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The significance of thermal conductivity, convection, and heat transportation of hybrid
nanofluids (HNFs) based on different nanoparticles has enhanced an integral part in
numerous industrial and natural processes. In this article, a fractionalized Oldroyd-B
HNF along with other significant effects, such as Newtonian heating, constant
concentration, and the wall slip condition on temperature close to an infinitely
vertical flat plate, is examined. Aluminum oxide (Al2O3) and ferro-ferric oxide (Fe3O4)
are the supposednanoparticles, andwater (H2O) and sodiumalginate (C6H9NaO7) serve
as the base fluids. For generalized memory effects, an innovative fractional model is
developed based on the recently proposed Atangana–Baleanu time-fractional (AB)
derivative through generalized Fourier and Fick’s law. This Laplace transform technique
is used to solve the fractional governing equations of dimensionless temperature,
velocity, and concentration profiles. The physical effects of diverse flow parameters are
discussed and exhibited graphically by Mathcad software. We have considered
0.15≤ α≤0.85,2≤Pr ≤9, 5≤Gr ≤ 20,0.2≤ ϕ1, ϕ2 ≤0.8,3.5≤Gm≤8, 0.1≤ Sc ≤0.8,
and 0.3≤ λ1, λ2 ≤ 1.7. Moreover, for validation of our present results, some limiting
models, such as classical Maxwell and Newtonian fluidmodels, are recovered from the
fractional Oldroyd-B fluid model. Furthermore, comparing the results between
Oldroyd-B, Maxwell, and viscous fluid models for both classical and fractional cases,
Stehfest and Tzou numerical methods are also employed to secure the validity of our
solutions. Moreover, it is visualized that for a short time, temperature and momentum
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profiles are decayed for larger values of α, and this effect is reversed for a long time.
Furthermore, the energy and velocity profiles are higher for water-based HNFs than
those for the sodium alginate-based HNF.

KEYWORDS

fractionalized hybrid Oldroyd-B fluid, AB time-fractional derivative, Newtonian heating,
Laplace transform method, hybrid nanofluid

1 Introduction

With the addition of nanometer-sized particles in various base
fluids, thermophysical characteristics may improve in energy transfer
schemes. This process signals an expansion in the thermal conductivity
for base fluids, making it more reliable and ongoing. These significant
fluids define nanofluids (NFs) with an extensive series of suggestions in
several areas of science, as well as technology, with nuclear devices, heat
exchangers, solar plates, vehicle heaters, and biotic and organic devices
(Usman et al., 2018; Khan et al., 2022a; Khan et al., 2022b; Ahmed et al.,
2022; Hassan et al., 2022; Khan et al., 2022c). First, Lee and Eastman
presented the idea of NFs in 1995 (Lee et al., 1999). Numerous
applications of NFs are discoursed by Kaufui et al. (Wong and
Omar De Leon., 2010). Mahian et al. (2019) proposed important
ideas and reflected novel innovations to completely explain the NFs.
They were obsessed with innovative expansions in this field,
comprehensive explanations of the thermophysical characteristics,
and imitation of thermal transmission in NF flow. Waini et al.
(2019) used a numerical scheme to discuss an unsteady thermal
transmission flow past a shrinking sheet in an HNF. They presented
different applications of NFs in numerous branches of science along
with appreciated recommendations. NFs have achieved significant
consideration from researchers due to their improved heat
conversion characteristics. The rheological presentation of an NF
using a revolving rheometer was proposed by Vallejo et al. (2019a).
Different rheological characteristics of NFs are discussed in Vallejo et al.
(2019b). Currently, NFs have been characterized as HNFs in several
mechanisms (Rashad et al., 2018). HNFs are developed by mixing two
dissimilar nanoparticles in the base liquid. Its main inspiration is to
increase the thermal features of NFs. The variable thermal transmission
of HNFs through magnetic influence was examined in Mohebbi et al.
(2019). The heat transmission in the non-Newtonian HNF composed
with entropy generation was discussed in Shahsavar et al., 2018).
Furthermore, Farooq et al. (2018) deliberated on the entropy in the
HNF flow in a stretching sheet.

Asogwa et al. (2021) discussed chemical reactions and heat sinks
over a ramped temperature. The analytical solution of governing
equations was found with the Laplace transform. Asogwa et al.
(2022a) used the Laplace approach to discuss a water-based NF
containing aluminum oxide and copper in a moving plate and proved
that thermal absorption causes a decline in aluminumoxideNF’s thermal
and momentum profiles with a copper NF. Shankar Goud et al. (2022)
used the Keller–box scheme for the numerical solution along with
thermal effects, momentum, and solutal slip on the thermal
transmission with a description of the magnetohydrodynamic (MHD)
flow of Casson fluid and an exponential porous surface with Dufour,
chemical reaction, and Soret impacts. Khan et al. (2022d) studied a
fractionalized electro-osmotic flow based on the Caputo operator of a
Casson NF containing sodium alginate nanoparticles over a vertical

microchannel with MHD effects. They proved that the inclination
angle boosts the velocity. Asogwa et al. (2022b) and Asogwa et al.
(2022c) considered the stimulation significance of the thermal
transmission with the MHD flow of a NF through an extending sheet
with MATLAB bvp4c. Furthermore, they investigated the radiative
features of the MHD flow with collective heat transportation
characteristics on a reactive stretching surface with the Casson NF
numerically using MATLAB bvp4c. Goud et al. (2022) applied the
bvp4c scheme to study the convection flow via an infinite porous
plate on thermal transmission, as well as mass transmission. Asogwa
et al. (2022d) discussed the influences of the movement of nanoparticles
in NFs by an exponentially enhanced Riga plate. Reddy et al. (2022)
calculated the effect of activation energy on a second-grade MHD NF
flow over a convectively curved heated stretched surface by considering
the Brownian motion and generation/absorption, and thermophoresis.
They have shown that velocity and thermal profiles suggestively increase
with the concurrent increasing estimation of the fluid parameter.

The fractional calculus (FC) has obtained substantial
consideration from experts in previous decades. The important
inventions have newly been presented in the application of the
FC, where new derivatives, as well as integral operators, are hired
(Awan et al., 2019). The new anticipated operators contain the
generalized Mittag–Leffler function (MLF), and these features
intensify the innovative constructions to achieve numerous
attractive properties that are recognized in important outcomes.
Subsequently, Atangana and Dumitru (2016) anticipated, the
innovative and applicable time-fractional operator, which is
expansively hired in numerous branches of science and
engineering. It is exposed that the MLF is a more operative and
vigorous screening apparatus than the exponential and power laws,
constructing the AB-fractional operator, in terms of Caputo, an
effective arithmetic procedure to simulate progressively perilous
complex tasks. Due to their extensive implications, such fractional
models are extensively identified for deriving fractional differential
equations (FDEs) with no manufactured irregularities, as for
Caputo, Riemann–Liouville (RL), and Caputo–Fabrizio (CF)
derivatives, because of their characteristic non-orientation (Ali
et al., 2021; Ali et al., 2022a; Raza et al., 2022; Zhang et al.,
2022). We also perceived interest in these fractional derivatives
on the topic of mathematical approaches, although scientifically
approximating these operators’ outcomes to compute different
problems (Martyushev and Sheremet, 2012; Ali et al., 2022b).

Batool et al. (2022) discussed the thermal and mass transmission
processes of a micropolar NF under magnetic and buoyancy effects
across an inclusion. Rasool et al. (2022a) examined the significance
of the MHD Maxwell NF flow and obtained the solution to this
problem by employing the homotopy analysis technique for diverse
physical parameters. Moreover, they studied an electro-magneto-
hydrodynamic NF flow in a permeable medium with heating
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boundary conditions. Furthermore, they applied Buongiorno’s
method for the flow of radiating thixotropic NFs over a
horizontal surface by considering the retardational effects of
Lorentz forces and using the influence of Brownian and
thermophoresis diffusions (Rasool et al., 2022b; Rasool et al., 2023).

In this paper, a fractionalized Oldroyd-B HNF flow is
examined by the recent definitions of the AB time-fractional
derivative having a Mittage–Leffler kernel along with
Newtonian heating, constant concentration, and the wall slip
condition on temperature close to an infinite vertical flat plate.
The AB fractional operator is introduced in the governing
equations of temperature and diffusion by employing the
generalized types of Fourier and Fick’s law. The developed non-
dimensional fractional model is solved using the Laplace transform
method. Graphical illustrations are used to depict the physical
behavior of fractional derivatives and the consequence of diverse
flow parameters on velocity, thermal, and concentration fields.
Furthermore, for validation of our attained results, some limiting
cases are considered to recover fractional derivatives, as well as
classical models of Maxwell and Newtonian fluids. The impacts of
diverse flow parameters on variable profiles are achieved and
presented graphically with significant conclusions.

2 Mathematical formulation based on a
hybrid nanofluid

Consider an unsteady and an incompressible Oldroyd-B HNF
flow close to an infinite vertical flat plate. Initially, consider that the
fluid and plate are at a relaxation position, with constant
temperature T∞ and concentration C∞. After some time, the
plate is kept constant and the fluid begins to move with a
temperature value T(0, t) − a1

zT(0,t)
zξ � u0 sinωt, where u0 is a

constant that signifies the dimension of velocity. At that time, the
plate obtains a temperature Tw and concentration Cw, which persist
constantly. We supposed that velocity, temperature, and

concentration profiles are the only functions of ξ and t. The
configuration of the problem is shown in Figure 1.

By Boussinesq’s estimation (Ali et al., 2021), the governing
equations for an Oldroyd-B HNF are discussed by Martyushev
and Sheremet (2012). The equation of motion is as follows:

ρhbnf 1 + λ1
z

zt
( ) zW1 ξ, t( )

zt
� μhbnf 1 + λ2

z

zt
( ) z2W1 ξ, t( )

zξ2

+ g ρβ1( )hbnf 1 + λ1
z

zt
( )

× T ξ, t( ) − T∞( )

+ g ρβ2( )hbnf 1 + λ1
z

zt
( )

× C ξ, t( ) − C∞( ). (1)

The energy balance equation is as follows (Awan et al., 2019):

ρCp( )
hbnf

zT ξ, t( )
zt

� −zq
zξ
. (2)

The Fourier law (Zhang et al., 2022) for thermal conduction is as
follows:

q ξ, t( ) � −κhbnfzT ξ, t( )
zξ

. (3)

The diffusion equation (Awan et al., 2019) for

zC ξ, t( )
zt

� −zj
zξ
. (4)

The Fick law is as follows (Awan et al., 2019):

j ξ, t( ) � −Dhbnf
zC ξ, t( )

zξ
. (5)

The appropriate initial and boundary conditions are as follows:

W1 ξ, 0( ) � 0, T ξ, 0( ) � T∞,C ξ, 0( ) � C∞,∀ξ ≥ 0, (6)
W1 0, t( ) � 0, T 0, t( ) − a1

zT ξ, t( )
zξ

∣∣∣∣∣∣∣∣ξ�0 � u0 sinωt,C 0, t( ) � Cw, (7)

W1 ξ, t( ) → 0, T ξ, t( ) → T∞,C ξ, t( ) → C∞ as, ξ → ∞ . (8)
Table 1 shows the properties of thermal and under-conversation

fluids and nanoparticles.

ρhbnf � ρf 1 − ϕ2( ) × ρs1
ρf
ϕ1 + 1 − ϕ1( )⎛⎝ ⎞⎠ + ϕ2ρs2μhbnf

� μf

1 − ϕ1( )2.5 1 − ϕ2( )2.5, ρCp( )
hbnf

� ρCp( )
f
1 − ϕ2( )

× 1 − ϕ1( ) + ϕ1

ρCp( )
s1

ρCp( )
f

⎛⎜⎝ ⎞⎟⎠ + ϕ2 ρCp( )
s2
, ρβT( )hbnf

� 1 − ϕ2( ) ρβT( )f × 1 − ϕ1( ) + ϕ1

ρβT( )s1
ρβT( )f⎛⎝ ⎞⎠

+ ϕ2 ρβT( )s2 , κhbnf � κs2 + s − 1( )κbf − s − 1( )ϕ2 κbf − κs2( )
κs2 + s − 1( )κbf + ϕ2 κbf − κs2( )⎛⎝ ⎞⎠κbf, κbf

� κs1 + s − 1( )κf − s − 1( )ϕ1 κf − κs1( )
κs1 + s − 1( )κf + ϕ1 κf − κs1( )⎛⎝ ⎞⎠κf.

(9)

FIGURE 1
Physical flow.
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The following are a set of non-dimensional parameters:

ψ* � u0

υf
ξ, η* � u2

0

υf
t,W* � W1

u0
, θ* � T − T∞

Tw − T∞
,Φ* � C − C∞

Cw − C∞
, q* � q

q0
, j* � j

j0
,

λ1
* � u2

0

υf
λ1, λ2

* � u2
0

υf
λ2, q0 � κf Tw − T∞( )u0

υf
, j0 �

Dnf Cw − C∞( )u0

υf
,

Gr � g υβ1( )f Tw − T∞( )
u3
0

, Gm � g υβ2( )f Cw − C∞( )
u3
0

,Pr �
μCp( )

f

κf
, Sc � υf

Df
.

(10)

By utilizing the aforementioned variables in Eqs. 1–8 and after
dropping the * notation, we obtain

Ω1 1 + λ1
z

zη
( ) zW ψ, η( )

zη
�Ω2 1 + λ2

z

zη
( ) z2W ψ, η( )

zψ2

+Ω3 1 + λ1
z

zη
( )Gr θ ψ, η( )

+Ω4 1 + λ1
z

zη
( )Gm Φ ψ, η( ).

(11)

Ω5Pr
zθ ψ, η( )

zη
� −zq

zψ
. (12)

q ψ, η( ) � −Ω6
zθ ψ, η( )

zψ
. (13)

ABDα
ηΦ ψ, η( ) � − 1 − ϕ1( ) 1 − ϕ2( )

Sc

zj

zψ
, (14)

j ψ, η( ) � −zΦ ψ, η( )
zψ

. (15)

W ψ, 0( ) � 0, θ ψ, 0( ) � 0,Φ ψ, 0( ) � 0,∀ψ ≥ 0, (16)

W 0, η( ) � 0, θ 0, η( ) − a1
zθ ψ, η( )

ψ

∣∣∣∣∣∣∣∣
ψ�0

� sinωη,Φ 0, η( ) � 1,∀η> 0,

(17)
W ψ, η( )→ 0, θ ψ, η( )→ 0,Φ ψ, η( )→ 0, as,ψ → ∞ . (18)

where

TABLE 1 Thermal characteristics of base fluids and nanoparticles (Raza et al., 2022; Zhang et al., 2022).

Material Water (H2O) Sodium alginate (C6H9NaO7) Aluminum oxide (Al2O3) Ferro-ferric oxide (Fe3O4)
ρ(M/L3) 997.1 898 3970 5180

Cp(J/MK) 4179 4175 765 670

k(W/LK) 0.613 0.6367 40 9.7

βT(K−1) 21 23 0.85 0.9

σ 0.05 0.07 3.6 × 107 1 × 10−7

The properties of a HNF are defined by Zhang et al. (2022).

TABLE 2 Numerical comparison of energy, concentration, and velocity profiles by different numerical methods.

ψ θ(ψ, η) by Stehfest θ(ψ, η) by Tzou Φ(ψ, η) by Stehfest Φ(ψ, η) by Tzou W(ψ, η) by Stehfest W(ψ, η) by Tzou

0.1 0.61263 0.61309 0.97297 0.9736 0.15292 0.15291

0.5 0.45242 0.45274 0.87168 0.87198 0.60469 0.60453

0.9 0.33289 0.33311 0.78055 0.7806 0.86701 0.86664

1.3 0.24413 0.24428 0.6986 0.69848 1.0032 1.0026

1.7 0.17849 0.1786 0.62496 0.62473 1.0553 1.0546

2.1 0.13014 0.13021 0.55882 0.55852 1.0522 1.0515

2.5 0.094641 0.094686 0.49946 0.49911 1.0137 1.0129

2.9 0.068661 0.06869 0.44621 0.44584 0.95349 0.95272

3.3 0.049701 0.04972 0.39847 0.39809 0.88123 0.8805

3.7 0.035902 0.035914 0.35568 0.35532 0.80356 0.80288

4.1 0.025884 0.025891 0.31737 0.31702 0.7 2499 0.72437

4.5 0.018627 0.018631 0.28306 0.28274 0.64852 0.64796

4.9 0.013381 0.013384 0.25237 0.25207 0.57605 0.57556
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Ω1 � 1 − ϕ2( ) × 1 − ϕ1( ) + ϕ1

ρs1
ρf

⎛⎝ ⎞⎠ + ϕ2

ρs2
ρf
,Ω2 � 1

1 − ϕ1( )2.5 1 − ϕ2( )2.5,
Ω3 � 1 − ϕ2( ) × 1 − ϕ1( ) + ϕ1

ρβ1( )s1
ρβ1( )f⎛⎝ ⎞⎠ + ϕ2

ρβ1( )s2
ρβ1( )f,

Ω4 � 1 − ϕ2( ) × 1 − ϕ1( ) + ϕ1

ρβ2( )s2
ρβ2( )f⎛⎝ ⎞⎠ + ϕ2

ρβ2( )s2
ρβ2( )f,

Ω5 � 1 − ϕ2( ) × 1 − ϕ1( ) + ϕ1

ρCp( )
s

ρCp( )
f

⎛⎜⎝ ⎞⎟⎠ + ϕ2

ρCp( )
s2

ρCp( )
f

,

Ω6 �
κs2 + s − 1( )κbf − s − 1( )ϕ2 κbf − κs2( )

κs2 + s − 1( )κbf + ϕ2 κbf − κs( )⎛⎝ ⎞⎠κbf,

κbf � κs1 + s − 1( )κf − s − 1( )ϕ1 κf − κs1( )
κs1 + s − 1( )κf + ϕ1 κf − κs1( )⎛⎝ ⎞⎠.

(19)

2.1 Fractional model based on a non-local
kernel

Now, we develop a fractional Oldroyd-B HNF using Fourier and
Fick’s law based on the AB-fractional operator (Atangana and
Dumitru, 2016), which is explained as the following expression
for a function f(ξ, t)

ABDγ
t f ξ, t( ) � 1

1 − γ
∫t

0
Eγ

γ t − τ( )γ
1 − γ

[ ]f′ ξ, τ( )dτ, 0< γ< 1, (20)

and the kernel Mittage–Leffler function Eγ(τ) is defined by

Eγ τ( ) �∑∞
r�0

τγ

Γ rγ + 1( ), 0< γ< 1, τ ∈ C. (21)

The Laplace transform is

L ABDγ
t f ξ, t( ){ } � sγL f ξ, t( ){ } − sγ−1f ξ, 0( )

sγ 1 − γ( ) + γ
, (22)

with

lim
γ ����→ 1

ABDγ
t f ξ, t( ) � zf ξ, t( )

zt
. (23)

The governing equations for the AB-fractional derivative are
obtained by substituting the ordinary derivative with the AB
derivative operator ABDα

η in Eqs. 11–15 as

Ω1 1 + λ1
z

zη
( )ABDα

ηW ψ, η( ) � Ω2 1 + λ2
z

zη
( ) z2W ψ, η( )

zψ2

+Ω3 1 + λ1
z

zη
( )Gr θ ψ, η( ) +Ω4 1 + λ1

z

zη
( )Gm Φ ψ, η( ), (24)

Ω5Pr
ABDα

ηθ ψ, η( ) � −zq
zψ

, (25)

q ψ, η( ) � −Ω6
zθ ψ, η( )

zψ
. (26)

ABDα
ηΦ ψ, η( ) � − 1

Sc

zj

zψ
, (27)

j ψ, η( ) � −zΦ ψ, η( )
zψ

. (28)

3 Solution of the problem

3.1 Energy profile

Using the Laplace transform on Eqs. 25, 26 and corresponding
conditions (15)2-(17)2, we have

Ω6Pr
sα

1 − α( )sα + α
( )�θ ψ, s( ) � −z�q

zψ
, (29)

�q ψ, s( ) � −Ω6
z�θ ψ, s( )

zψ
, (30)

�θ 0, s( ) − a1
z�θ ψ,s( )

ψ

∣∣∣∣∣∣ψ�0 � ω

s2 + ω2,

�θ ψ, s( )→ 0, as,ψ → ∞,

(31)

where �θ(ψ, s) � ∫∞
0
θ(ψ, t)e−stdt is the Laplace transform for θ(ψ, t),

and s is the Laplace transform parameter (Ali et al., 2021).
The solution of Eq. (29) by using Eq. (30) and with conditions in

Eq. (31) is

�θ ψ, s( ) � ω

s2 + ω2( )
1

1 + a
������

Πsα
1−α( )sα+α

√ exp −ψ
�����������

Πsα
1 − α( )sα + α

√⎛⎝ ⎞⎠.
(32)

Eq. (32) can be written as

�θ ψ, s( ) � ω

s2 + ω2( )
1

1 + a
�����
Λ1 s( )√ exp −ψ �����

Λ1 s( )√( ), (33)

where Π � Ω5Pr
Ω6

and Λ1(s) � Πsα
(1−α)sα+α.

The Laplace inverse of Eq. (33) is shown numerically in Table 2.

3.2 Concentration field

By employing the Laplace transform on Eqs. 27, 28 with
associated conditions defined in Eqs. (15)3– (17)3, we have

sα

1 − α( )sα + α
�Φ ψ, s( ) � − 1 − ϕ1( ) 1 − ϕ2( )

Sc

z�j ψ, s( )
zψ

, (34)

�j ψ, s( ) � −z�j ψ, s( )
zψ

. (35)

�Φ 0, s( ) � 1
s
, �Φ ψ, s( )→ 0, as,ψ → ∞ . (36)

The solution of Eq. (34) by using Eq. (35) and conditions in Eq. (36) is

�Φ ψ, s( ) � 1
s
exp −ψ

���������������������������
Sc

1 − ϕ1( ) 1 − ϕ2( ) sα

1 − α( )sα + α
( )√⎛⎝ ⎞⎠. (37)

Eq. (37) may be written as
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�Φ ψ, s( ) � 1
s
exp −ψ �����

Λ2 s( )√( ), (38)

where Λ2(s) � Sc
(1−ϕ1)(1−ϕ2) ( sα

(1−α)sα+α).
The Laplace inverse of Eq. (38) is computed numerically in

Table 2 by invoking diverse numerical methods.

3.3 Momentum profile

Taking the Laplace transform on Eq. (24) with related
conditions in Eqs. (15)1– (17)1, we have

Ω1 1 + λ1s( ) qα

1 − α( )qα + α
( ) �W ψ, s( ) � Ω2 1 + λ2s( ) z

2 �W ψ, s( )
zψ2

+ Ω3 1 + λ1s( )Gr�θ ψ, s( ) + Ω4 1 + λ1s( )Gm�Φ ψ, s( ),
(39)

�W 0, s( ) � 0, �W ψ, s( )→ 0, as,ψ → ∞ . (40)
By using temperature values from Eq. (37) and concentration

from Eq. (38) and with conditions of Eq. (40), we obtain the solution
of the velocity field for Eq. (40) as

�W ψ, s( ) � Λ4 s( )Gr
Λ3 s( ) − Λ1 s( )

ω

ss + ω2

e−ψ
����
Λ1 s( )

√

1 + a
�����
Λ1 s( )√ − e−ψ

����
Λ3 s( )

√

1 + a
�����
Λ1 s( )√⎡⎣ ⎤⎦

+ Λ5 s( )Gm
Λ3 s( ) − Λ2 s( )

e−ψ
����
Λ2 s( )

√

s
− e−ψ

����
Λ3 s( )

√

s
⎡⎣ ⎤⎦, (41)

where
b1 � 1+λ1s

1+λ2s,Λ3(s) � b1
Ω1
Ω2

sα

(1−α)sα+α,Λ4(s) � b1
Ω3
Ω2
, andΛ5(s) � b1

Ω4
Ω2
.

Our achieved solutions of variable profiles are complex to
find analytically. Different researchers employed varied
numerical approaches; so to compute Laplace inversion, we

FIGURE 2
Simulation to explain the temperature for changing α when Pr � 3 and ϕ1 � ϕ2 � 0.4.

FIGURE 3
Simulation to explain the temperature for Pr when α � 0.4.
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also employed numerical techniques, i.e., Stehfest and Tzou
numerical methods. These algorithms are defined as follows
(Stehfest, 1970; Tzou, 2014):

W ψ, η( ) � ln 2( )
η
∑M
m�1

wm
�W ψ,m

ln 2( )
η

( ), (42)

where wm � (−1)m+M
2 ∑min(q,M2 )

r�(q+12 )
r
M
2 (2r)!

(M2 −r)!r!(r−1)!(q−r)!(2r−q)!,

and

W ψ, η( ) � e4.7

η

1
2
�W ψ,

4.7
η

( ) + Re ∑M
j�1

−1( )j �W ψ,
4.7 + jπi

η
( )⎧⎨⎩ ⎫⎬⎭⎡⎢⎢⎣ ⎤⎥⎥⎦.

(43)

Case I. Classical Oldroyd-B fluid
Bysubstitutingα � 1inEq.(41),thevelocitysolutiontakestheformas

�W ψ, s( ) � Ω3Ω6 1 + λ1s( )Gr
Ω1Ω6 1 + λ1s( ) −Ω2Ω5Pr 1 + λ2s( )

ω

s2 + ω2

e
−ψ
���
s
Ω5Pr
Ω6

√
1 + a

������
s
Ω5Pr
Ω6

√ − e
−ψ
������
1+λ1 s
1+λ2 s

Ω1
Ω2

s

√
1 + a

������
s
Ω5Pr
Ω6

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + Ω4Sc 1 + λ1s( )Gm

Ω1Sc 1 + λ1s( ) −Ω2 1 + λ2s( )

e−ψ
�
s
Sc

√

s
− e

−ψ
������
1+λ1 s
1+λ2 s

Ω1
Ω2

s

√
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(44)

FIGURE 4
Simulation to explain the temperature for fluctuating ϕ1 when Pr � 6, α � 0.4, and ϕ2 � 0.5.

FIGURE 5
Simulation to explain the temperature for changing ϕ2 when Pr � 2, α � 0.8, andϕ1 � 0.2.
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Case II. Fractionalized Maxwell fluid
By substituting λ2 � 0 in Eq. (41), the velocity solution converts

as follows:

�W ψ, s( ) � 1 + λ1s( ) 1 − α( )sα + α( )Ω3Ω6Gr

1 + λ1s( )Ω1Ω6s
α − Ω5Ω2Pr s

α

ω

ss + ω2

1

1 + a

����������������
Ω5Pr
Ω6

sα

1 − α( )sα + α

√ e
−ψ
��������
Ω5Pr
Ω6

sα
1−α( )sα+α

√
−

e
−ψ
�����������
1+λ1s( )Ω1Ω2

sα
1−α( )sα+α

√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1 + λ1s( ) 1 − α( )sα + α( )Ω4ScGm

1 + λ1s( )Ω1Scs
α − Ω2s

α

e
−ψ
��������
1
Sc

sα
1−α( )sα+α( )√
s

−

e
−ψ
�����������
1+λ1s( )Ω1Ω2

sα
1−α( )sα+α

√
s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(45)

Case III. Ordinary Maxwell fluid
By substituting α � 1 and λ2 � 0 in Eq. (41), the velocity solution

converts

�W ψ, s( ) � 1 + λ1s( )Ω3Ω6Gr

1 + λ1s( )Ω1Ω6 −Ω5Ω2Pr
ω

s2 + ω2

1

1 + a

������
s
Ω5Pr
Ω6

√ e
−ψ
���
s
Ω5Pr
Ω6

√
− e

−ψ
�������
1+λ1s( )Ω1

Ω2
s

√⎡⎢⎣ ⎤⎥⎦

+ 1 + λ1s( )Ω4ScGm

1 + λ1s( )Ω1Sc −Ω2

e−ψ
�
s
Sc

√

s
− e

−ψ
�������
1+λ1s( )Ω1Ω2 s

√
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (46)

Case IV. Fractionalized Newtonian fluid

FIGURE 6
Simulation to explain the velocity for fluctuating α when Pr � 3.2, ϕ1 � ϕ2 � 0.2,Gr � 8,Gm � 6.5, Sc � 0.5, λ1 � 0.5, and λ1 � 0.5.

FIGURE 7
Simulation to explain the velocity for changing Pr when α � 0.5,Gr � 8,Gm � 6.5, Sc � 0.5, λ1 � 0.5, and λ1 � 0.3.

Frontiers in Materials frontiersin.org08

Ali et al. 10.3389/fmats.2023.1114665

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1114665


By substituting λ1 � 0 in Eq. (45), the velocity solution converts

�W ψ, s( ) � 1 − α( )sα + α( )Ω3Ω6Gr

Ω1Ω6s
α −Ω5Ω2Pr s

α

ω

ss + ω2

1

1 + a

����������������
Ω5Pr
Ω6

sα

1 − α( )sα + α

√ e
−ψ
��������
Ω5Pr
Ω6

sα
1−α( )sα+α

√
−

e
−ψ
�������
Ω1
Ω2

sα
1−α( )sα+α

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 1 − α( )sα + α( )Ω4ScGm

Ω1Scs
α −Ω2s

α

e
−ψ
��������
1
Sc

sα
1−α( )sα+α( )√
s

− e
−ψ
�������
Ω1
Ω2

sα
1−α( )sα+α

√
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (47)

Case V. Ordinary Newtonian fluid
By substituting α � 1 in Eq. (47), the velocity solution converts

�W ψ, s( ) � Ω3Ω6Gr

Ω1Ω6 − Ω5Ω2Pr
ω

ss + ω2

1

1 + a

�����Ω5Pr
Ω6

√ e
−ψ
���
Ω5Pr
Ω6

√
− e

−ψ
��
Ω1
Ω2

√⎡⎢⎣ ⎤⎥⎦
+ Ω4ScGm

Ω1Sc −Ω2

e−ψ
�
1
Sc

√

s
− e

−ψ
��
Ω1
Ω2

√
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (48)

4 Discussion of results

In this article, the natural convection flow of the Oldroyd-B
HNF flowing close to an infinite vertical flat plate is examined.
Aluminumoxide–magnetite–water (Al2O3–Fe3O4–H2O) and aluminum
oxide–magnetite–sodium alginate (Al2O3–Fe3O4–C6H9NaO7)-based
HNFs are considered with an AB-fractional approach. The

FIGURE 8
Simulation to explain the velocity for changing Gr when α � 0.4,Pr � 2.5, ϕ1 � ϕ2 � 0.2,Gm � 4.5, Sc � 0.8, λ1 � 0.7, and λ1 � 0.3.

FIGURE 9
Simulation to explain the velocity for changing Gm when α � 0.4,Pr � 3.2, ϕ1 � ϕ2 � 0.3,Gr � 8, Sc � 0.2, λ1 � 1.2, and λ1 � 0.3.
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solution of dimensionless fractional equations of energy,
concentration, and momentum is obtained with the Laplace
method. To observe from the physical perception, the impacts of
fractional derivatives and different flow parameters on
concentration, velocity, and temperature are measured and
shown in Figures 2–15 graphically.

Figure 2 shows the influence of α on the temperature field. By
setting other parameters constant and fluctuating the value of α, it is
seen that for a small time, the temperature profile declined for larger
values α and this effect is reversed for a greater time. We see that
fluid characteristics can be measured by fractional parameters. For a
different value of α, the temperature close to the plate is extreme.
The temperature declines away from the plate and is asymptotic in
the growing ξ direction, which satisfies our boundary conditions.

Figure 3 shows the thermal behavior for Pr. For large estimations of
Pr, the temperature declines. Substantially, the heat conductivity
increasing the estimations of Pr, manufacturing the fluid thicker,
sources the least thickness of the heat boundary layer. Figures 4, 5
show the temperature behavior with ϕ1 and ϕ2. The temperature
field represents an increasing function of ϕ1 and ϕ2. As expected,
with greater values of ϕ1 and ϕ2, the capacity of the HNF expands to
hold additional heat. Therefore, the heat conductivity of the NF
increases and temperature increases at different times.

The fluid velocity declines as we increase α, as shown in
Figure 6, when there is less time. For a long time, the velocity is
enhanced. Physically, when α increases, the velocity and thermal
boundary layer decline, and as a consequence, the velocity
declines for a short time. Figure 7 shows the behavior of the

FIGURE 10
Simulation to explain the velocity for fluctuating ϕ1 when α � 0.5,Pr � 3.2, ϕ2 � 0.3,Gr � 6,Gm � 8, Sc � 0.3, λ1 � 0.7, and λ1 � 1.

FIGURE 11
Simulation to explain the velocity for fluctuating ϕ2 when α � 0.5,Pr � 3.2, ϕ1 � 0.2,Gr � 5,Gm � 6, Sc � 0.2, λ1 � 1.7, and λ1 � 1.3.
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velocity with Pr. The velocity field also decreases with increasing
Pr. Enhancement in Pr decreases the thermal conductivity and
increases the viscosity of the fluid because of which the
momentum profile declines with Pr.

Figure 8 shows the influence of Gr on the momentum profile. By
increasing Gr, the velocity profile is enhanced. Since Gr exhibits the
buoyancy force that increases the natural convection, therefore the
velocity grows. Figure 9 shows the impact of Gm on the velocity by
considering the changing Gm with time. The ratio of the buoyant force
and viscous force is named the mass Grashof number that sources
unrestricted convection. Figure 9 shows that velocity is enhanced for
enhancing Gm. Figures 10, 11 show the effect of ϕ1 and ϕ2 on velocity.

The velocity decreases with increase in ϕ1 and ϕ2. This means that with
the addition of nanoparticles to the base liquids, the resulting HNF
becomes denser, so they become more viscous than the regular fluid.
Also, the boundary layer of regular fluids is thinner than that of theHNF,
and as a result, the velocity shows a declining behavior with increasing
values of ϕ1 and ϕ2. Moreover, the impact of a water-based HNF has
more progressive values as compared to that of the sodium alginate-
based HNF on the profiles of energy and velocity.

Figure 12 shows a comparison of different fluid models. It is
observed that the solutions of Maxwell nanofluids for both ordinary
and fractional cases have developed curves as compared to Oldroyd-
B and viscous nanofluids. Figure 13 shows the velocity for the slip

FIGURE 12
Simulation to explain the velocity for the different fluid models when Pr � 3.2, ϕ1 � ϕ2 � 0.2,Gr � 8,Gm � 4.5, Sc � 0.1, λ1 � 0.7, and λ1 � 0.3.

FIGURE 13
Simulation to clarify the velocity for the slip and no-slip condition when Pr � 6.2,ϕ1 � ϕ2 � 0.2,Gr � 8,Gm � 4.5, Sc � 0.5, λ1 � 0.7, and λ1 � 0.3.
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and no-slip conditions. It can be seen that the slip condition shows a
lesser profile for velocity than the no-slip conditions. Figure 14
shows the temperature and velocity behaviors for the comparison of

FIGURE 14
Simulation to explain the concentration, temperature, and velocity for the comparison of different inversion numerical algorithms.

FIGURE 15
Comparison of our results with the results by Chen et al. (2022)
for validation.

TABLE 3 Numerical results of the Nusselt number, Sherwood number, and skin
friction.

α t Pr /Sc Nu Sh Cf

0.3 0.5 5.0 0.3207866 0.45205 1.5162

0.4 0.5 5.0 0.3283006 0.45637 1.4984

0.5 0.5 5.0 0.3381411 0.46149 1.4724

0.5 0.3 5.0 0.214407 0.48954 1.4648

0.5 0.4 5.0 0.2783016 0.47409 1.4651

0.5 0.5 5.0 0.3381411 0.46149 1.4724

0.5 0.5 4.7 0.2101954 0.47599 1.4787

0.5 0.5 4.8 0.2116243 0.471 1.4765

0.5 0.5 4.9 0.2130279 0.46617 1.4744
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diverse numerical techniques (Stehfest and Tzou’s algorithm). The
overlapping of profiles shows that these algorithms are strongly
validated with each other. Figure 15 shows the validation of our
results with Chen et al. (2022). By overlapping both curves, it is
observed from these graphs that our achieved results match
those developed by Chen et al. (2022). The numerical
comparison of energy, concentration, and velocity profiles by
different numerical methods is shown in Table 2. Table 3 shows
the numerical results of the Nusselt number, Sherwood number, and
skin friction. The comparison of the momentum profile with the
work of Chen et al. (2022) is shown in Table 4.

5 Conclusion

This article examines the investigations of the unsteady, convective
flow of the Oldroyd-B HNF flowing over a flat plate with wall slip
conditions on temperature and constant concentration. The model is
developed using the AB-fractional operator and solved with the Laplace
transform method. The Laplace inversion is computed with the well-
known Stehfest and Tzou numerical schemes. Finally, the effect of
diverse flow parameters is planned to estimate the physical clarification
of the achieved results of governed equations. The main results from the
previous section are summarized in the following:

❖ For a short time, the temperature and momentum profile
decayed for a larger value of α, and this effect for both profiles
is reversed for a longer time.

❖ By increasing Pr, the temperature and velocity show a
decreasing behavior.

❖ By increasing Gm and Gr, the velocity profile is improved.
❖ The velocity decreases with increasing ϕ1 and ϕ2.
❖ The energy and velocity profiles are larger for a water-based

HNF than those of the sodium alginate-based HNF.
❖ The graphs of Maxwell nanofluids for both classical and

fractional models have more advanced curves than
Oldroyd-B and viscous nanofluids.

❖ The slip condition shows a lower profile for velocity than the
no-slip condition.
❖ The comparison of diverse numerical algorithms (Stehfest and
Tzou) strongly validated our study’s solutions.
❖ Chen et al. (2022), the overlapping of both curves validate the
achieved results of our study.

6 Future recommendation

For extension of this fractional problem examined in this article, we
idolized the following proposal based on investigation, approaches,
extensions, and geometries, as demarcated in the following:

• The same problem can also be considered over a horizontal
plate by using Prabhakar’s time-fractional approach with an
MHD effect in a porous medium.

• A comparative study of this study can be solved by the natural
and Laplace transform methods.

• The same problem may be discussed by the Keller–box scheme.
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