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Crystallographic texture is an important descriptor of material properties but
requires time-intensive electron backscatter diffraction (EBSD) for identifying
grain orientations. While some metrics such as grain size or grain aspect ratio
can distinguish textured microstructures from untextured microstructures after
significant grain growth, such morphological differences are not always visually
observable. This paper explores the use of deep learning to classify experimentally
measured textured microstructures without knowledge of crystallographic
orientation. A deep convolutional neural network is used to extract high-order
morphological features from binary images to distinguish textured microstructures
from untextured microstructures. The convolutional neural network results
are compared with a statistical Kolmogorov–Smirnov tests with traditional
morphological metrics for describing microstructures. Results show that the
convolutional neural network achieves a significantly improved classification
accuracy, particularly at early stages of grain growth, highlighting the capability of
deep learning to identify the subtle morphological patterns resulting from texture.
The results demonstrate the potential of a convolutional neural network as a tool for
reliable and automated microstructure classification with minimal preprocessing.

KEYWORDS

microstructure, texture, feature extraction, machine learning (ML), convolutional neural
network

1 Introduction

Major advances inmaterials informatics, from the introduction of integrated computational
materials engineering Allison et al. (2006) to the high-throughput Materials Project
database Jain et al. (2013), have provided a new way for materials scientists to explore
structure/properties/processing relationships. In particular, these advances have motivated
the development of advanced materials characterization tools Park et al. (2017) and facilitated
multiscale modelling efforts aimed at advanced materials design Weber et al. (2020);
Weber et al. (2022) and failure prediction Talebi et al. (2014). At the forefront of this field
is the pressing need for automated frameworks that can quickly and accurately process material
information to advance the materials discovery process. While great advances have been made
in high-throughput analysis of material properties and processing conditions Wei et al. (2019);
Ma et al. (2020); Wang and Adachi (2019), an outstanding challenge in this field is advanced
quantitative microstructure characterization. Conventional methods in the field of materials
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development require manual input (e.g., grain size measurement
by the lineal intercept method ASTM (1996)); as such, they are
subject to run-to-run variability and are insufficient for reliable
and repeatable microstructural analysis. This conventional method
was improved by the implementation of particle segmentation via
image analysis Igathinathane et al. (2008), however this technique
is highly susceptible to variation in data quality and even grain
shape Arasan et al. (2011). Recently, there have been exciting advances
in automated microstructure characterization employing computer
vision (CV) methods to classify based on visual features within a
micrograph DeCost and Holm (2015); Ling et al. (2017); DeCost et al.
(2017); Kitahara and Holm (2018). However, with the advancement
of modern material characterization tools, it is becoming increasingly
clear that macroscale material properties are functions of the
non-trivial spatial arrangement of various microstructural metrics
collected at varying length scales Kalindindi and DeGraef (2015),
beyond visual features that can be distinguished qualitatively. This
motivates the need to extract high-order metrics of a material’s
hierarchical microstructure.

One such abstract metric is the degree of crystallographic texture,
which refers to preferential grain orientation within a microstructure.
Significant crystallographic texture in the microstructure of a
material can greatly alter its bulk properties and behavior. Some
examples include anisotropic fracture toughness and othermechanical
properties Zhang et al. (2019);Messing et al. (2017), improved current
density in textured superconductors Maeda et al. (2004), heightened
magnetic anisotropy in magnetic materials Maeda et al. (2003), and
superior electromechanical coupling coefficients in piezoelectrics
Yilmaz et al. (2003); Ahn et al. (2009). In an effort to control and
exploit these properties, scientists have long been investigating
methods of inducing texture during materials, including cold
rolling and extrusion Chao et al. (2011), templated grain growth
Seabaugh et al. (1997); Seabaugh et al. (2004), and the application
of an external field (electrical, magnetic) during powder processing
Sugiyama et al. (2003); Maeda et al. (2003); Molodov and Sheikh-Ali
(2004). While there is great interest in the fabrication and functional
properties of textured materials, it remains a challenge to quantifiably
characterize texture with a single metric. For the last 20 years, electron
backscatter diffraction (EBSD) has been used for quantitative texture
classification and characterization. Although advances in indexing
and camera hardware have improved its efficiency and capability of
collecting large datasetsWiniarski et al. (2021), this technique remains
both labor- and time-intensive because it necessitates extensive sample
preparation, point by point data collection, and data post-processing.
In the present work, we pose an alternative to this classical method
of texture classification: machine learning of abstract, high-order
microstructural descriptors to identify texture based only on images of
the grains. In particular, we believe there to be a correlation between
texture and grain boundary network structure, an abstract metric
which is currently non-trivial to quantify experimentally. In this work,
we will demonstrate the capability of a convolutional neural network
(CNN) to learn this metric and classify textured microstructures that
are otherwise unable to be classified by conventional morphological
metrics.

Machine learning (ML) methods use simulated and/or
experimental data to learn relationships that may be indeterminate via
traditional analysis methods, and for scientific discovery tasks where
fundamental understanding of the underlying physical process still
remains elusive Mjolsness and DeCoste (2001). In recent literature,

ML methods have been used for microstructure quantification tasks
which are challenging to accomplish with traditional data processing
methods, including microstructure classification Gola et al. (2019),
identifying morphological features of interest such as dendrites
Chowdhury et al. (2016), and abnormal grain growth prediction from
simulated data Cohn and Holm (2021), among others. Many ML
methods use a training dataset to learn a non-linear mapping between
inputs and outputs. The mapping is learned through an optimization
process. Most ML tasks are either classification (discrete output labels
such as category of animals) or regression (continuous output labels
such as stock prices) tasks.

In prior work, statistical/machine learning microstructure
classification has consisted of two parts: feature extraction from raw
data followed by a classification methodology. This feature extraction
is typically conducted by experts in the field, and is thus limited
by prior knowledge. Subsequently, ML methods such as support
vector machine (SVM) Boser et al. (1992) or random forests (RF)
Breiman (2001) have been used for microstructure classification.
However, these methods still rely on a human expert for designing
the classification methodology, and as such may be subject to biases
and inaccuracies. Recently, deep learning (DL), which is a subset of
ML, has been applied to microstructure analysis LeCun et al. (2015)
to address these challenges. The common DL methods, such as deep
neural networks (DNN), take in raw data directly without the need for
any feature extraction as opposed to other ML methods. DL methods
extract non-linear representations between the raw data and the
ground truth (output) through multiple non-linear transformations
stacked sequentially, learning spatiotemporal trends and relationships
that may be otherwise indecipherable.

The present work investigates the potential of DL techniques
for advanced microstructure characterization by classifying
crystallographically textured and untextured microstructures from
binary micrographs (i.e., no orientation information) with a CNN.
The CNN technique is used to classify micrographs collected
from alumina-monoliths with and without crystallographic texture
at different stages of grain growth. It was previously proposed
that microstructure evolution of textured alumina diverges from
untextured alumina because of its unique hierarchical grain boundary
network structure. Here, we demonstrate that the microstructures
of the untextured and textured materials can be easily classified
with reasonable accuracy (≥80%) by grain morphological features
like grain area and aspect ratio after long heat treatment exposures.
However, these grain features cannot be used to accurately classify
the microstructures at early stages of grain growth. In contrast, we
demonstrate that CNN can accurately classify the microstructures at
all stages of grain growth (≥90%). The significance of these results is
twofold: 1) they indicate an experimentally indeterminate difference
in the grain boundary network structure of a textured material,
and 2) they demonstrate the potential of deep learning methods
for advanced microstructural characterization by recognition of
non-trivial, spatiotemporal metrics.

2 Materials and methods

The workflow of this investigation consists of textured and
untextured material fabrication, processing, and microstructure
characterization, followed by the classification of textured and
untextured microstructures via the CNN and, for comparison,
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Kolmogorov-Smirnov goodness-of-fit tests using conventional
microstructure metrics. The details of these steps are described in
detail in the subsequent subsections.

2.1 Material fabrication and characterization

Calcia-doped alumina (Al2O3) is employed as a model material
for this investigation, as it is known to exhibit unique microstructural
properties Rodel and Glaeser (1989); Akiva et al. (2014); Conry et al.
(2022). To induce crystallographic texture in our microstructures,
we use a magnetic slip-casting technique to induce significant
crystallographic texture in the as-cast green body Suzuki et al. (2006).
Details of this technique and the experimental procedure are described
in a previous work Conry et al. (2022). Briefly, two pellets of 300 ppm
calcia-doped alumina were prepared by slip casting in and outside a
9 T magnetic field, respectively. Both pellets (19 mm diameter, 5 mm
thickness) were sintered in air for 1 h at 1,600°C. The pellets were
sectioned into smaller specimens and then heated isothermally for
8 h, 16 h, 32 h, and 64 h. To ensure a smooth surface for analysis, the
specimens underwent metallographic polishing from an initial 320
grit grinding paper down to a 0.25 μm vibratory final polish.

Data used for training and testing of the CNN were collected
via EBSD (EDAX, Mahwah, NJ, United States) in a Tescan MIRA3
scanning electron microscope (SEM) at each of the aforementioned
heat treatment durations. Previous EBSDmeasurements found that all
samples that were slip cast in the magnetic field had a texture index of
two or greater, while the samples slip cast outside the magnetic field
comprise grains of random orientations (texture index of 1) regardless
of the heat treatment duration. Therefore, the microstructures are
labeled as “textured” for those slip cast in the magnetic field and
“untextured” for those prepared outside of the magnetic field. A
minimum of 10 textured and untextured EBSD maps, comprising
roughly 400 grains per map, were collected for each heat treatment
duration (an exception is the textured microstructure at 16 h, for
which only six maps were collected due to data collection limitations).
The maps were collected from multiple locations spatially distributed
across each polished sample surface. EBSD is a technique that allows
pixel-by-pixel determination of crystal orientation of a specimen
under an electron beam; neighboring pixels of similar orientation
(<5° misorientation) are grouped together to define a grain (i.e.,
grain segmentation). Representative microstructures from each stage
of grain growth are presented in Figure 1 for reference. It should
be noted that specimens heated for extended durations underwent
significant grain growth. As such, some EBSD data from longer heat
treatments were collected at a lower magnification than that collected
from samples exposed to shorter heat treatments to encompass a useful
number of grains. This variation in magnification is significant in our
analysis and is discussed in subsequent sections.

Raw EBSD data processing was done using EDAX’s OIM analysis
software, including noise clean-up and rough grain segmentation
steps. Further post-processing was done using DREAM.3D Groeber
and Jackson (2014) to convert the default EDAX file type (ANG)
into hierarchical data format (HDF5) via a processing pipeline.
Additionally, the hexagonal-grid EBSD data was converted to a square
grid, during which step the pixel resolution was defined as 0.3 μm for
each dataset to mitigate resolution variation that may influence the
CNN. For comparative statistical analysis (discussed in a subsequent
section), conventional microstructural descriptors were extracted

from all datasets using MATLAB’s MTEX toolbox Bachmann et al.
(2011).

2.2 Classification

For our task, the 2D image of the microstructure consists of
a spatially arranged pattern of grain boundaries. A CNN is a DL
architecture commonly used for image recognition tasks in many
domains Krizhevsky et al. (2017), which assumes a spatial structure
in the data O’Shea and Nash (2015). Since the spatial arrangement
of advanced metrics has been posed as an important parameter in
advanced microstructural characterization, the CNN is a good choice
for texture identification and classification. Recently, CNN methods
have been proposed for tasks such as microstructural classification
Holm et al. (2020); Azimi et al. (2018) and morphological feature
identification Baskaran et al. (2020).

Figure 2 illustrates the CNN-based workflow for a representative
sample. The prepared data (a binarized patch such that a value of 0
indicates a pixel within a grain interior and a value of one indicates a
pixel located at the grain boundary) is input into a three-layer CNN, in
which the information is compressed into three dense layers to output
the texture classification. We quantify the classification performance
via the classification accuracy (fraction of input patches classified
correctly) on a test set.Thedetails of this approach are presented below.

2.2.1 Data preparation
The datasets for the textured and untextured microstructures are

formed using EBSD maps collected from all five heat treatments. The
“texture” label was based on the processing method of the sample
(i.e., magnetic-field during slip casting) and verified by the texture
index produced from the EBSD data. The EBSD maps are divided
into a training set (80% of EBSD maps) and a test set (20% of EBSD
maps collected). Of the training set, 20% is held out as a validation
set to validate the model training process. This is common practice in
machine learning.The training and testing datasets are assembledwith
data from all heat treatments. The EBSD micrographs are converted
into binary images. From each image, we extract 100 random patches
of fixed dimensions to ensure compatibility with the network training
process. Patch dimensions in this study are varied from 60× 60 to
140× 140 (pixels × pixels).

2.2.2 Texture classification via deep learning
The most common DL method is a fully connected deep neural

network (DNN). A DNN consists of multiple hidden layers connected
in sequence via parameters (called weights and biases). This enables
the DNN to learn non-linear mappings from input to output
LeCun et al. (2015), which is crucial for our task of microstructure
classification. Each hidden layer has multiple nodes.The input-output
mapping of a single output hidden layer node can be expressed as

y = f(∑
i
wi ⋅ xi + b), (1)

where y is the output hidden layer node value, f is a function chosen
to learn the non-linearities for that particular hidden layer, wi are the
multiplicative weights (trainable parameter) for the nodes in the input
hidden layer, xi is the value at the ith input hidden layer node, and b
is the additive bias value (trainable parameter) for the output hidden
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FIGURE 1
Representative EBSD micrographs for each heat treatment from the (A) untextured and (B) textured microstructures. Shown micrographs are scaled to the
same magnification for ease of visual comparison.

FIGURE 2
Illustration showing the CNN-based approach for microstructural classification via texture identification.

layer node. The trainable parameters [w; b] are different for each
node and hence Eq. 1 is calculated separately for each hidden layer
nodes. In summary, the weighted sum of the input hidden layer node
values is passed through a non-linear activation function to obtain the
hidden layer node output. In a DNN, all nodes in the hidden layer
are connected to each node in the next hidden layer (fully connected
layer). The input data is passed through multiple such hidden layers
stacked sequentially to learn the non-linear relationships between the
input data and output labels for the chosen task.

In contrast with the fully connected neural network, a CNN layer
consists of multiple trainable matrices denoted as filters. Each filter in
the convolutional layer learns distinct features of interest for a task.
Note that each filter has partial spatial invariance (i.e., a filter picks up
a particular feature of interest, such as an object’s edge, regardless of its
location in the image). This is an advantage over the fully connected
dense layer. The filter output can be expressed as,

y = f (w∗ x+ b) , (2)

where ∗ is the convolution operation. Similar to a fully connected
layer, the filter output is given by the activation function applied
to the convolution of the input with the filter weights. A filter
has a fixed kernel size (size of the trainable weight matrix).
Kernel sizes of 3–7 are commonly used Iandola et al. (2016).

The multiple features are summed together and inputted to the
next convolutional layer. Subsequent convolutional layers learn
increasingly abstract descriptors from the inputs. Having multiple
convolutional layers stacked sequentially increases the receptive field
(size of the convolutional layer input that the filter is affected by). A
max pooling operation (pooling nearby input values and computing
their maximum value to get a single scalar value) is commonly used
for reducing the dimensionality of the convolutional layer inputs.

2.2.3 Learning to classify
The training data is of supreme importance to the implementation

and analysis of ML/DL algorithms. For both fully connected layers
(Eq. 1) and the convolutional layers (Eq. 2), the trainable parameters
[w; b] are learned through an optimization process. At the network
output, an objective function is optimized, usually reducing some
error between the output and ground truth knowledge. This error or
loss is back-propagated through the network to update the trainable
weights in each layer. For microstructural classification, we use the
binary cross-entropy loss (BCE), which is commonly used for binary
classification tasks. BCE is defined as,

BCE = − 1
N

N

∑
i=1

yi ⁡log(p(yi)) + (1− yi) log(1− p(yi)) , (3)
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where N is the dataset size, yi is the ground truth, and p (yi) is the
probability that the network predicts label yi.

2.2.4 Implementation details
We use three convolutional layers followed by four dense (fully

connected) layers in the CNN. Each of the three convolutional layers
have 12 filters (kernel size = 3). The dense layers have a decreasing
number of nodes (800→ 200→ 40→ 2). The network parameters
are chosen to maximize classification performance. We use max-
pooling (factor = 2) after every convolutional layer. Max-pooling is
a commonly used strategy to reduce the input dimensionality by
choosing the max value from a input area.

Every layer, except the last, has the ReLU activation function,

f (x) =max (0,x) , (4)

where x is the input to the layer.Weuse the softmax activation function
in the last layer for binary classification. This is expressed as,

f (zi) =
ezi

∑K
j=1

ezj
, (5)

where zi is the ith output layer node and K is the number of
possible output labels (K = 2 for the texture prediction task). The
softmax function converts the network output values into a vector of
pseudo classification probabilities. The two output nodes correspond
to either a textured classification or an untextured classification.When
testing the CNN, the node with the larger value is identified as the
classification output for that segment of microstructure.

A dropout strategy in the dense layers was employed to
avoid certain network nodes from having high values (overfitting)
Srivastava et al. (2014). Dropout randomly drops out nodes in the
network during training process with a user-defined probability
(p = 0.2). We use the Adam optimization strategy for learning
parameters of the network (weights and biases of the network layers).
We train the CNN for n = 25 epochs with a batch size of 16. Table 1
shows the CNN architecture parameters. All the CNN and training
hyperparameters are manually chosen to optimize for classification
performance. Of the training set, 20% is held out as a validation
set to validate the model training process. The validation and
training curves (loss and accuracy) are shown in the supplementary
material (Supplementary Figure S1). The training and validation
curves follow each other closely indicating no overfitting on the
training data.

2.2.5 Texture classification via grain morphology
metrics

To compare with the CNN classification results, metrics of the
microstructure morphology were extracted from the EBSD data
from all microstructures and heat treatment durations to perform a
similar classification task. Classification was performed via a two-
sample Kolmogorov–Smirnov (K-S) tests to quantify goodness-of-
fit of randomly sampled test data Massey (1951). A one-sample
K-S analysis is used to compare two distributions, where the null
hypothesis is that one of the distributions, the sample distribution,
is drawn from the other, the reference distribution. To test this null
hypothesis, the difference between the sample distribution of size n
and the reference distribution is quantified via the K-S statistic

Dn = supx|Fn (x) − F (x) |. (6)

TABLE 1 CNN architecture.

Layer Layer description Act. Func.

Inputs Dim: patch size —

Conv1D Filters = 12; kernel size = 3 ReLU

Max Pool Pooling factor = 2 —

Conv1D Filters = 12; kernel size = 3 ReLU

Max Pool Pooling factor = 2 —

Conv1D Filters = 12; kernel size = 3 ReLU

Max Pool Pooling factor = 2 —

Flatten — —

Dense Fully connected; nodes = 800 ReLU

Dense Fully connected; nodes = 200 ReLU

Dense Fully connected; nodes = 40 ReLU

Dense Fully connected; nodes = 2 softmax

where Fn(x) is the sample distribution and F(x) is the reference
distribution. According to the Glivenko-Cantelli theorem Howard
(1959), if the sample distribution comes from the reference
distribution, Dn will converge to 0 as n approaches∞. Thus, smaller
a value of Dn indicates statistical similarity between sample and
reference distributions.

We use the following morphological metrics to classify textured
samples with the K-S test.

1. Grain area (μm2): Area comprising a grain, calibrated to the image
magnification.

2. Grain caliper diameter (μm): The longest distance between two
endpoints of a grain.

3. Grain aspect ratio: The ratio of major to minor axis of an ellipse
best fit to a grain (via the linear least squares approach described in
Mulchrone and Choudhury (2004)).

4. Grain pixel area: The number of pixels assigned to a grain.

The distributions of these morphological metrics is shown in
Figure 3. The grain pixel area and aspect ratio are considered
uncalibrated because they are calculated independent of length
scale (i.e., they do not consider the number of pixels per
unit length). The grain area and grain caliper diameter are
considered calibrated because the calculations take into account the
magnification and resolution. This distinction between calibrated
and uncalibrated metrics is important since the CNN is trained
and tested with uncalibrated microstructures, which have been
collected at variable magnifications 1) between different heat
treatment durations, and 2) among maps collected at individual
heat treatment durations. Respectively, these variations are reflected
by 1) a range of mean view field area from 3,265 μm2 (as-sintered
microstructures) to 8,099 μm2 (64 h microstructures), and 2) a
range of standard deviations in the mean map area from 8.970 μm2

(untextured 64 h microstructure) to 2,771 μm2 (textured 16 h
micrsotructure).

For each morphological metric, accuracies for the K-S test are
established by comparing the two Dn values calculated for the same
sample distributionwith twodifferent reference distributions: textured
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FIGURE 3
Normalized histograms for (A) uncalibrated and (B) calibrated morphological metrics form all heat treatment durations.

and untextured. For each metric, the reference distributions include
the data from all heat treatment durations. Similar to theCNN tests, K-
S test reference distributions are obtained from ≈80% of grains in the
full dataset for each of textured/untextured (7,500 and 10,000 grains,
with 1,500 and 2,000 grains per heat treatment duration, respectively).
The sample distributions are extracted from a specific heat treatment
duration or combination of heat treatment durations, as specified.
The sample distribution is classified as textured or untextured by
which reference distribution produces the lowerDn value, i.e., smallest
deviation between distributions. As the true texture is known in the
sample distribution, the accuracy can be calculated as the fraction of
sample distributions that are classified correctly. For the KS testing,
test data consists of 100 sample distributions generated with sizes
correlating to the mean number of grains input to the CNN at patch
size 100× 100 as in Table 2 (50 sample distributions each for textured
and untextured).

The effect of patch size on accuracy values was tested in the CNN
and, for comparison, required a similar change in the number of grains
used in the sample distributions for the K-S test. For each patch size,
the average number of grains per patch was extracted to be used for
generating K-S test sample distributions. However, after extended heat
treatment, the average number of grains varied significantly for the
textured and untexturedmicrostructures for each individual duration.
Therefore, we grouped the as-sintered and 8 h datasets to form an early
stage grain growth dataset, which produced similar average number
of grains per patch for the textured and untextured datasets as seen
in Table 3 and thus produced a more balanced classification test.
The sample distributions were then generated by randomly sampling
the number of grains specified in Table 3 from the early stage grain

growth data. Test data consists of 100 sample distributions (50 each
for textured and untextured). Note that no change was made to the
reference distributions.

3 Results

For each of the studies introduced, we present texture classification
accuracy from the CNN method and compare with those obtained
via the K-S test. In almost all cases, we report superior classification
accuracy from the CNN-based method than from the K-S testing
method. Table 3.

3.1 Classification at individual stages of grain
growth

Classification test accuracy using the CNN method at individual
heat treatments with patch size 100× 100 is reflected in Figure 4.
Across all heat treatments, a mean accuracy of 0.91 ± 0.03 is reported.
All stages of grain growth can be classified with greater than 0.90
accuracy except for the 8 h heat treatment (0.85), which is attributed
to the fact that the 8 h textured microstructure is the least textured
of all heat treatment durations Conry et al. (2022). Overall, there is
no apparent accuracy trend with heat treatment duration, indicating
that the high-order experimentally indeterminate feature learned by
the CNN is equally present at both early stages of grain growth, before
morphological differences are more apparent, and later stages of grain
growth.
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TABLE 2 Mean number of grains per heat treatment duration at patch size 100× 100.

As-sintered 8 h 16 h 32 h 64 h

Textured 189 78 63 42 39

Untextured 174 78 75 81 79

TABLE 3 Mean number of early-stage grains per CNN patch.

60 × 60 80 × 80 100 × 100 120 × 120 140 × 140

Textured: Early Stage 57 92 134 184 255

Untextured: Early Stage 55 89 126 184 260

FIGURE 4
Classification accuracy with test data from individual stages of grain growth, considering (A) uncalibrated and (B) calibrated metrics. CNN classification
accuracy from the same experiment is included for comparison.

Classification accuracy using the K-S test at individual heat
treatments is also shown in Figure 4. We observe that in general, the
accuracy of the K-S tests in classifying microstructures as textured or
untextured is highly variable and dependent on the heat treatment
duration of the tested microstructure for both the calibrated and
uncalibrated metrics. For the uncalibrated metrics (Figure 4A), the
K-S test accuracy values for longer heat-treatment durations are
generally greater than shorter heat-treatment durations. Aspect ratio
shows the most consistently high classification accuracy at longer
heat-treatments, but cannot classify the as-sintered microstructures
(where accuracy is almost the same as random, 0.5). For the calibrated
metrics (Figure 4B), although the 64 h microstructures yield the
highest accuracy classification, there is no clear trend with change in
heat treatment duration.The 8 hmicrostructures exhibit unexpectedly
high accuracy, even greater than the CNN; this result is discussed
below. In general, the grain diameter provides equal or better
accuracies than grain area, except in the as-sintered case in which both
calibrated and uncalibrated metrics are close to random.

We compare the results of the CNN with two other common
machine learning classifiers: random forest Breiman (2001) and
support vector machine Boser et al. (1992). Each classifier is trained
with two separate sets of features: 1) 100 random values of all four
grain-level metrics used in the K-S test concatenated together into a
1D vector (concat method) and 2) a flattened version of the same data
used by the CNN (flatten method). The results of these methods are
shown in the supplementary section.

The methods are compared using standard classification metrics
including precision, recall, and F1-score. The comparison in the

supplementary section (Supplementary Tables S1–S10) shows that
the proposed CNN method is consistently able to achieve superior
performance overall (mean F1 score = 0.92) as compared to the
support vector machine (mean F1 score = 0.73), random forest (mean
F1 Score = 0.72), and KS test with best performing morphological
parameter—aspect ratio (mean F1 score = 0.74).

Overall, none of these approaches (except of the CNN), regardless
of classifier or feature set, perform well on the binary classification
problem. The failure of the grain-level metrics show that these
traditional metrics are alone insufficient for describing material
texture. The failure of the flattened morphological data highlights
the importance of local morphological information in identifying
texture.

3.2 Classification with varying input data size

Figure 5 shows the test accuracy for the CNN when varying
the patch size. The CNN shows a monotonically increasing trend in
classification accuracy with increasing patch size, from 0.72 at patch
size 60 to 0.94 at patch size 140.This result seems to indicate that there
is a high-order feature being learned, as increasing patch size provides
more information from the grain boundary network structure used for
the CNN training and testing.

The analogous K-S classification accuracies for the uncalibrated
(Figure 5A) and calibrated (Figure 5B) metrics are presented for
comparison. Here, only grains from the early stage dataset (combined
as-sintered and 8 h), as mentioned in Section 2.2.5, are used in the
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FIGURE 5
Test accuracy with early-stage grain growth data from (A) uncalibrated and (B) calibrated morphological metrics, corresponding to CNN patch size. CNN
classification accuracy from the same experiment is included for comparison.

analysis. Using the calibrated metrics yields a mean accuracy of 0.73
± 0.03 across all patch sizes. This accuracy is significantly greater
than random, and the accuracy using grain area is, in fact, greater
than that from the CNN at patch size 60. K-S classification using
the uncalibrated metrics, for which there is no information about
the data length scale, yields an essentially random mean accuracy of
0.51 ± 0.03. It should be noted that this data is most reflective of the
CNN, as the binarized input patches used for training and testing are
uncalibrated. In both cases, themonotonic increase is not present with
increasing patch size. This may indicate that the spatial arrangement
and connectivity of the high-order metrics, which is not reflected
in random grain sampling, is an important factor in classifying the
micrsotructures.

4 Discussion

Overall, we report superior classification accuracy of textured
microstructures by CNN than by K-S classification of grain
morphologymetrics, regardless of input data dimensions.This finding
demonstrates the potential of our CNN-based method as a powerful
tool for reliable, automatedmicrostructure classification. In particular,
it requires minimal data processing without the need for manual
feature extraction. Therefore, it eliminates the dependence on an
expert to hand-craft relevant features, which is time-consuming and
can lead to human biases. Below, we discuss the potential implications
of the consistently high CNN accuracy values on microstructure
characterization.

4.1 CNN classifies texture by high-order
descriptor of microstructure

The consistent accuracy of CNN predictions at all heat treatment
durations for a constant patch size suggests that CNN is learning a
feature that is equally present at both early and late stages of grain
growth.This feature is, by definition of theCNN test, different between
the textured and untexturedmicrostructures.The inconsistency of the

K-S tests’ accuracy further suggest that the CNN-identified feature
is not grain diameter, grain area (calibrated or uncalibrated), or
aspect ratio because none of these metrics can be used to distinguish
the microstructures at both early and late stages of grain growth.
Similarly to the other microstructural metrics discussed here, the
dihedral angles (2D projections from EBSD maps) at triple junctions
were also incapable of distinguishing the textured from untextured
microstructures at all stages of grain growth as discussed in the
supplementary material.

In contrast to the CNN, the microstructural differences between
grain growth stages, rather than the crystallographic texture, inhibit
the K-S tests’ ability to classify textured from untextured.TheK-S tests
were designed to reflect the CNN training by assembling data from all
heat treatment durations into the reference distributions.However, the
tested morphological metrics (grain diameter, area, and aspect ratio)
change with increasing heat treatment duration, and their changes
are greater than the difference between the textured and untextured
microstructures at the same grain growth stage. This can be seen by
comparing, for example, the average grain diameters for each heat
treatment duration reported in Table 4. The average grain diameter
of the textured microstructures varies from 3.2 µm to 7.6 µm, which
totally encompasses the diameter range exhibited by the untextured
grains. Apart from the as-sintered case, the grain diameter is a defining
metric for a microstructure of a certain texture and heat treatment
duration but cannot be used to classify all the texturedmicrostructures
from the untextured ones.Table 4 also demonstrates why the accuracy
of the K-S test for grain diameter in the 8 h samples is high: the average
grain diameters of the textured and untexturedmicrostructures for 8 h
most closely resemble the average grain diameters of their respective
total populations.

This variation in metrics with heat treatment duration does not
negatively affect the CNN classification accuracy. The most obvious
example of this is the extremely accurate (≥0.9) classification in
the as-sintered condition. These are morphologically very similar
microstructures (Figure 1; Table 4) and thus very challenging to
classify by classical methods, as reflected by the near-random test
accuracy with both uncalibrated and calibrated metrics. We pose that
the excellent classification ability of the CNN at this initial condition
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TABLE 4 The average grain diameter (in μm) for untextured and texturedmicrostructures at each heat treatment duration.

All As-sintered 8 h 16 h 32 h 64 h

Untextured 4.3 ± 2.2 3.1 ± 1.2 4.6 ± 2.2 4.9 ± 2.3 5.0 ± 2.5 4.6 ± 2.3

Textured 5.3 ± 3.4 3.2 ± 1.5 5.5 ± 2.7 5.9 ± 3.0 6.8 ± 3.9 7.6 ± 4.6

is strong evidence that high-order, experimentally indeterminate
microstructural metrics associated with texture are being learned and
applied to make the classification.

The improvement in accuracy with increase in patch size further
suggests that the CNN is indeed learning a feature that is, although
currently indeterminate, of spatiotemporal nature. We report a 31%
improvement in CNN classification accuracy at early stages of grain
growth by introducing only ≈200 grains per patch. This increase in
number of grains does not affect the K-S test accuracy. Instead, we
propose that increasing the patch size, rather than increasing the
number of patches, improves the CNN accuracy because it provides
more information needed for detecting spatiotemporal features.
Potential features of importance may be the arrangement of high
aspect ratio grains or dihedral angles at the triple junctions (see
discussion in Supplementary Material).

4.2 Implications of CNN classification on
microstructure characterization

The ability of the CNN to classify crystallographic texture
accurately from a relatively small number of binary images
has significant implications for both collecting and mining
microstructural data. First, the binary images classified by CNN can
be collected with simple imaging techniques, either with optical or
electron microscopy. Such imaging is faster and simpler than EBSD,
which requires labor-intensive sample preparation to remove surface
damage and expensive equipment. Furthermore, many grains, at
least 2,500–3,00 grains ASTM (1996) and more for heterogeneous
microstructures to account for spatial inhomogeneity, are required
to statistically differentiate microstructures with conventional grain
metrics. In the present work, the trained CNN used no more than
≈250 grains for any experiment to make high-accuracy classifications
based on high-order, spatiotemporal features. This finding holds great
promise for the future of grain growth and microstructural analysis,
as it forecasts the ability to make statistically significant conclusions
with far less intensive data collection and analysis than traditionally
required.

Moreover, the high-accuracy classification ability of the CNNwith
uncalibrated, binary microstructure images is powerful, and holds
implications towards the potential of generating large microstructural
databases. Specifically, it would allow microstructural data to be
pulled from across the literature regardless of scale bar, greatly
facilitating the large-scale data mining needed to generate such
a database. A recent review of materials data science highlights
the importance of microstructure databases for the future of
advanced materials design Kalindindi and DeGraef (2015). As a
specific example, recent work on DL microstructure classification
parsed a database of Ti alloy microstructures to classify grain
morphologies as a function of processing Baskaran et al. (2020). We

pose that CNN methods open the door to data-mining a wide range
of complex grain images, advancing hierarchical microstructural
characterization and, thus, multiscale modeling of polycrystalline
materials.

4.3 Future directions

A natural extension of this work is to use the CNN to classify the
degree of crystallographic texture, which is not a binary metric. In
futurework,wewill vary themagnetic field strength during slip casting
to change the texture index of the as-sinteredmicrostructures. Varying
the texture index of the input data will also provide insight into the
sensitivity of CNN classification when the texture index is between 1
and 2, which was not tested here.

Future efforts are focused on identifying what physical descriptors
are being learned and used by the CNN to classify texture. Previously,
an interpretability analysis has been done for the classification error
Oviedo et al. (2019). A future research direction is to similarly perform
an interpretability analysis of the intermediate CNN features to obtain
high order descriptors of textured grain classification. Interpretations
of these high-order descriptors can then be used to guide efforts
in elucidating grain growth or predicting microstructure-controlled
material behavior.
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