camera and toll stations. Traffic

flow information at different lanes in the eight sections of

expressway can be obtained through load conversion, and

then the monthly average ESAL times of each lane are

obtained and shown in Figures 11, 12 for the southbound and

northbound lanes in 3 years.

Figures 11, 12 show that the monthly average ESAL times on

different sections and lanes changes greatly. The percentage of

ESAL in each lane and lane coefficient of expressway are counted

and shown in Figures 13, 14, respectively.

It can be seen from Figure 11 that the distribution of EASL in

lane 1 and lane 2 of two-way four-lane sections is not very

FIGURE 11
Monthly average ESAL times of each lane for sections of four bidirectional lanes.

FIGURE 12
Monthly average ESAL times of each lane for sections of six bidirectional lanes.
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regular. In some sections, EASL in lane 1 is significantly larger

than that in lane 2 (e.g., DQ-RY southbound), while in others, it

is opposite. However, for the section of six bidirectional lanes, a

distinguishing feature is that, the EASL in lane two is significantly

larger than that in the other lanes (see Figure 12). For instance,

the number of EASL in lane two is 105.6 times that in lane 1 for

the TT-BX northbound lane. On the whole, the ratio relationship

between the lane two and the smallest ESAL of other lanes is

within a range of 1.74–105.6. Obviously, there are three sections

with very large ratios in Figure 12 (SX-DZ southbound, TT-BX

northbound, and TT-BX southbound). According to the

investigation of the highway management department, there

are two reasons. The first is that the quality of the three

sections of the pavement is poor and has not been timely

maintained. The vehicles especially the trucks selectively avoid

driving on the lane one. The second is that the subsequently

temporary maintenance activities affect traffic flow to some

extent.

It can be seen from Figures 13A,B that there is a

significant difference in the ESAL for different lanes in the

same section. In general, the percentage of EASL on Lane 1 is

relatively large for four bidirectional lanes, while the

percentage of EASL on the Lane 2 is relatively large for six

bidirectional lanes. The change in range of the percentage of

EASL for the four bidirectional lanes is 0.55–0.9 and that of

the six bidirectional lanes is 0.43–0.77.

It can be seen that the lane coefficients of most sections are

consistent with those of the design specification (Ministry of

Transport of the People’s Republic of China, 2017), but the lane

coefficients of nearly quarter of the sections are not within the

FIGURE 13
(A) Percentage of ESAL for the lanes in southbound distribution. (B) Percentage of ESAL for the lanes in northbound distribution.
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range of the design specification. For the four bidirectional lanes,

the lane coefficient of YB-DQ northbound and RY-SG

northbound and southbound are, respectively, 0.07 and

0.06 lower than the lower limit of the lane coefficient in the

specification (i.e., 0.7). For six bidirectional lanes, the lane

coefficients of SG-SX northbound and BX-TH southbound are

0.06 and 0.07 higher, respectively, than the upper limit of the lane

coefficient in the specification (i.e., 0.6).

Nevertheless, maintenance needs to make a maintenance

plan according to the actual pavement quality which largely

depends on the action of traffic loading. It can be seen from

Figure 14 that the percentage of ESAL on different lanes varies

sharply. For instance, in the eight sections from YB-DQ to BX-

TH, the percentage of ESAL is extremely fluctuant, which

indicates the degree of pavement subjected to traffic load

changes greatly. Therefore, it will lead to a result that the

pavement performance of lanes deteriorate rapidly are not

maintained in time and that of lanes declines slowly in some

sections are maintained in advance.

Likewise, due to the difference of the traffic flow in different

lanes, the performance of each lane of the expressway declines

unevenly, and the time for each lane to enter into the pre-

maintenance is not the same. Therefore, it is necessary to analyze

the traffic flow distribution of different lanes in spatial and

temporal for decision making of pre-maintenance.

3.3 Distribution characteristics of traffic at
different vehicle speeds

Different vehicle speed will cause different effects on the road

surface and contribute to the occurrence and evolution of distress

such as rutting, cracking, and water damage to some extent (Peng

et al., 2019; Dan et al., 2020). In order to investigate the change

law of speed distribution, the traffic flow of eight sections of the

expressway from July 2014 to June 2017 is counted, and the

statistical results are shown in Figure 15.

Figure 15 shows that the proportions of vehicle speed in

range of 40–60 km/h, 60–80 km/h, 80–100 km/h, 100–120 km/h,

and above 120 km/h are 4.68%, 19.96%, 35.41%, 29.08%, and

6.45%, respectively. Without taking the vehicle types into

account, more than 90% in total of the vehicles in these

sections of expressway drive with speed ranging from 60 km/h

to 120 km/h. Furthermore, the loading times of different vehicle

types are converted into the ESAL times based on the equal

failure principle according to the Chinese specification (Ministry

of Transport of the People’s Republic of China, 2017), and the

statistical results are shown in Figure 16.

It can be seen from Figure 16 that the proportions of the

ESAL times in the range of 40–60 km/h, 60–80 km/h,

80–100 km/h, 100–120 km/h, and above 120 km/h are

14.49%, 39.19%, 33.4%, 8.24%, and 1.04%, respectively.

More than 95% of the ESAL times range from 40 km/h to

100 km/h. Compared with Figure 15, the speed distribution

range after axle load conversion (40–100 km/h) is 20 km/h

lower than that before axle load conversion (60–120 km/h).

The main reason is that a large number of heavy-duty vehicles

traveling on the expressway with speeds ranging from 50 km/

h to 80 km/h. A heavy-duty vehicle can be converted into a

ESAL several hundred times, even thousands of times, while a

small bus with a full load of vehicle type 11 can be converted

into a ESAL only approximately 0.004 times. Most of the

vehicles on the expressway at high speed are vehicle type 11.

Although the number is large, the influence on the

FIGURE 14
Comparison between the lane coefficient and percentage of ESAL on lanes.
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performance of the road is not as good as that of heavy

vehicles due to the small axle weight. The proportion of the

low-speed vehicle increases significantly after the axle load is

converted, and the decrease in the speed of the vehicle

increases the loading time and accelerates the occurrence

of road surface distress. Therefore, it is significant that

differentiating the speed distribution can help accurately

predict the attenuation law of pavement performance

(especially rutting).

Although the highway engineering technical standard

recommends that the design speed of the expressway is

80–120 km/h which mainly considers the traffic capacity of

expressways (Ministry of Transport of the People’s Republic

of China, 2014), it does not consider the influence of the

speed and vehicle type on the performance of the road.

Therefore, it is not reasonable to apply this standard directly

to road maintenance, and it is necessary to consider the speed of

vehicle to refine traffic volume and obtain more accurate traffic

characteristic data.

In addition, the vehicles distributed in different lanes are also

investigated in this study. The following is a statistical

distribution of the speed at different lanes based on the traffic

volume in 2016 which are shown in Figure 17.

It can be seen from Figure 17 that most of vehicles are

traveling at 90 km/h in Lane 1, with vehicle speeds ranging from

70 km/h to 110 km/h in Lane 1. Most of vehicles are traveling at

70 km/h in Lane 2, with vehicle speeds ranging from 60 km/h to

100 km/h in Lane 2. Most of vehicles are traveling at 80 km/h in

Lane 3, with vehicle speeds ranging from 60 km/h to 100 km/h in

Lane 3. It can be seen from the above analysis that vehicle speed

varies greatly in different lanes, therefore, it is necessary to

consider the influence of speed of different lanes on road

performance when analyzing road performance degradation in

different lanes.

3.4 Distribution characteristics of traffic at
different time periods

As we known that the traffic distribution is not only different

in space, but also unevenly distributed in time (Turochy et al.,

2005), accordingly, the traffic volume corresponding to different

times of a 24 h day is calculated based on the traffic volume in

2016, and the statistical results are shown in Figure 18.

Obviously, Figure 18 shows the bimodal distribution.

That’s to say, the traffic volume gradually increases from

6 a.m., and the maximum traffic flow is between 11:00 and 17:

00 for vehicle type 11. Other type vehicles contribute to the

largest traffic flow between 10:00 and 18:00, and the traffic

flow of all type vehicles starts to decrease gradually after 18:

00, and the traffic volume during the day accounts for more

than 70% of the total traffic flow. The corresponding

temperature varies at different times of the day, and traffic

flow is not evenly distributed throughout the day. Likewise,

the influence of the same traffic flow on pavement

FIGURE 15
Histogram of traffic volume corresponding to different
speeds.

FIGURE 16
Histogram of ESAL times for different vehicle speeds.

FIGURE 17
Statistics of vehicle speed in different lanes.
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performance at different times of the day is also different.

Therefore, the attenuation law of road performance can be

predicted more accurately by comparing the traffic flow in

each time period with the temperature field of road structure

in the time period.

Furthermore, considering the large temperature changes in

different months, the traffic volume of different months is also

counted based on the traffic volume from July 2014 to June 2016.

The statistical results are shown in Figure 19.

It can be seen from Figure 18 that the traffic volume in July is

the largest, while that in October is the smallest. The traffic

volume in July is 1.6 times higher than that in October. The traffic

volume varies greatly in different months. The temperature in

Guangdong province is higher in summer, and the high

temperature adversely affects the performance of asphalt

pavement. In other words, the temperature varies from month

to month in Guangdong province, and the damage degree of the

same traffic flow to asphalt pavement varies from month to

month as well. Therefore, for instance, it is significant to evaluate

the rutting of the asphalt pavement caused by the traffic flow

monthly so that the predicted rutting depth of the pavement can

be more representative of the attenuation law of asphalt

pavement.

3.5 Impact of traffic distribution on
pavement performance

In order to investigate the impact of the non-uniformity of

traffic load distribution in time and in space on pavement

performance, we adopt the rutting depth of pavement as the

comparison index, and four sections of expressway are selected

for comparison of rutting depth. The pavement structure and

materials are listed in Table 2.

The computing method rutting depth can refer to the study

by Gao et al. (2017), which proposed a model on predicting the

rutting of asphalt pavement based on a simplified Burgers creep

model. According to Gao’s model, the Burgers model parameters

of asphalt mixture are obtained by laboratory test (Table 3).

The lane coefficients are respectively based on the data

analysis results in this study and the Specification for Design

of Highway Asphalt Pavement (0.3 is used as standard value for

calculation) (Ministry of Transport of the People’s Republic of

China, 2017). The vehicle speed is selected to be 100 km/h. The

traffic flow in each period is considered (every 2 h is a period, and

1 day is divided into 12 periods) and the traffic flow without

considering the period is substituted into the established rutting

prediction model (Dan et al., 2015; Gao et al., 2017). Accordingly,

the rutting depth can be calculated for pavement of each road

section, which is shown in Figures 20–22, respectively.

As can be seen from the comparison results in Figure 20, the

maximum difference of rutting depth between the lane

FIGURE 18
Statistics of traffic flow corresponding to different times of a
24 h day.

FIGURE 19
Statistical traffic flow in different months from July 2014 to June 2016.
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coefficient calculated by the standard value and the presented

value in this study is 24% (only the lane with the maximum

rutting depth is calculated), because the lane coefficient specified

in the standard does not reasonably reflect the characteristics of

channelized traffic on the expressway. As a matter of fact, due to

the influence of lane division, traffic organization and

management and channelized traffic of expressway, the

distribution of different vehicle types on different lanes is

extremely varied, and the vehicle types on the same lane are

also complex (Jasim et al., 2019). Therefore, it is necessary to

divide the expressway traffic flow into lanes to obtain the actual

lane coefficient, obtain the accurate traffic flow of each lane, and

accurately detect the pavement performance of the expressway,

so as to guide the maintenance decision and construction.

Secondly, it can be seen from Figure 21 that the maximum

difference between the fixed speed (100 km/h) and the actual

speed is about 6.9%. Inevitably, there are vehicles traveling at low

speed (less than 60 km/h) on expressways, and the influence of

driving speed on the anti-rut performance of asphalt pavement is

mainly reflected in the duration of loading. The vehicle traveling

at low speed is equivalent to increasing the duration of loading,

thus leading to the rapid increase of rutting depth. Although

speed has less influence on rut performance than load and

temperature, low speed is often associated with heavy load,

which will aggravate rutting damage. Therefore, it is necessary

to consider speed to carry out refined treatment on traffic flow.

In addition, Figure 22 shows that the maximum difference of

calculated rutting depth is about 8.8% between distinguish and

not distinguish different periods of traffic flow. The diurnal cycle

and seasonal cycle of temperature are often ignored in the

traditional analysis, however, the asphalt mixture is a

temperature sensitive material, and its pavement performance

is closely related to its temperature sensitivity. Furthermore, the

traffic volume is not uniformly distributed in different time

periods of each day, and the pavement structure temperature

field is not the same in different time periods. Thus, the same

traffic volume has different influence on the pavement rut in

different time periods. That’s to say, a one-to-one

correspondence between the traffic volume in a certain period

and the temperature field of the pavement structure in that

period can be used to calculate rutting depth more accurately.

Therefore, the fusion and calculation of multisource data is an

important means to improve the study of pavement rutting

development.

Currently, traffic analysis in the MEPDG (e.g., Level 2 and Level

3) (MEPDG Documentation, 2010; Hasan, et al., 2020) is different

TABLE 2 Pavement structure of the case study.

Structure layer Materials Thickness (cm)

Surface course top SMA-16 4.5

middle AC-20 5.5

bottom AC-25 6.0

Base course Cement stabilized macadam (cement content 6%) 36

Cement stabilized macadam (cement content 4%) 20

TABLE 3 Burgers model parameters.

Materials Creep parameters 15°C 30°C 40°C 50°C 60°C

SMA-16 E1(MPa) 270.31 210.32 46.85 31.05 20.57

E2(MPa) 95.34 57.56 25.89 24.65 18.82

η1(MPa·s) 1980 1,096 390 230 186

η2(MPa·s) 240 102 70.3 50.4 41.1

AC-20 E1(MPa) 240.2 186.5 37.99 25.36 15.53

E2(MPa) 87.4 51.32 22.33 20.49 11.43

η1(MPa·s) 1761 945 346 187 91.3

η2(MPa·s) 187 80 34.5 30.7 23.4

AC-25 E1(MPa) 220.1 176.59 36.21 24.51 14.65

E2(MPa) 75.32 46.87 19.54 18.64 12.35

η1(MPa·s) 1,594 874 316 137 80.5

η2(MPa·s) 175 60.4 40.5 30.4 26.4
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from the actual situation (Level 1) to some extent, and various factors

(lane distribution characteristics of traffic load, difference in speed

and time period) also have different influences on the pavement

performance analysis, and such differences become more and more

significant with the passage of time (See Figures 20–22). More

importantly, these differences may lead to misjudgment in the

decision of preventive maintenance of road surface, which to

some extent affects the determination of maintenance timing, the

accuracy and scientificity of preventive maintenance decision. For

instance, from the perspective of rutting depth development, there is

an apparent difference (e.g., beyond 20%) when the lateral

distribution in lanes is taken into account. Although the

difference is less than 10% by considering vehicle speed and time

periods, the time to reach the same value of rutting depth maybe

more than 1 year because the rut depth increases slowly. This may

greatly affect the accurate determination of preventive maintenance

FIGURE 20
Comparison of rutting depth between the lane coefficient calculated by the standard value and the presented value in this study.

FIGURE 21
Comparison of calculated rutting depth between distinguish and not distinguish different speeds of traffic flow.
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timing. Therefore, it is very important to carry out traffic multi-data

fusion analysis, which is the basis for the research on pavement

performance decay and preventive maintenance decision.

4 Concluding remarks

The findings of this study are summarized in brief as follows.

(1) The maximum traffic volume of eight sections of an

expressway in Guangdong province is 9.76 times the

minimum traffic volume, and the traffic flow of different

sections is quite different.

(2) Compared with the lane coefficient in the specification, a

considerable amount of road sections of which the lane

coefficient is higher and lower than the limit of the lane

coefficient in the Chinese specification. The percentage of

ESAL is extremely fluctuant, which indicates the degree of

pavement subjected to traffic load changes greatly.

(3) The speed of vehicles in different lanes is quite different, and

the average speed of vehicles on the Lane 1, Lane 2, and Lane

3 is 90 km/h, 70 km/h, and 80 km/h, respectively. It is

proposed that the traffic flow should be refined according

to the lane and the speed of the vehicle, and it helps more

specifically to guide the maintenance department to

accurately maintain the road lanes.

(4) The distribution of the traffic flow in different months and

different time periods are uneven, which leads to the rutting

of asphalt pavement varying from month to month

accordingly. It is significant to evaluate the rutting of the

asphalt pavement caused by the traffic flow monthly due to

more representative of the attenuation law of asphalt

pavement in Guangdong province.

(5) From the perspective of rutting depth development, it may

greatly affect the accurate determination of preventive

maintenance timing by considering the vehicle speed and

time periods or not.

In practical application of preventive maintenance, it

needs to determine the pavement condition in time and

the maintenance timing, and reasonable preventive

maintenance measures can be applied. Therefore, from the

perspective of application, it is suggested to combine the

pavement management system (PMS) with the method

presented in this study to analyze the traffic volume and

axle load data in detail. Then it is more reasonable to combine

the data analysis results with the attenuation model of

pavement quality to predict the variation of performance

indexes of pavement (e.g., skid resistance performance,

rutting resistance performance, etc.) by considering the

influence of lane, vehicle speed and time period, and

finally comprehensively determine the timing of pavement

preventive maintenance.

Generally speaking, the traffic data can be put into use of

predicting pavement condition in the future study, for instance,

the rutting, fatigue, skid resistance performance can be

investigated through the integration analysis and refinement

processing. As mentioned in Section 2.1, a large amount of

maintenance data can be also utilized to validate the

deterioration law and condition of pavement.

FIGURE 22
Comparison of calculated rutting depth between distinguish and not distinguish different periods of traffic flow.

Frontiers in Materials frontiersin.org15

Dan et al. 10.3389/fmats.2022.939579

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.939579


Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding authors.

Author contributions

H-CD: conceptualization, methodology, funding, and

writing—original draft preparation; CL: methodology and

writing—original draft preparation; ZZ: methodology,

programming, and writing—reviewing and editing; LG:

writing—original draft preparation; XZ: data resources.

Funding

This research was supported by the Natural Science

Foundation of Hunan Province (Grant No. 2020JJ4702),

Guizhou Transportation Science and Technology Foundation

of China (Grant No. 2019-122-006), and Jiangxi Transportation

Science and Technology Foundation of China (Grant No.

2020H0028).

Acknowledgments

Special acknowledgement to the Guangdong Hualu

Transportation Technology Co., Ltd. for providing the traffic

multi-source data.

Conflict of interest

XZ was employed by Guangdong Hualu Transportation

Technology Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

AASHTO (2020). Mechanistic empirical pavement design guide: a manual of
practice. 3rd Edition. Washington, DC, USA: American Association of State
Highway and Transportation Officials.

Abbas, A. R., Frankhouser, A., and Papagiannakis, A. T. (2014). Effect of traffic
load input level on mechanistic-empirical pavement design. Transp. Res. Rec. 2443,
63–77. doi:10.3141/2443-08

Ali, Y., Irfan, M., Zeeshan, M., Hafeez, I., and Ahmed, S. (2018). Revisiting the
relationship of dynamic and resilient modulus test for asphaltic concrete mixtures.
Constr. Build. Mater. 170, 698–707. doi:10.1016/j.conbuildmat.2018.03.098

Amorim, S. I. R., Pais, J. C., Vale, A. C., and Minhoto, J. C. (2015). A model for
equivalent axle load factors. Int. J. Pavement Eng. 16 (10), 881–893. doi:10.1080/
10298436.2014.968570

Chen, X., Dong, Q., Gu, X., and Mao, Q. (2019). Bayesian analysis of
pavement maintenance failure probability with Markov chain Monte Carlo
simulation. J. Transp. Eng. Part B Pavements 145 (2), 04019001. doi:10.1061/
jpeodx.0000107

Cirilovic, J., Mladenovic, G., and Queiroz, C. (2015). Implementation of
preventive maintenance in network-level optimization case study of the
Serbian low-volume road network. Transp. Res. Rec. 2473, 49–55. doi:10.
3141/2473-06

Dan, H. C., Bai, G. W., Zhu, Z. H., Liu, X., and Cao, W. (2022b). An improved
computation method for asphalt pavement texture depth based on multiocular
vision 3D reconstruction technology. Constr. Build. Mater. 321, 126427. doi:10.
1016/j.conbuildmat.2022.126427

Dan, H. C., He, L. H., Zhao, L. H., and Chen, J. Q. (2015). Coupled hydro-
mechanical response of saturated asphalt pavement under moving traffic load. Int.
J. pavement Eng. 16 (2), 125–143. doi:10.1080/10298436.2014.937712

Dan, H. C., He, L. H., and Zhao, L. H. (2020). Experimental investigation on the
resilient response of unbound graded aggregate materials by using large-scale
dynamic triaxial tests. Road Mater. Pavement Des. 21 (2), 434–451. doi:10.1080/
14680629.2018.1500300

Dan, H. C., Zeng, H. F., Zhu, Z. H., Bai, G.W., and Cao,W. (2022a). Methodology
for interactive labeling of patched asphalt pavement images based on U-net
convolutional neural network. Sustainability 14, 861. doi:10.3390/su14020861

Dan, H. C., Zhou, Z. M., Chen, J. Q., and Peng, A. P. (2019). DEM-aided method
for predicting the hydraulic properties with particle-size distribution of porous
media. Eng. Comput. Swans. 36 (5), 1716–1743. doi:10.1108/ec-09-2018-0398

Dhatrak, O., Vemuri, V., and Gao, L. (2020). Considering deterioration
propagation in transportation infrastructure maintenance planning. J. Traffic
Transp. Eng. Engl. Ed. 7 (4), 520–528. doi:10.1016/j.jtte.2019.04.001

Dinegdae, Y. H., and Birgisson, B. (2018). Effects of truck traffic on top-down
fatigue cracking performance of flexible pavements using a new mechanics-based
analysis framework. Road Mater. Pavement Des. 19 (1), 182–200. doi:10.1080/
14680629.2016.1251958

Dos, S., Thais, A., Prado, D. S. J., Carlos, A., and Fontenele, H. B. (2019). The
effect of axle load spectra from AASHTO method on flexible pavement
performance. Acta Sci. Technol. 41, 35117. doi:10.4025/actascitechnol.v41i1.35117

Febres, J. D., Mohamadi, F., Mariscal, M. A., Herrera, S., and Garcia-Herrero, S.
(2019). The role of journey purpose in road traffic injuries: a bayesian network
approach. J. Adv. Transp. 2019, 1–10. doi:10.1155/2019/6031482

Feng, M. Q., Leung, R. Y., and Eckersley, C. M. (2020). Non-contact vehicle
weigh-in-motion using computer vision. Measurement 153, 107415. doi:10.1016/j.
measurement.2019.107415

Fleischhacke, A., Ghonima, O., and Schumacher, T. (2020). Bayesian survival
analysis for US concrete highway bridge decks. J. Infrastruct. Syst. 26 (1), 04020001.
doi:10.1061/(asce)is.1943-555x.0000511

Gao, L. S., Dan, H. C., and Chen, J. Q. (2017). Research on predicting the rutting
of asphalt pavement based on a simplified burgers creep model. Math. Problems
Eng. 2017, 1–14. doi:10.1155/2017/3459704

Gao, L. S., Dan, H. C., and Li, L. (2019). Response analysis of asphalt pavement
under dynamic loadings: loading equivalence. Math. Problems Eng. 2019, 1–15.
doi:10.1155/2019/7020298

Haider, S. W., Harichandran, R. S., and Dwaikat, M. B. (2010). Effect of axle load
measurement errors on pavement performance and design reliability. Transp. Res.
Rec. 2160, 107–117. doi:10.3141/2160-12

Hasan, M. M., Asifur Rahman, A. S. M., and Tarefder, R. A. (2020). Investigation
of accuracy of pavement mechanistic empirical prediction performance by

Frontiers in Materials frontiersin.org16

Dan et al. 10.3389/fmats.2022.939579

https://doi.org/10.3141/2443-08
https://doi.org/10.1016/j.conbuildmat.2018.03.098
https://doi.org/10.1080/10298436.2014.968570
https://doi.org/10.1080/10298436.2014.968570
https://doi.org/10.1061/jpeodx.0000107
https://doi.org/10.1061/jpeodx.0000107
https://doi.org/10.3141/2473-06
https://doi.org/10.3141/2473-06
https://doi.org/10.1016/j.conbuildmat.2022.126427
https://doi.org/10.1016/j.conbuildmat.2022.126427
https://doi.org/10.1080/10298436.2014.937712
https://doi.org/10.1080/14680629.2018.1500300
https://doi.org/10.1080/14680629.2018.1500300
https://doi.org/10.3390/su14020861
https://doi.org/10.1108/ec-09-2018-0398
https://doi.org/10.1016/j.jtte.2019.04.001
https://doi.org/10.1080/14680629.2016.1251958
https://doi.org/10.1080/14680629.2016.1251958
https://doi.org/10.4025/actascitechnol.v41i1.35117
https://doi.org/10.1155/2019/6031482
https://doi.org/10.1016/j.measurement.2019.107415
https://doi.org/10.1016/j.measurement.2019.107415
https://doi.org/10.1061/(asce)is.1943-555x.0000511
https://doi.org/10.1155/2017/3459704
https://doi.org/10.1155/2019/7020298
https://doi.org/10.3141/2160-12
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.939579


incorporating Level 1 inputs. J. Traffic Transp. Eng. Engl. Ed. 7 (2), 259–268. doi:10.
1016/j.jtte.2018.06.006

Heymsfield, E., and Tingle, J. S. (2019). State of the practice in pavement
structural design/analysis codes relevant to airfield pavement design. Eng. Fail.
Anal. 105, 12–24. doi:10.1016/j.engfailanal.2019.06.029

Jasim, A. F., Wang, H., and Bennert, T. (2019). Evaluation of clustered traffic
inputs for mechanistic-empirical pavement design: case study in New Jersey.
Transp. Res. Rec. 2673 (11), 332–348. doi:10.1177/0361198119853557

Liu, K., Xu, P. X., Wang, F., You, L. Y., Zhang, X. C., Fu, C. L., et al. (2022).
Assessment of automatic induction self-healing treatment applied to steel deck
asphalt pavement. Automation Constr. 133, 104011. doi:10.1016/j.autcon.2021.
104011

Mai, D., Turochy, R. E., and Timm, D. H. (2013). Quality control of weigh-in-
motion data incorporating threshold values and rational procedures. Transp. Res.
Part C Emerg. Technol. 36, 116–124. doi:10.1016/j.trc.2013.08.012

Mai, D., Turochy, R. E., and Timm, D. H. (2014). Sensitivity of flexible
pavement thickness to traffic factors in mechanistic-empirical pavement
design. J. Transp. Eng. 140 (12), 04013005. doi:10.1061/(asce)te.1943-5436.
0000628

MEPDG Documentation (2010). Guide for mechanistic-empirical design of new
and rehabilitated pavement structures. Washington, DC: National Cooperative
Highway Research Program, Transportation Research Board, National Research
Council. Available at: http://onlinepubs.trb.org/onlinepubs/archive/mepdg/
guide.htm.

Ministry of Transport of the People’s Republic of China (2017). Specifications for
design of highway asphalt pavement. Beijing, China: JTG D50, China
Communications Press.

Ministry of Transport of the People’s Republic of China (2014). Technical
standard of highway engineering. Beijing, China: JTG B01, China
Communications Press.

Mohammed, B., Hassan, R., and Alaswadko, N. (2018). The effect of traffic data
source on deterioration rates of heavy-duty flexible pavements. Int. J. Pavement Eng.
19, 1096–1110. doi:10.1080/10298436.2016.1240562

Peng, A. P., Dan, H. C., and Yang, D. (2019). Experiment and numerical
simulation of the dynamic response of bridges under vibratory compaction of
bridge deck asphalt pavement. Math. Problems Eng. 2019, 1–16. doi:10.1155/2019/
2962154

Perez-Acebo, H., Mindra, N., Railean, A., and Roji, E. (2019). Rigid pavement
performance models by means of Markov chains with half-year step time. Int.
J. Pavement Eng. 20 (7), 830–843. doi:10.1080/10298436.2017.1353390

Ren, J., Thompson, R. G., and Zhang, L. H. (2019). Impact of payload spectra of
heavy vehicles on pavement based on weigh-in-motion data. J. Transp. Eng. Part B
Pavements 145 (2), 04019005. doi:10.1061/jpeodx.0000099

Shi, Y., Xiang, Y. S., and Li, M. Y. (2019). Optimal maintenance policies for multi-
level preventive maintenance with complex effects. IISE Trans. 51 (9), 999–1011.
doi:10.1080/24725854.2018.1532135

Song, Y. Z., Wang, X. Y., Wright, G., Thatcher, D., Wu, P., Felix, P., et al. (2019).
Traffic volume prediction with segment-based regression kriging and its
implementation in assessing the impact of heavy vehicles. IEEE Trans. Intell.
Transp. Syst. 20 (2), 232–243. doi:10.1109/tits.2018.2805817

Tang, J. J., Chen, X. Q., Hu, Z., Zong, F., Han, C., and Li, L. (2019). Traffic flow
prediction based on combination of support vector machine and data denoising
schemes. Phys. A Stat. Mech. its Appl. 634, 120642. doi:10.1016/j.physa.2019.03.007

Tang, Y., and Huang, S. P. (2019). Assessing seismic vulnerability of urban road
networks by a bayesian network approach. Transp. Res. Part D Transp. Environ. 77,
390–402. doi:10.1016/j.trd.2019.02.003

Tarefder, R. A., and Hasan, M. A. (2016). Development of weight-in-motion data
analysis software. International conference on human factors, software, and systems
engineering. Adv. Intelligent Syst. Comput. 492, 13–22. doi:10.1007/978-3-319-
41935-0_2

Tarefder, R., and Rodriguez-Ruiz, J. I. (2013). WIM data quality and its influence
on predicted pavement performance. Transp. Lett. 5 (3), 154–163. doi:10.1179/
1942786713z.00000000017

Turochy, R. E., Baker, S. M., and Timm, D. H. (2005). Spatial and temporal
variations in axle load spectra and impacts on pavement design. J. Transp. Eng. 131
(10), 802–808. doi:10.1061/(asce)0733-947x(2005)131:10(802)

Wang, F. Y., Du, L. M., Li, G., and Dong, J. (2019). Research on the influencing
factors of residents’ travel based on bayesian network. Int. Conf. Cyber Secur. Intell.
Anal. (CSIA), Shengyang, China 928, 1354–1359. doi:10.1007/978-3-030-15235-
2_186

Wang, H., and Zhang, J. (2016). Development of overweight permit fee using
mechanistic-empirical pavement design and life-cycle cost analysis. Transport 31
(2), 156–166. doi:10.3846/16484142.2016.1191039

Wang, S. L., Huang, W., and Lo, H. K. (2019). Traffic parameters estimation for
signalized intersections based on combined shockwave analysis and bayesian Network.
Transp. Res. Part C Emerg. Technol. 104, 22–37. doi:10.1016/j.trc.2019.04.023

Wang, Y. H., Hancher, D. E., and Mahboub, K. (2007). Axle load distribution for
mechanistic-empirical pavement design. J. Transp. Eng. 133 (8), 469–479. doi:10.
1061/(asce)0733-947x(2007)133:8(469)

Wen, H. Y., Zhang, X., Zeng, Q., and Sze, N. N. (2019). Bayesian spatial-temporal
model for the main and interaction effects of roadway and weather characteristics
on freeway crash incidence. Accid. Analysis Prev. 132, 105249. doi:10.1016/j.aap.
2019.07.025

Yin, H. (2015). Full-scale test of thermally induced reflective cracking in airport
pavements. Road Mater. Pavement Des. 16 (1), 119–132. doi:10.1080/14680629.
2014.982691

Frontiers in Materials frontiersin.org17

Dan et al. 10.3389/fmats.2022.939579

https://doi.org/10.1016/j.jtte.2018.06.006
https://doi.org/10.1016/j.jtte.2018.06.006
https://doi.org/10.1016/j.engfailanal.2019.06.029
https://doi.org/10.1177/0361198119853557
https://doi.org/10.1016/j.autcon.2021.104011
https://doi.org/10.1016/j.autcon.2021.104011
https://doi.org/10.1016/j.trc.2013.08.012
https://doi.org/10.1061/(asce)te.1943-5436.0000628
https://doi.org/10.1061/(asce)te.1943-5436.0000628
http://onlinepubs.trb.org/onlinepubs/archive/mepdg/guide.htm
http://onlinepubs.trb.org/onlinepubs/archive/mepdg/guide.htm
https://doi.org/10.1080/10298436.2016.1240562
https://doi.org/10.1155/2019/2962154
https://doi.org/10.1155/2019/2962154
https://doi.org/10.1080/10298436.2017.1353390
https://doi.org/10.1061/jpeodx.0000099
https://doi.org/10.1080/24725854.2018.1532135
https://doi.org/10.1109/tits.2018.2805817
https://doi.org/10.1016/j.physa.2019.03.007
https://doi.org/10.1016/j.trd.2019.02.003
https://doi.org/10.1007/978-3-319-41935-0_2
https://doi.org/10.1007/978-3-319-41935-0_2
https://doi.org/10.1179/1942786713z.00000000017
https://doi.org/10.1179/1942786713z.00000000017
https://doi.org/10.1061/(asce)0733-947x(2005)131:10(802)
https://doi.org/10.1007/978-3-030-15235-2_186
https://doi.org/10.1007/978-3-030-15235-2_186
https://doi.org/10.3846/16484142.2016.1191039
https://doi.org/10.1016/j.trc.2019.04.023
https://doi.org/10.1061/(asce)0733-947x(2007)133:8(469)
https://doi.org/10.1061/(asce)0733-947x(2007)133:8(469)
https://doi.org/10.1016/j.aap.2019.07.025
https://doi.org/10.1016/j.aap.2019.07.025
https://doi.org/10.1080/14680629.2014.982691
https://doi.org/10.1080/14680629.2014.982691
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2022.939579

	A data fusion approach for estimating traffic distribution characteristics of expressway: A case study of guangdong provinc ...
	1 Introduction
	1.1 Background
	1.2 Objective and scope

	2 Methodology
	2.1 Data source and description
	2.2 Data disassembly of data from different sources
	2.3 Refined computing method of multisource traffic data

	3 Results and discussion
	3.1 Distribution characteristics of traffic in different sections
	3.2 Distribution characteristics of traffic in different lanes
	3.3 Distribution characteristics of traffic at different vehicle speeds
	3.4 Distribution characteristics of traffic at different time periods
	3.5 Impact of traffic distribution on pavement performance

	4 Concluding remarks
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


