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With the development of modern industry, the requirements for mechanical
equipment are increasingly stringent, and increasing attention has been paid to
reducing wear or lubrication in the movement of mechanical structural parts.
Polymers are widely used in the field of mechanical structural parts due to their
high processing performance and comprehensive performance. However, the
relatively weak mechanical and tribological properties of polymers limit their
further application in mechanical equipment lubrication. Incorporation of fillers is
a common method to improve the friction properties of polymers. Among various
fillers, carbon nanotubes (CNTs) are considered the ideal fillers to significantly
improve the tribological properties of polymers. Therefore, this paper reviews the
tribological properties of carbon nanotube modified polymer materials. The
tribological wear mechanism of polymers and the influence of friction-reducing
fillers on the tribological properties of polymers and the related lubrication
mechanism explanation are outlined, and the factors influencing the tribological
properties of composites by carbon nanotubes and the related lubrication
mechanism explanation are analyzed. The presented review will be beneficial for
the production of high-performance polymer nanocomposites.
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Introduction

In recent years, due to the development of society and the growing depletion of the
traditional fossil energy, the requirements for energy saving and environmental protection of
machinery and equipment have increase. Reducing wear loss and strengthen the lubricating
between the mechanical moving parts are the important ways to achieve the energy saving and
material loss, and therefore wear-resistant materials, as an essential component in the operation
of equipment, have increasingly high requirements for their frictional properties (Lin et al.,
2011; Kuang et al., 2022). The use of lubricating oil or the self-lubricating structural parts is a
common method to reduce friction and anti-wear (Maruyama et al., 2017; John and Menezes,
2021). However, liquid lubricating materials are susceptible to environmental factors and lose
their lubricating effects in the harsh scenarios such as high vacuum, high load and extreme high
or low temperature environments (Kian et al., 2019). Therefore, the role of lubricated, wear-
resistant solid materials in machinery and equipment is becoming increasingly important.

Polymers are compounds with relative molecular masses of several thousand to several
million, with the excellent processing properties and comprehensive performance, widely used
in people’s clothing, food, housing, transportation, various sectors of the national economy and
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cutting-edge technology (Moreno-Navarro et al., 2017; Grancarić
et al., 2018; Afolabi et al., 2019; Wang et al., 2022b). Polymers
have important applications in wear resistant parts such as
bearings. For example, epoxy resins are used in machinery and
equipment as bearing materials and friction members due to their
high corrosion resistance, low coefficient of friction (COF) and high
dimensional stability (Bashandeh et al., 2021), polytetrafluoroethylene
(PTFE) is used as oil-free lubricated mechanical parts due to high
chemical resistance and low COF (Jang et al., 2007), etc. However,
pure polymers are often difficult to use directly as wear-resistant
materials (Unal et al., 2010; Kaybal et al., 2021). For the one hand, the
intrinsic low thermal conductivity and heat resistance of polymers
may lead to the significant changes in their mechanical properties
under high temperature conditions, thus reducing their wear
resistance and service life. For the other hand, different polymers
have different properties and also exhibit different frictional behaviors.
For example, PTFE, ultra-high molecular weight polyethylene
(UHMWPE) and polyurethane (PU) have excellent self-lubricating
properties, but their mechanical properties and heat resistance are
relatively poor. Polyimide (PI), poly (ether-ether-ketone) (PEEK) and
epoxy resin (EP) have better mechanical and thermal properties, but
their COF are relatively high (Maksimkin et al., 2017; Lim et al., 2018;
Arif et al., 2020; Cui et al., 2022; Ding et al., 2022). Therefore, these
problems limit the universality of polymer applications in the actual
mechanical equipment.

Compounding fillers or blending other polymers is the most
common and effective way to improve the tribological properties of
polymers. PTFE, UHMWPE, Molybdenum disulfide (MoS2), SiC,
carbon fiber, etc. Are used as lubricant materials or reinforcing
fillers to improve the friction properties of polymers (Li et al.,
2007; Chanda et al., 2019; Salem et al., 2019; Cao et al., 2020).
Among them, CNTs are the ideal modifiers for the fabrication of
polymer composites with high tribological properties due to their
unique structures and excellent properties.

This paper reviews the tribological properties of carbon nanotube
modified polymer materials. Firstly, the tribological wear mechanism
of polymers, the friction-reducing fillers on the tribological properties
of polymers and the related lubrication mechanism explanation are
outlined. Then, the factors influencing the tribological properties of
carbon nanotube/polymer composites and the related lubrication
mechanism explanation are analyzed. Finally, the challenges and
prospects of carbon nanotube/polymer composites with high
tribological properties are summarized.

Friction and wear behavior and
improvement mechanism of the
polymers

The wide range of variations in the mechanical properties of
polymers and their strong dependence on temperature, deformation
rate and the sensitivity of their failure process to environmental
conditions make the polymer wear process much more complex
compared to metals. Most scholars now classify this complex
process into four types: adhesive wear, corrosive wear, abrasive
wear and fatigue wear, and the various types of wear can undergo
transformation (Lancaster, 1978).

In the relative motion of the friction vice, the surface of the friction
couples, although the surface appears flat, the micro-surface is still

uneven, which only shows the local contact. At this point, even if a
smaller load is applied, the local stress on the actual contact surface is
sufficient to cause plastic deformation, so that the oxide film on this
part of the surface, etc. is squeezed, and the atoms of the two contact
surfaces will be bonded due to bonding interaction. In the subsequent
continuation of sliding, the adhesion point is sheared off and
transferred to the counterpart surface, which comes off to form
abrasive chips, resulting in the loss of material on the surface of
the part (Archard, 1953; Belyi et al., 1977; Bijwe et al., 2001; Fukuda
and Morita, 2017; Paul and Bhowmik, 2022). Abrasive wear is also
caused when hard particles are present within the contact surface. The
polymer undergoes a cutting process like planing under the action of
abrasive particles, and this process can directly cause material removal
and form a chip, which is micro cutting. In contrast, plowing is the
extrusion of the polymer by abrasion to the sides, which does not
directly cause material removal, but after several deformations can
produce shedding and secondary chip formation. The rougher the
counterpart surface, the greater the wear rate (WR) of the polymer
(Dmitriyeva and Grayevskaya, 1983; Njoku et al., 2021). There may
also be fatigue wear on the rough pair surface, when the friction pair
slides against each other, the rough peaks of the soft surface are easily
deformed, while the soft rough peaks break first under cyclic loading,
resulting in a smoother surface. In this way, the contact state is no
longer rough peak to rough peak, but the hard surface of the rough
peak on the relatively smooth soft surface sliding. When the hard
surface rough peak slides on the soft surface, the points on the soft
surface are subjected to a cyclic load, which produces shear plastic
deformation in the surface layer and accumulates, causing dislocation
buildup at a certain depth under the surface, which leads to the
formation of cracks or pores. When the crack is formed at a certain
depth, according to the stress field analysis, the positive stress on the
parallel surface prevents the crack from expanding in the depth
direction, so the crack extends in the direction of the parallel
surface at a certain depth. When the crack extends to a critical
length, the material between the crack and the surface will flake off
in the form of flakes of abrasive chips (Atkins et al., 1984;
Bogdanovich, 2013; Hussain and Khan, 2022; Zhou et al., 2023).
While the corrosive wear of polymers mainly takes place in the
form of chemical degradation and oxidation, the high temperature
generated at the sliding interface can cause severe degradation or
softening of some polymers. In addition to temperature, many factors
influence the chemical degradation of polymers, such as the catalytic
effect of some oxygen species, the activation energy of polymer
degradation and interfacial contact stress (Chen et al., 2014).

Based on the friction and wear behavior of polymers,
incorporation of functional fillers to affect the friction process,
leading to the improvement of tribological properties of polymer is
an effective and viable way. In filler modified polymer composites, the
fillers can be classified into reinforcing fillers and lubricating fillers
according to their functions.

The lubricant fillers include the familiar PTFE, graphite, MoS2, etc
(Lu and Friedrich, 1995; Qiao et al., 2007; Khare et al., 2015; Zalaznik
et al., 2016; Chen et al., 2020; Li et al., 2022b). Gu et al. found that the
wear surface of polymethyl methacrylate (PMMA) was uneven with
many torn flakes and surface bumps, and the COF curve fluctuated in
a wide range, while the wear surface of PTFE/PMMA composites filled
with PTFE was relatively smooth with only slight scratches and a
smoother COF curve, indicating that the friction process of PMMA-
based composites is more stable by filling with PTFE. This is because
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the PTFE carbon chain backbone can only accommodate the bulk F
atoms in a helical conformation, and the whole macromolecular chain
presents a stiff rod-like structure. Due to the strong electrostatic
repulsive force of F atoms around the carbon chain and the bulk
effect of fluorine atoms, the smooth linear chains without branching
side chains are connected by weak van derWaals forces, and the PTFE
macromolecule chains are very easy to unwind and slip, and form
transfer film and reduce the COF, but the filling of PTFE will
make the hardness of the composite material decrease and cause
the increase of WR (Gu et al., 2018). Because of the weak van
der Waals force between the layers and interlaminar sliding occurs
easily, graphite was considered as a typical lubricant filler. Zhang
et al. found that the COF of graphite/PTFE composites decreased
gradually with the increase of graphite content. During the sliding
process, the graphite flakes become thinner and fall off, exposing
the surface of the friction substrate, while the peeled graphite micro
flakes form a hard transfer film on the surface of the friction
substrate, which can effectively reduce the COF (Zhang et al.,
2008). The other lubricant fillers such as MoS2 (Yang et al., 2020),
Hexagonal boron nitride (h-BN) (Rao et al., 2021), Zirconium
phosphate (ZrP) (Cai et al., 2023), etc. were also reported to
improve the tribological properties of polymers by forming the
complete transfer film on the surface of the friction substrate,
thus reducing the COF of the composite. However, the addition of
lubricant fillers adversely affects the WR. The increase of WR can be
attributed to the decrease in the hardness of the resultant composite
caused by the addition of the lubricant fillers. The wear resistance
of the composites depends to some extent on the hardness of the
composites, so the decrease in hardness will cause a decrease in the
wear resistance of the composites.

Unlike abrasion-reducing fillers, the addition of reinforcing fillers
aims to improve the mechanical properties of the composite material
such as hardness, strength, impact resistance, creep resistance, etc.
(Lustiger et al., 1990; Friedrich et al., 1993; Friedrich et al., 1995). The
elastic modulus and tensile strength of the reinforced filler are
generally higher than those of the polymer, which in turn leads to
filler composite reinforcement (Papon et al., 2012). When the complex
is subjected to external stress, the stress is transferred to the filler
particles through the resin-filler phase interface, making the filler
particles the main stressed phase. The stress transfer mechanism is
applicable to both zero-dimensional, one-dimensional and two-
dimensional nano-reinforced fillers (Papageorgiou et al., 2020). The
improved mechanical properties of polymeric materials increase the
load-bearing capacity of polymeric materials, meaning that the
material is less prone to plastic deformation and spalling during
friction. At the same time, it can maintain the structural integrity
of the composite material under high loads (Su et al., 2016). In
addition, the excellent mechanical properties significantly inhibit
the creation and spread of cracks on the wear surface, thus
improving wear resistance (Huang et al., 2013). He et al. found
that Perfluoroalkoxy filled with Al2O3 particles exhibited ultra-high
load-bearing capacity and low COF under sliding conditions (He et al.,
2017). Li et al. demonstrated that glass fiber incorporation can
substantially improve the mechanical properties of the composites
such as tensile strength, tensile modulus, flexural strength, and
flexural modulus, and at the same time, the composites exhibit
excellent wear resistance (Li et al., 2013). This is due to the strong
interfacial bonding between glass fibers and polyether ether ketone,
which leads to the interruption of the fiber removal process and causes

the accumulation of abrasive particles near the glass fibers, thus
avoiding the abrasion of the matrix resin. Nemati et al. studied the
effect of graphene on the wear resistance of PTFE was investigated,
and the results showed that the addition of graphene effectively
improved the wear resistance of the PTFE coating. When graphene
was added up to 15 vol%, the friction factor andWR were significantly
reduced to 0.1 and 0.65 × 10−9mm3/(N-m), respectively (Nemati et al.,
2016).

Tribological properties of CNT/polymer
composites

Although remarkable achievements have been made in the
researches of the friction properties of polymer composites, there
are still some technical problems. The addition of the solid lubricating
fillers can significantly reduce the friction coefficient of polymer
composites, but the friction loss effect is not obvious due to the
adverse effects on the hardness, modulus and other properties of
polymer composites. With regards to the reinforced fillers, they can
significantly improve the mechanical properties of polymer
composites, but the large amounts of loadings are often needed to
achieve the required friction properties, which may affect other
properties of the polymer. Therefore, it is still important to
research the new wear-resistant fillers.

CNTs

CNTs are an ideal one-dimensional nanomaterial currently
prepared artificially as hollow cylinders enclosed by concentric
graphitic surfaces, which exhibit many unique physical properties
due to the uniqueness of their own compositional structure (Jun and
Gaind, 2015; Zang et al., 2015). CNTs have strong wear resistance and
self-lubricating properties, with a wear resistance 100 times higher
than that of bearing steel and a COF of 0.06–0.1. CNTs also have
excellent Thermal stability and electrical conductivity (He et al., 2018;
Cui et al., 2021). CNTs have received a great deal of attention from
researchers since their introduction in 1991.

Due to the unique structure and excellent properties, CNTs were
introduced to modify polymer for improving the properties of
polymer such as mechanical properties, electrical properties, and
thermal stability, which have been confirmed by the previous
reports (Kotop et al., 2021; Parnian and D’Amore, 2021). Kang
et al. prepared CNT/PP composites by melt injection molding
method. It was found that the thermal degradation temperature of
PP increased by 50°C after filling with CNT, and the thermal
conductivity and tensile strength increased with the increase of
CNT content (Kang et al., 2010). Liang et al. showed that the
flexural modulus of PP increased with increasing CNTs content
when filled with CNTs, indicating that CNTs can effectively
improve the flexural stiffness of the polymer (Liang et al., 2018).
Also, the fracture impact strength of CNT/PP with 4% wt. was
increased by 40% compared to pure PP. In addition to this, the
addition of CNTs to rubber materials can also reduce the adhesion
strength of ice to rubber materials, allowing rubber-based components
to work in extreme weather (Valentini et al., 2018). Therefore, the
addition of CNTs is an effective method for developing high-
performance polymer nanocomposites.

Frontiers in Materials frontiersin.org03

Miao et al. 10.3389/fmats.2023.1129676

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://doi.org/10.3389/fmats.2023.1129676


TABLE 1 Tribological properties of polymer nanocomposites based on CNT.

Polymer Types of CNT Test conditions Wear
rate

Friction
coefficient

References

POM Pure MWCNT POD; Steel; Dry; AL: 15, 25, 35 N; SV: 1 m/s;
ST: 30 min; Ra: 0.25 µm

−9% −20% Goriparthi et al. (2019)

Acid-treated MWCNT −19% −19%

Silanized MWCNT −45% −27%

Carbonylated MWCNT −28% −21%

Aminated MWCNT −31% −22%

CNT D: 10nm; L: 2.5 µm POD; Steel; Dry; AL: 12 N; SV: 1 m/s; ST:
120 min

−70% N/A Yousef et al. (2016)

POD; Steel; Water; AL: 12 N; SV: 1 m/s; ST:
120 min

−60%

POD; Steel; Oil; AL: 12 N; SV: 1 m/s; ST:
120 min

−33%

PTFE CNT Dry; AL: 101 kPa N/A −25% Song et al. (2019)

BOD; Dry; AL: 5 mN,20 mN; SV:4 mm/s;
SD: 2mm, 1000 cycles

−31% -60% Lim et al. (2018)

PEEK MWCNT OD: 10–15 nm; L: 0.1–10 µm BOD R); AISI E52100 stainless-steel ball;
Dry; AL: 10 N; SV: 5 Hz; SD: 10,000 cycles

+142% −67% Arif et al. (2020)

CNT D: 10–30 nm; L: 5–30 µm POD; SiC; Dry; AL:1.5N; SV:300rpm; ST:
5min

−7.32% −6.71% Cui et al. (2022)

UHMWPE Fluorinated MWCNT POD; Steel; Dry; AL: 32 N; SV: 2.6 m/s; SD:
2355 m

−27% −95% Maksimkin et al. (2017)

MWCNT OD:30–50 nm; ID:5–15 nm; L:
10–20 μm

POD; Titanium alloy; Dry; AL: 60N; SV:
15 mm/s; ST: 24 h

−54% −21% Naresh Kumar et al. (2016)

CNT OD:10–12 nm; L:8–12 μm BOD; Steel; Dry; AL: 5 N; SV: 0.06 m/s; SD:
460 m

−20% −36% Manoj Kumar et al. (2019)

CNT D:25–26 nm BOD(R); 440C stainless steel; Dry; AL: 30 N;
SV: 0.06 m/s; SD: 68.2 m, 5000 cycles

−63% +35% Ali et al. (2017)

BOD(R); 440C stainless steel; Water; AL:
50 N; SV: 0.06 m/s; SD: 6 k m,

150,000 cycles

−47% +30%

CNT D:50–100 nm; L:10–20 μm POD; Titanium alloy; Dry; AL: 1 kg; SV:
120 prm; SD: 250 m

−25% −10% Deenoi and Dechjarern,
(2019)

CNT D:40–60 nm; L:1–2 μm BOD; 440C stainless steel; Dry; AL:
7,9,F12,15 N; SV: 0.1 m/s; SD: 5000 cycles

−44% −38% Ahmed Baduruthamal et al.
(2019)

EP CNT POD; Steel disc; 50% relative humidity; AL:
30, 40 N,50N; SV: 200,300,400 rpm

−53% N/A Venkatesan et al. (2018)

CNT L: 10–15 μm; D: 15–20 nm POD; Steel disc; Dry, Oil-lubricated, and
argon; AL: 40 N-120N; SV: 500 rpm; SD:

2.827 km

−18% −20% Agrawal et al. (2021)

MWCNT POD; 316 L steel discl; Dry; AL: 5 N; SV:
2 Hz; SD: 5 mm

−83% −31% Chen et al. (2017)

Untreated MWCNT ROD; AL: 10 N; SV: 2.5 m/s; SD: 20000 m -41% N/A Sapiai et al. (2021)

Silane-treated MWCNT +23%

Acid-treated MWCNT +9%

MWCNT L: 1–10 μm;Number of walls: 3–15 BOD; Bearing steel SAE 52,100 balls, Dry;
AL: 2 and 4 N; SV: 0.28 m/s (1000 rpm)

−36% −78% Upadhyay and Kumar,
(2018)

poly (urea-formaldehyde) shells assembled
with polydopamine-functionalized

oxidized CNT

POD; Dry; AL:1 MPa; SV:0.5 m/s; ST:
30min

−99% −64% Li et al. (2018)

(Continued on following page)
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For the moment, the role of CNTs in wear reduction and wear
resistance is also very impressive, mainly as the reinforcement of
complexes and additives to lubricating fluids, and the like (Wang et al.,
2020; Li et al., 2022a; Wang et al., 2022a). Chen et al. prepared CNTs-
reinforced EP composites using oligoaniline assisted dispersion
method and investigated their tribological properties (Chen et al.,
2017). It was found that the CNTs of the composites had good
dispersion, based on which the crystallinity and tribological wear
properties of the composites were improved, and the composites had
lowerWR and COF. Gao et al. showed that significantly lower COF for
CNT bio-lubricants compared to dry conditions, showing optimal and
durable antifriction characteristics (Gao et al., 2021). It was beneficial
to suppressing the removal of multifiber block debris, tensile fracture,
and tensile-shear fracture, with the advantages of tribological
properties and material removal behavior. CNT improves the wear
resistance of polymers more than some other fillers. Remanan et al.
added CNT and B4C to Poly Aryl Ether Ketone. Comparing B4C, the
WR of the composites was reduced by 34% with the addition of CNT
(Remanan et al., 2017). Ren et al. added CNT and Mo2S to EP. at the
same 4% content, theWR of the CNT/EP composite was 50% less than
that of the Mo2S/EP composite (Ren et al., 2019). Surya et al. used
fibers to reinforce natural rubber materials. CNT and graphite
nanofibers reinforced compounds improved the wear resistance
simultaneously by 43% and 33% respectively, while SiC and aramid
nanofibers improved it by 10% and 8% respectively (Surya et al., 2022).

Recent researches on the tribological performance of CNT/polymer
nanocomposites were summarized in Table 1.

The reason why CNT improves the frictional properties of
polymers is not just a single effect like other conventional fillers,
but the result of a synergistic effect of several factors (Figure 1). First of
all, due to the special characteristics of the CNT structure, a carbon
film is formed regardless of whether the CNT is attached to the
polymer matrix or when it falls into the gap of the friction substrate
due to wear. This hard and self-lubricating carbon film effectively
avoids direct scraping of the friction substrate and reduces the COF
and WR (Zhang et al., 2020; Dwivedi et al., 2022). In the next place,
when the CNT/polymer composite is subjected to stress, it is
transferred to the CNT through the bonding interface, making the
CNT the main stressor. Due to the ultra-high aspect ratio and strength
of CNT, the strength of the composite is also enhanced, which is less
prone to plastic deformation and improves the wear resistance of the
polymer (Zare and Rhee, 2020; Duan et al., 2021). Meanwhile, when
the composite material produces microcracks due to friction, CNT can
effectively inhibit the growth of microcracks, reduce grinding chips,
and improve the wear resistance of the material (Bahramnia et al.,
2021). The CNT incorporation also improves the thermal conductivity
and thermal stability of the composite material, preventing it from
softening under the high temperature conditions of frictional heating
and failure, which affects wear resistance and service life (Shimizu
et al., 2020; Yan et al., 2020).

TABLE 1 (Continued) Tribological properties of polymer nanocomposites based on CNT.

Polymer Types of CNT Test conditions Wear
rate

Friction
coefficient

References

MWCNTs–alumina POD; EN8 steel disc; Dry; AL:50N; 100N;
150N; SV:200prm; SD:1250m; ST:30min

−31% −52% Saravanan et al. (2019)

MWCNT-COOH functionalized L:
10–30µm; OD: 20–30 nm; ID:5–10 nm

POD; 100 cr6 steel pin; Dry; AL:20,60,100N;
SV:0.1 m/s; SD:1000 m

−87% −20% Adarmanabadi et al. (2021)

PP CNT POD; Steel disc; Dry; AL: 50 N; SV: 56.5 m/
min; ST: 30 min

−12% −48% Mertens and Senthilvelan,
(2018)

POD; EN-32 steel; Dry; AL: 10–50 N; SV:
1–5 m/s

−50% −44% Ashok Gandhi et al. (2013)

As-received CNT L: 1.5µm; D: 9.5 nm BOD(R); steel; Dry; AL: 2 N; SV:0.0128 m/s;
SD:200 m

34% −8% Ali et al. (2014)

Purified CNT L: 1.5µm; D: 9.5 nm −36% −21%

TPU Plasma-treated CNT Sandpaper; Dry; AL: 0.08N; SV: 7300 rpm N/A −55% Ogawa et al. (2022)

MWCNT OD:20–30 nm; L:10–30 µm ROD; Dry; AL: 300N; SV: 0.341 m/s −52% −34% Song et al. (2011)

Polyamide 6 MWCNT L: 20–30µm; OD: 20–30 nm; ID:
10–20 nm

POD; Dry; AL:20–100N; SV:200rpm; SD:
80 mm; ST:3min

−31% −72% Chopra et al. (2018)

CNT BOR; Dry; GCr15 steel; AL:100–250N −38% N/A Zhang and Deng, (2011)

BOR; Dry; Quenched medium carbon steel;
AL:100–200N; SV: 0.42 m/s; SD:

0.1–0.5 km; ST:0–90min

−30% −31% Chang et al. (2013)

CNT D:50–80 nm, L:5–20 µm POD; Dry; AL:20–50N; SV: 1 m/s −33% −29% Meng et al. (2009)

POD; Water; AL:20–50N; SV: 1 m/s −13% −93%

PI CNT loaded with MoS2 BOD(R); Stainless-steel ball; Dry; AL:6N;
SV:10Hz; SD:10 mm; ST:10min

−31% −84% Xin et al. (2018)

Remark, Tribological performances were reported as compared to neat polymer or otherwise stated; D, diameter; OD, outer diameter; ID, inner diameter; L, length; POD, pin-on-disc; BOD, ball-on-

disc; BOR, block-on-ring; ROD, ring-on-disc; R, reciprocating mode; AL, applied load; SV, sliding velocity; SD, sliding distance; ST, sliding time.
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The improvements of the tribological properties of polymer
composites by incorporation of CNTs had been confirmed by the
previous researches, but in fact, some important factors in CNTs/
polymer composites needed to be clarified.

Type of CNTs

CNTs are classified as multi-walled carbon nanotube (MWCNT)
and single walled carbon nanotube (SWCNT). Meanwhile, the
same type of CNTs have different lengths and diameters. Adrian
Cotet et al. compared the effect of SWCNT and MWCNT on the
tribological properties of vinyl ester nanocomposites (Cotet et al.,
2019). MWCNT decreased the COF of nanocomposites, but the
addition of SWCNT increased the COF at high sliding velocities. It
was shown that the presence of MWCNT in the fragments
contributed to the lubrication effect due to the strong interaction
of MWCNT with the polymer matrix, while SWCNT in the
fragments played the role of a third body in the sliding motion.
Liu et al. introduced two different diameters of MWCNTs to

bismaleimide resin, and the significant difference on WR and
COF between the resultant MWCNT/bismaleimide composites
was observed. Li et al. added CNT to grease to prepare lithium-
based grease and investigated the effect of tube diameter and
tube length on its frictional properties (Li et al., 2019). The
results show that the tube diameter of CNTs has little effect on
the friction reduction performance of CNTs, and the COF becomes
slightly larger when the tube diameter is larger, and the COF
curves all fluctuate not much. However, the length of CNTs has
some influence on the friction performance of grease, and the WR
is lower when the tube is longer. Due to the strong interaction
between CNTs, they are very agglomerated when added to the
matrix of polymers, leading to the degradation of composite
properties. Therefore, achieving uniform dispersion of CNTs in
the matrix resin is the key to prepare high-performance
composites. Simultaneously, there are large differences in the
properties of the polymer matrix and CNTs, and the regions
connecting the transition interact chemically or physically to
form interfaces with different properties, and the interface state
of CNTs and the matrix has a correlation with the friction properties.

FIGURE 1
Friction reduction models of HDPE (a-1, a-2, a-3), HDPE with moderate 5p [6-xujyhof MWCNTs (b-1, b-2, b-3), and excess MWCNTs (c-1, c-2, c-3) (Wu
et al., 2021).
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Modification of CNTs

As described above, the interaction between CNTs and polymer
matrix is an important factor in the tribological properties of CNTs/
polymer composites. Therefore, it can be seen that the modification of
CNT has a great influence on the friction properties of the composites.
Nowadays, the commonly used modification methods of CNT are
covalent bond modification and non-covalent bond modification
(Bhattacharyya et al., 2004; Lou et al., 2004; Bahun et al., 2006; Xu
et al., 2007; Yan et al., 2011; Zhang et al., 2012; Amirkhani et al., 2020;
Atif et al., 2020; Kim et al., 2021). Bhanu et al. explored the changes in
the frictional properties of MWCNTs by different functionalizations
of MWCNTs, which were prepared into composites with
polyformaldehyde (POM), respectively, and found that the WR and
COF of 0.5% wt. silylated MWCNTs/POM composites were reduced
the most, compared with pure POM, followed by aminated,
carbonylated, acid-treated and finally pure MWCNT, which can be
attributed to the better dispersion of silylated MWCNTs and stronger
interfacial bonding between silylated MWCNTs and POM matrix.
However, the excessive modification can greatly destroy the graphite
structure of CNTs, leading to the significantly decrease of the intrinsic
mechanical properties of CNTs. Therefore, the modified method and
the degree of modification needed to be optimized (Goriparthi et al.,
2019).

Loading of CNTs

In addition to the type and modification of CNT, the CNT
content in the composites also affects the frictional properties of
the polymers. Chopra et al. prepared MWCNT/butylene
polyterephthalate (PBT) composites with low filler content and
investigated their frictional properties using melt compounding
method (Chopra et al., 2017). The results showed that the COF
of the composites decreased with the increase of carbon nanotube
content and the effect of load was not significant. As the carbon
nanotube content increased, the wear of the composites was the first
to decrease and then to increase. As a matter of fact, the loading of
CNTs often relates the dispersion of CNTs in polymer matrix. Severe
agglomerates usually observed in the high loading of CNTs/polymer
composites fabricated by traditional dispersion technologies, which
cause the inefficient improvement of CNTs in the tribological
properties of polymer composites. However, Han et al. made a
buckypaper (BP) of MWCNT, into EP to improve the frictional
properties of BP/EP composites, while solving the dispersion
problem of MWCNT with high loading (about 40% wt.). Under
the given experimental conditions, BP/EP composites have a lower
COF and wear than pure EP. In the case of ozone-modified BP/EP, it
has better frictional properties up to four times that of pure EP (Han
et al., 2015). Therefore, the method such as pre-building buckypaper
may provide a viable way to fabricate the high loading of CNTs/
polymer composites with the homogeneous dispersion, which may
have unexpected tribological properties.

Comparing with the other fillers, such as PTFE, graphite,
UHMWPE, carbon fiber etc., CNTs exhibit some unique features,
i) CNTs not only show the self-lubricating effect (low COF), but also
strengthen the polymer, indicating the CNTs/polymer composites
have low COF and mass loss, and these excellent overall

performances make CNTs/polymer composites are more adaptable
for mechanical parts (Golchin et al., 2016; Sakka et al., 2017; Chen
et al., 2018). ii) CNTs also are other fillers for fabricating functional
polymer conposites, for example, the network of CNTs can act as the
electrical conductive paths and mass transfer barrier for improving the
electrical conductivity, electromagnetic shielding, fire retardance and
water-resistance of polymer composites (Kashiwagi et al., 2005;
Spitalsky et al., 2010; Xia et al., 2022).

Discussion

According to literature, the incorporation of CNTs can
significantly improve the tribological properties of polymer, and
the improvement mechanism was researched systematically.
However, some problems of the application of CNTs in polymer
are still needed to be further clarified. 1) The improvement
mechanism of CNTs in the tribological properties of polymer is
still not entirely clear, especially in the more complex scenario in
terms of wear mechanism and wear-debris formation. The
tribological behavior of CNTs/polymer composites is influenced
by many factors, and it is difficult to evaluate these factors.
Therefore, how to quantity analysis the influences of the factor
may help to comprehend the improvement mechanism. 2) The
dispersion, appropriate modification and high loading of CNTs
are often difficult to achieve. Because of the strong interaction
between the nanotubes, CNTs are difficult to achieve the
prospective dispersion and the high loadings, leading to the low
efficiency of improvements of CNTs in polymer.

Overall, the field of high wear resistant CNTs/polymer composites
is still in its infancy. The future development trend of high wear
resistant CNTs/polymer composites should focus on refining the
theory, optimizing the preparation process (the dispersion and
modification of CNTs methods) and achieving the higher loading.
Furthermore, the high wear resistant CNTs/polymer composites are
rarely in practical applications at present, which means and they have
great practical value and broad development prospects.

Conclusion

In order to meet the current manufacturing, the requirements
for wear resistance of polymers are increasing, and the design of
composite materials with low COF and low WR is of practical
importance for energy saving and safety. Filler modification has
been the mainstream method to improve the wear resistance of
polymers. Since the introduction of CNT, it has been widely used in
the research of improving the wear resistance of polymers because of
its unique physical properties and advantages. Nowadays, people
have gradually overcome the difficulties in the application of CNT
and understand its wear resistance mechanism. In the future, starting
from the physical and chemical structure of the polymer itself, it will
be an important research direction for polymer-based composites to
establish the linkage and mechanism between the maintenance of
mechanical strength and tribological applications during the service
of CNT/polymer, and to provide scientific data and theoretical
guidance for the long-term application of polymer lubricant
materials.
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