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Thin film flows over porous and moving sheets of variable thickness have been
reconsidered here. New and multiple dimensions of classical problems of such
type flow are analyzed. Here, we categorically emphasized on the nature and
kinds of injection (suction) and moving velocities of the sheet, whereas, variable
size of the sheet is also taken into account. We formed and investigated different
cases and checked different options for kinematics of sheet, variable sizes of
thin film and that of sheet. All possible cases of exact similarities are noticed
by which the system of partial differential equations and boundary conditions
are exactly transformed into ordinary differential equations. The final systems
of exact equations are solved by bvp4c technique. The present simulations are
exactly matched with the previously published analyses for special choices of
functions and parameters. Strict behavioral changes have been observed in the
velocity profiles by changing the nature of sheet’s kinematics.

KEYWORDS

stretching/shrinking and porous sheet, unsteady flow of thin film, sheet of variable
thickness, injection/suction, deformation of thin film

1 Introduction

The global nature of thin film and its technological uses have been identified in
many physical and engineering problems. Therefore, the understanding of its mechanics is
important in many applications. Most of the industrial systems and the different processes
associatedwith themhave been explained through concepts of on thin filmflow.The thin film
technology is the foundation of amazing development in solid state electronics. Therefore,
the scientists worked hard and ascertained the usefulness of the optical properties of metal
films, its technical advantages and the human interests associated with the characteristics of
two dimensional solid, whereas, it has vast applications in industry and technology of thin
films. A typical thin film flow consists of an expanse ofmetals, partially bounded by a solid or
gas or liquid substrate with a (free) surface where the metals such as the liquids are exposed
to another fluid (usually a gas and most often air in applications). Stretching/shrinking
problem of thin film has one of the most common and stringent applications in industries.
On the other hand, shrinking films are widely used for packing of industrial products
in factories, whereas, unwanted heat is also produced during this phenomenon and
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in most cases, it does not affect the flow mechanism during the
flow processes. Furthermore, shrinking phenomenon has been
frequently used for analyzing the flow in small and narrow pores in
order to measure the capillary effects during osmosis processes. The
shrinking and swelling properties of agricultural clay soil and boilers
are most serious issues, therefore, the most relevant and significant
variations in hydraulic and mechanical properties of these soils
will eventually disturb the flow, transport and thermodynamics
behaviors, whereas, agricultural progresses and environmental
improvements are not possible without the perfect simulations of
such circumstances. Thin film flow has played significant role in
many physical problems of human uses. Most of the engineering
systems are composed of heat exchangers, which are commonly used
for cooling of machineries, devices and surfaces, as well as it also
plays significant role in lubrication processes between small rotating
parts, to coat sheets, walls and surfaces and to clean see water by
removing oil slicks from it. The formation of tear film in the eyes
and mucus linings of the airways and lungs are the uses of thin film
flow in biological systems. A thin film is a layer of material ranging
from fractions of a nanometer (monolayer) to several micrometers
in thickness. Thin films are used for the coating of the household
mirror which typically has a thin metal coating on the back of the
glass to form a reflective interface.Certainly, we provided concrete
investigations of thin filmflowover surfaces throughwhich injection
and suction can take place, whereas, we came across the evidences
where stretching and shrinking flow contribute to such flow.
Furthermore, we also emphasized that thin film flow maintained
on surfaces of a variable thickness. More specifically, we presented
the detailed history and the latest developments in the analysis of
thin film flows. Sakiadis (Sakiadis, 1961a; Sakiadis, 1961b) solved
a modeled problem of fluid motion maintained over a stretching
plate, whereas, the sheet moved with a constant speed. A newmodel
of variable stretching velocity is presented by Crane (Crane, 1970).
The classical simulations of Sakiadis (Sakiadis, 1961a; Sakiadis,
1961b) played a key role in the formulation of flow problems over
a stretching sheet. However, the work of Sakiadis was generalized
and refined by many researchers, whereas, Crane (Crane, 1970)
extended the work of Sakiadis for variable stretching velocity and
solved the governing non-linear boundary layer equations exactly
in the closed form. The remarkable ideas of Crane and Sakiadis
have been highly obliged and adopted by researchers for different
situations and types of fluids. This section is mainly categorized on
the bases of physical flow models, appeared in the literature time to
time.They clearly described the fluid motion heat and mass transfer
in certain systems. Tremendous improvements have been made in
the notable work of Sakiadis and Crane by introducing thermal and
mass diffusion characteristics in the previous problems of them,
and a special model is developed on the bases of previous studies
for thin film flows. Sparrow (Sparrow and Gregg, 1959) treated
thin film condensation by using the approach of boundary-layer
approximation. He produced remarkable results on the behavior
of a thin film over a stretching surface. Wang (1990) investigated
unsteady thin filmflowon a stretching plate within a boundary layer.
Tan et al. (1990) found interesting solutions for the transport of heat
in a thin film by assuming a spatially periodic temperature along the
plate. Burelbach et al. (1990) verified the work of (Tan et al., 1990)
by performing experiments. Dandapat and Ray (1994) presented

an accurate model for thermo-capillary process in a thin film flow
on a rotating disk. Andersson et al. (1996) explained the idea of
a thin film flow on the transient stretching plate for power law
fluid. Dandapat et al. (2003) analyzed the diffusion of heat in a
thin film flow on the stretching plate moving with time dependent
velocity. Dandapat and Maity (2006) studied the unsteady thin
film flow over stretching plate and they found the boundary
layer type solution and it is confirmed that the two layers (thin
film and boundary layer) are exactly matched at certain points.
Dandapat et al. (2006) emphasized on the solution for a variable
thin film on stretching sheet, whereas, the film thickness is strictly
changed with both space and time variables in this case. However,
Chen (2006) found the consequences of heat transfer in the flow
of a thin film over a transient stretching sheet for power law fluids
by considering viscous dissipation term in the modeled equations.
Wang (2006) presented analytical solutions to the problem of a thin
film, maintained on a transient stretching plate. Andersson et al.
(2000) solved the problem of heat diffusion in a thin film flow over
a transient stretching plate. Liu and Andersson (2008) presented
the generalized concept for the model problem of Andersson et al.
(2000) and they studied the diffusion of heat in a thin film,
driven by a transient stretching plate. Abbas et al. (2008) modified
the approach of Wang (2006) by considering a thin film flow of
a non-newtonian second grade fluid on an unsteady stretching
surface. Santra and Dandapat (2009) investigated to remove the
constraints of planarity and linear stretching for the transport of
heat and thermo capillarity. Noor et al. (2010) also extended the
modeled problem of Wang (2006) and they found a solution for
MHD flows and generalized surface temperature. Mostly recently,
flow of different fluids have been discussed over a porous and
deforming surfaces in different research articles e.g., see (Ali et al.,
2022; Turkyilmazoglu, 2022a; Turkyilmazoglu, 2022b; Krishna et al.,
2022; Siddiqui and Turkyilmazoglu, 2022). In these research article
the authors have emphasized on the fluid motion, maintained over
surfaces of different structure behavior of kinematics of surfaces,
types of fluids and mechanism which affects the motion of fluids
in advanced setups. All these mechanism have been analyses on
flow in these papers very intelligently. In the present work, we have
analyzed the new and multiple dimensions of classical problems of
thin film flow over a moving and porous sheet of variable thickness.
By taken into account the nature and kinds of injection (suction)
and moving velocities of the sheet, we categorically emphasized
the behavior of thin film flow. Different cases are checked for
the non-unifrom kinematics of the sheet of variable size and
thin film. All the previous cases of such simulation, already used
in the literature, have been recovered easily from the present
simulations. The present system of partial differential equations
and boundary conditions are transformed into ordinary differential
equations on the basis of these new variables, and the final system
is solved by bvp4c technique. The classical problems of this film
flow have been retrieved from one case for special choice of the
parameters values. Furthermore, we obtained the published results
of (Wang, 1990; Andersson et al., 2000; Dandapat et al., 2003; Liu
and Andersson, 2008) in such situations. Note that the classical
simulations of this film flow problem contain two parameters,
whereas, we dealt with seven different parameters in of present
simulations.
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FIGURE 1
Two profiles of h′(η) or axial velocity are graphed for two different
values of β and S. Note that the parameter β and S are used by
Anderson et al. (Andersson et al., 2000) and the graphs are exactly
matched with the published work of them. Moreover, these profiles are
obtained from the numerical solution of Eqs. 17, 18 for the parameters
values given in the title of this figure. These profiles are also reported in
papers (Wang, 1990; Dandapat et al., 2003; Liu and Andersson, 2008).

2 Formulation of the problem

The flow of viscous thin film is taken over a porous sheet of
variable thickness and the plate is moved in both forward and
backward directions with variable velocity, whereas, the injection
and suction velocities of the fluid through the porous sheet are
non-uniform. Note that we explored different kinds of non-linear
forms of five quantities associated with the geometry of sheet,
structure of thin film along with the nature of boundary layer and
the field variables, defined at the two surfaces in such a way that
they exactly transformed the BVP of PDEs into BVP of ODEs. As
a result we have obtained a generalized version of thin film flow in
such circumstances. We need to evaluate the behavior of thin film
within a momentum boundary layer. The constitutive equations,
which have governed the flow of viscous thin film and used for
the simulation of most complex problem, are the continuity and
momentum equations. The boundary layer form of these governing
equations is presented here and they are demonstrated in many
research articles, e.g., see (Andersson et al., 2000; Dandapat et al.,
2003; Liu and Andersson, 2008):

∂u
∂x
+ ∂v
∂y
= 0, (1)

∂u
∂t
+ u∂u

∂x
+ v∂u

∂y
= ν∂

2u
∂y2
. (2)

The porous sheet of variable thickness has the abilities to move in
its own plane at either direction. The axial and normal velocities are
prescribed at the surface of the sheet, so we imposed the following
boundary conditions at the variable surface of the sheet and thin

film:

u = U (x, t) ,v = V (x, t) ,y = f (x, t) ,v = w (x, t)
Dr (x, t)
Dt
, ∂u
∂y
= 0,

y = r (x, t) . (3)

Note that U(x, t) defines the motion of the sheet at its own plane
in both forward and backward directions, whereas, V indicates the
fluid’s velocity, which enters/leaves through the porous surface of
the sheet. On the other hand w(x, t) is controlling parameter for
the rate of deformation of the thin film. Similarly f(x, t) represents
the variable thickness of sheet and r(x, t) is used for variable size of
the thin film. Moreover, D

Dt
is the material time derivative and it is

defined as D
Dt
= ∂

∂t
+ (V.∇) where V = (u,v), ∇ = ( ∂

∂x
, ∂
∂y
). Note that

u(v) is the velocity component in x(y) direction. Next our aim is to
find the similarity transformation for generalized problempresented
in Eqs. (1–3). For this reason, we defined the velocity components u,
v and the similarity variable (η) in view of the boundaries inputs and
independent variables as:

u = p (x, t)g (η) , v = q (x, t)h (η) , where η =
y− f (x, t)
r (x, t)

(4)

In the above Eq. 4, g(η) and h(η) are the representatives of the
velocity components u and v, respectively. The above similarity
variables/transformations are substituted into the governing PDEs
in Eqs. 1, 2 then we get the following Eqs. 5, 6. In this system, the
coefficients of ODEs are variable and they are depending upon the
independent quantities x and t. We have focused on the self similar
solutions of the problem and they can be easily achieved if all these
variable coefficients in the system of ODE’s should independent of x
and t. We tried to avail all such choices and exhaust all options for
searching these self similar solutions, therefore, we proceed as:

h′ + α1g− α2g
′ − α3ηg

′ = 0, (5)

g′′ − α4hg′ + α5g′ − α6g+ α7ηg′ + α8gg′ − α9g2 + α10ηgg′ = 0. (6)

The different coefficients in Eqs. 5, 6 have the final form as:

α1 =
r (x, t)px (x, t)

q (x, t)
, α2 =

p (x, t) fx (x, t)
q (x, t)

, α3 =
p (x, t) rx (x, t)

q (x, t)
,

α4 =
q (x, t) r (x, t)

ν
, α5 =

r (x, t) ft (x, t)
ν
, α6 =

r2 (x, t)pt (x, t)
νp (x, t)

,

α7 =
r (x, t) rt (x, t)

ν
, α8 =

p (x, t) r (x, t) fx (x, t)
ν

, α9 =
r2 (x, t)px (x, t)

ν
,

α10 =
p (x, t) r (x, t) rx (x, t)

ν
,

(7)

where the subscripts x and t are used for the partial derivatives
w.r.t. to that specific independent variable. Note that each of these
coefficients contain either p, r, f and q or their partial derivatives,
whereas, the functions are further expressed by introducing the
following relations:

p (x, t) = A1(C2 (t) + S0 (x, t))
δ2

δ2+δ3 ,

r (x, t) = A2C1 (t) (C2 (t) + S0 (x, t))
δ3

δ2+δ3 ,

f (x, t) = C3 (t) +A3C1 (t) (C2 (t) + S0 (x, t))
δ3

δ2+δ3 ,

(8)
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FIGURE 2
Flow behaviour of thin film has observed when the sheet, boundary layer and film are either compressed or expanded simultaneously. (A) Velocity
profiles of squeezed flow of thin film have been graphed for the flow over a stretching sheet with suction and injection through its surface. (B)Velocity
profiles of squeezed flow of thin film have been graphed for the flow over a shrinking sheet with suction and injection through its surface. (C) Velocity
profiles of expanded flow of thin film have been graphed for the flow over a stretching sheet with suction and injection through its surface. (D) Velocity
profiles of expanded flow of thin film have been graphed for the flow over a shrinking sheet with suction and injection through its surface.

where S0(x, t) =
δ2

C1(t)
∫q(x, t)dx. The three quantities p, r and f

are expressed in term of q and some other variable constants
C1(t),C2(t),C3(t), whereas, δ2 and δ3 has determined the non-linear
nature of these three quantities. Furthermore, for C3(t) = 0 and
A3 = 0, we may obtain a thin film flow on a flat plate. Note that, in
view of the values of p(x, t), r(x, t) and f(x, t), defined in Eq. 8, the
values of different coefficient of Eq. 5 i.e., α1, α2, α3 become, which
are independent of x and t.

α1 =
A1A2δ

2
2

δ2 + δ3
, α2 =

A1A3δ2δ3
δ2 + δ3

, α3 =
A1A2δ2δ3
δ2 + δ3

. (9)

TheBCs in Eq. 3 are simplified in view of the transformation in Eq. 4
as:

g (η) = γ1 and h (η) = γ2, when η = 0, h (η) = γ3, g
′ (η) = 0

when η = γ4 (10)

where γ1 =
U(x,t)
p(x,t)
, γ2 =

V(x,t)
q(x,t)

, γ3 =
w(x,t)
q(x,t)

Dr
Dt

and γ4 =
r(x,t)− f(x,t)

r(x,t)
. In

order to get the said (proclaimed) objectives, we have classified the
problem into following cases.

3 Case I

The characteristic normal-velocity of the fluid through the
porous surface is taken function of time t only, whereas, the other
function p of variable nature has become dependent on both x and
t, similarly f(x, t) is varied with t only. All the variables and constants
in Eq. 8 are fixed as:

δ3 = 0, C2 (t) = a1C1(t)−2, q (x, t) = C
′
1 (t) , C3 (t) = C1 (t) ,

C1 (t) = a0√(1+
2ναt
a20
). (11)

In view of these values, Eq. 8 takes the form:

p (x, t) =
A1 (a1 + ναδ2x)

a20(1+
2ναt
a20
)
,

r (x, t) = A2a0√(1+
2ναt
a20
),

f (x, t) = (1+A3)a0√(1+
2ναt
a20
).

(12)
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FIGURE 3
Flow behaviour of thin film has observed when the boundary layer is expanded/compressed with the deformation of film and sheet. (A) The axial
velocity of deforming (both contraction and expansion can take place) thin film has been studied over a porous, stretched and compressed sheet in the
presence of squeezed boundary layer. (B) Velocity profiles of thin film flow are drawn for flow over a stretching and porous sheet, whereas, the
boundary layer is compressed. As a consequence, the sheet and thin film are also squeezed. Furthermore, the thin film is expanded via external
stresses. (C) Velocity profiles of expanded flow of thin film are graphed for the flow over a shrinking sheet with suction and injection through its porous
surface. (D) Velocity profiles of thin film flow are drawn for the flow over a shrinking and porous sheet, whereas, the boundary layer is compressed. As a
consequence, the sheet and thin film are also squeezed. Furthermore, the thin film is expanded via external stresses.

Note that p(x, t) depends upon the coordinate x and time t, whereas,
r(x, t) and f(x, t) depend on t only. Moreover, the values of different
quantities in Eq. 12 are substituted into Eq. 7 and all the different
coefficients of this equation are reduced into the following simplest
form:

α1 = A1A2δ2, α2 = α3 = α8 = α10 = 0, α4 = αA2,

α5 = αA2 (1+A3) , α6 = −2α(A2)2,α7 = α(A2)2, α9 = αA1(A2)2δ2.
(13)

Moreover, all the above coefficients are independent of space
variable x and the time variable t, whereas, the continuity and
momentum equations of non-uniform coefficients take the form:

A1A2δ2g (η) + h′(η) = 0. (14)

αA2 (A2g (η) (2−A1δ2g (η)) + (1+A3 +A2η− h (η))g′(η)) + g′′(η) = 0.
(15)

In view of the variable, defined in Eq. 12, the BCs in Eq. 10 are
converted into the following form:

g (η) = γ1 and h (η) = γ2, when η = 0, h (η) = γ3, g
′ (η) = 0

when η = γ4, (16)

Now, Eq. 14 is solved for g(η) as = − 1
A1A2δ2

h′(η) and it is substituted
into Eqs. 15, 16, we obtained the following system:

h′′′ (η) + 2ϵ0h′ (η) + ϵh′′ (η) + ϵ1h′′ (η) + ϵ0ηh′′ (η) − ϵh (η)h′′ (η)

+ ϵh′(η)2 = 0. (17)

h′ (η) = γ1 and h (η) = γ2, when η = 0, h (η) = γ3, h
′′ (η) = 0

when η = γ4, (18)

where ϵ = A2α, ϵ0 = A2ϵ, ϵ1 = A3ϵ, γ1 =
U0a

2
0

a1A1
, γ2 =

a0V0
αν

, γ3 = A2w0,

and γ4 =
A2−A3−1

A2
. Eqs. 17, 18 are similar equation and they only

depend upon the similarity variable η, whereas, the system contains
the only unknown function h(η). Moreover, the injection and
suction velocity V is defined by V = V0(1+

2αν
a20
t)
−1
2 , whereas,

the stretching(shrinking) velocity is expressed as U =
U0(1+

ναδ2x
a1
)

1+ 2ναt
a20

.

Similarly, the controlling function for the thin film thickness is
taken as w = ( w0

1+β0(1+
2ναt
a20
)
−3
4 (1+ ναδ2x

a1
)
), where β0 =

δ2a0U
2
0

A2a1
. Remember

that for this choice of U(x, t), V(x, t) and w(x, t) all of the boundary
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FIGURE 4
Flow bahaviour of thin film has observed for different values of (i) stretching/shrinking parameters and (ii) sudden expansion of the boundary layer. (A)
Velocity profiles of expanded flow of thin film are graphed for the flow over a stretching and shrinking sheet with injection through porous plate. (B)
Velocity profiles of expanded flow of thin film are graphed for the flow over a stretching and shrinking sheet with suction through porous plate. (C) An
over shoot in the velocity profiles of deformed thin film flow has observed near the surface of the sheet. The sheet is compressed, whereas, the thin
film is squeezed via external stresses. (D) Effects of boundary layer’s expansion of thin film and squeezing of sheet are seen on the axial velocity of thin
film flow over a non-stretching(non-shrinking) sheet with the injection velocity through the plate.

conditions including the boundary itself become exact similar
(Hussan et al., 2012).

3.1 Comparison of the present simulations
with the previously published work

We have taken the governing equations and the relevant data of
four different published papers and compared the present simulated
equations and their results with that benchmark solutions. In
the first phase, the parameters in Eqs. 17, 18 are fixed as; α =
−2
S
,A2 =

S
2
,A3 = −1,w0 = 1, whereas, the boundary conditions in

Eq. 18 take the form: h(0) = 0 and h′(0) = 1, h(1) = S
2
, h′′(1) =

0, where S is the unsteadiness parameter, used in the published
papers (Wang, 1990; Andersson et al., 2000; Dandapat et al., 2003;
Liu and Andersson, 2008). Note that, for these choices of
parameters value, we exactly recovered equations number (9, 11a,
11b and 11c) of (Andersson et al., 2000) from Eqs. 17, Eq. 18.
Furthermore, the graph of paper (Andersson et al., 2000) i.e.,
Figure 2, Figure 3 are retrieved from the numerical solutions
of Eq. 17, Eq. 18 of the present paper for different values of

parameter S. On the other hand these four papers demonstrate
unsteady thin film flow over a stretching sheet, whereas, the
stretching velocity and variation in the film thickness, taken in
these classical papers, have certain known types, therefore, the
claim of generalized simulation for a thin film flow over a moving
and porous sheet/surface/plate of variable size is clearly justified
in the comparative analysis. Eventually, the governing equations
and associated boundary conditions of the simplified problem in
these four papers have the form F′′′ = S(F′ + η

2
F′′) + (F′)2 − FF′′,

F′(0) = 1; F(0) = 0, F(β) = Sβ
2
, F′′(β) = 0. Note that the different

quantities used in these equations have the meaning, i.e., F, η, S
and β are representing the dimensionless stream function, similarity
variable, unsteadiness parameter and value of η at free surface,
respectively.

Note that Figure 2 and Figure 3 of Andersson et al. (2000) have
been graphed for S = 0.8(1.2) and β = 2.151,994(1.12778) and the
two values of skin friction coefficient for the mentioned parameters
values are determined as: ff′′(0) = −1.24581 and− 1.27917,
respectively, whereas, this data is exactly obtained from the
numerical solution of Eqs. 17, 18 for special values of the
parameters as discussed above and demonstrated in Figure 1 below.
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FIGURE 5
Decreasing behaviour of velocity profiles is observed against η for different values of (i) γ1 (ii) ϵ0 < 0 (sudden compression of boundary layer).(A) Effects
of boundary layer’s compression and expansion of both thin film and sheet are seen on the axial velocity of thin film flow over a non-stretching
(non-shrinking) sheet with the injection velocity through plate. (B) Effects of boundary layer’s compression, deformation of thin film and expansion of
sheet are seen on the axial velocity of thin film flow over a non-stretching (non-shrinking) sheet with the injection velocity through the plate. (C)
Effects of shrinking are seen on the axial velocity of thin film flow over a non-stretching (non-shrinking) sheet with the injection velocity through the
plate. (D) Effects of stretching are seen on the axial velocity of thin film flow over a non-stretching (non-shrinking) sheet with the injection velocity
through the plate.

Remember that the simulated problem of Andersson et al. (2000)
is independent of ϵ0, ϵ, ϵ1,γ1,γ2,γ3,andγ4, whereas, these parameters
arose in the present simulations and they played significant role in
thin film flow analysis.

3.2 General analysis of the numerical
solution of Eq. 17 and Eq. 18 and evaluation
of the shear stress

The simulated problem in Eq. 17 and Eq. 18 contains seven
parameters and each of them is corresponding to some physical
settings, therefore, different values have been assigned to these
parameter and they are associated with multiple functions of some
physical activity. So effects of all these parameters have been
observed on the axial velocity component and shear stress at the
surface of the plate. The shear stress is usually expressed by τ
and generally defined for two dimensional flow as τ = μ( ∂u

∂y
+ ∂v

∂x
),

where μ, u and v are defined earlier. By substituting values of u
and v from Eq. 4, whereas, the values of p(x, t), q(x, t), f(x, t) and

r(x, t) are expressed in Eq. 11 and Eq. 12 and finally the shear
stress τ is obtained as τ = μ p(x,t)

r(x,t)
g′(η). The shear stress at the wall

and its dimensionless form gives the skin frictions coefficient,
which is obtained at the sheet of non-uniform thickness as: g′(0) =
r(x,t)
μp(x,t)

τ|y= f(x). From Eq. 14, we get: g(η) = − 1
A1A2δ2

h′(η) then the skin

friction becomes− 1
A1A2δ2

h′′(0) = r(x,t)
μp(x,t)

τ|y= f(x) and after scaling it, we

have, i.e., −h′′(0) = r(x,t)
μp(x,t)

A1A2δ2τ|y= f(x).

4 Graphs of the numerical solution
and their discussion

In this paper, we have simulated the thin film flow over a
porous and moving sheet of non-uniform thickness. At the first
place, we introduced new function for the velocity components,
and they have been strictly changed with the similarity variable. In
the later stage, we imposed certain conditions on the boundaries
inputs and field variables, defined at the free surface and on the face
of the plate. In such situations, we obtained multiple set of ODEs
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FIGURE 6
The boundary layer behaviour of thin film flow has observed when the flow is maintained over a non-stretching(γ1 = 0)/non-shrinking sheet. (A) The
film is expanded (γ3 > 0)/compressed (γ3 < 0) slowly by external stresses and it is expanded (ϵ > 0)/squeezed(ϵ < 0) via boundary layer. Note that the
upper (lower) set of profiles is drawn for expanding sheet/boundary-layer and suction (injection) cases. (B) The film is expanded (γ3 > 0)/compressed
(γ3 < 0) quickly by external stresses and it is expanded (ϵ > 0)/squeezed(ϵ < 0) via boundary layer. Note that the upper (lower) set of profiles is drawn for
contracted sheet (ϵ1 < 0), expended boundary-layer (ϵ0 > 0) and suction (injection) cases. (C) The film is expanded (γ3 > 0)/compressed (γ3 < 0) by
external stresses and it is expanded (ϵ > 0)/squeezed(ϵ < 0) via boundary layer. Note that the upper (lower) set of profiles is drawn for expanding
sheet/boundary layer and suction (injection) cases. (D) The film is expanded (γ3 > 0) by external stresses and it is expanded (ϵ > 0)/squeezed(ϵ < 0) via
boundary layer. Note that the upper (lower) set of profiles is drawn for contracting (expanding) sheet and suction (injection) cases. (E) The film is
squeezed (γ3 < 0)/expanded (γ3 > 0) by external stresses and it is expanded (ϵ > 0)/squeezed(ϵ < 0) via boundary layer. Note that the upper (lower) set of
profiles is drawn for suction (injection) case. (F) The upper(lower) set of profiles is drawn for squeezing(expanding) and suction(injection) cases.

(problems) along with boundary conditions, however, we explained
only those cases which give the exact self similar problem. As a
result, a special case has been appeared, and is converted easily
into the classical cases of thin film flows under certain constraints
on the parameters. Moreover, this special situation of the present
simulation has been shown in Eq. 17 andEq. 18, whereas, the system
is solved numerically for different choices of the parameters value.
Note that each set of specific value of the parameters represents

some proper physical senario; Figure 2; Figure 3; Figure 4 Figure 5;
Figure 6) show the profiles of axial velocity against the similarity
variable, which are obtained from the numerical solution of Eq. 17
and Eq. 18, whereas, the profiles in these figures are drawn for
different values of γ2 (injection/suction), γ1 (stretching/shrinking),
ϵ0 (deformation of boundary layer) and ϵ (deformation of thin
film via deformation of boundary layer). The deformation (both
expansion and squeezing can be take place) of both thin film and
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FIGURE 7
The linear and non-linear behaviour of skin friction is graphed against the compressed and expanded boundary layers. Note that the stretching and
shrinking velocities are taken zero in this case. (A) Skin friction coefficient is plotted against compressed boundary layer (ϵ0) for different values of
expansion of thin film ϵ. It is the case of expanding film and injection through plate. (B) Skin friction coefficient is plotted against compressed boundary
layer (ϵ0) for different values of expansion of thin film ϵ. It is the case of deforming film and injection through plate. (C) Skin friction coefficient is plotted
against compressed boundary layer (ϵ0) for different values of expansion of thin film ϵ. It is the case of squeezing film and expanding plate with
injection. (D) Skin friction coefficient is plotted against compressed boundary layer (ϵ0) for different values of expansion of thin film ϵ. It is the case of
expanding film and squeezing plate with injection.

sheet have been measured in term of deformation of the boundary
layer, whereas, the self or direct deformation of thin film through
some external stresses has played significant role during the flow
process. In Figure 3A, the squeezing of the boundary layer and sheet
have been considered and the flow is maintained over a stretching
sheet. Note that the pure (over all) expansion and squeezing cases
have been discussed for the flow over a stretching (shrinking)
and porous sheet. The term over all deformation (squeezing or
contraction) has been used for the simultaneous deformation
(squeezing or contraction) of the boundary layer, thin film and
that of the sheet. Moreover, the film is deformed (squeezed and
expanded) in two different ways (i) deformation due to boundary
layer and deformation due to other external stresses. Note that the
velocity profiles in Figure 2 are decreased (increased) against η and
different values of γ2, whereas, the increasing (decreasing) behaviour
of the velocity profiles is observed against η for injection (suction).
The profiles have been risen suddenly (gradually) and dropped in
case of expansion (contraction) of film and boundary layer for both
stretching and shrinking sheet flows. However, massive injection
occurs through the porous sheet and stretching velocity of the
sheet is taken in these observations. In this Figure 2, effects of

injection and suction are seen on the axial velocity and it has
changed uniformly with the variation of this parameter. It is worthy
noticeable that thin film is expanded by two means in this situation
1) external stresses 2) deformation of boundary layer. Moreover,
for different values of γ2, the axial velocity at the free surface
of thin film gives non-uniform values, whereas, it remains fixed,
i.e., zero at the sheet for each value of γ2. Note that for non-
zero value of ϵ0 (when the boundary layer deforms), the profiles
of h′(η) intersect in between the free surface and plate, whereas,
the common point is moving to left and right, depending upon the
values of the parameters (see Figure 4; Figure 5). The large negative
values of ϵ0 show that the boundary layer has compressed extremely
towards sheet. On the other hand, ϵ0measures the deformation of the
boundary layer, which may expand and compressed simultaneously.
Similarly ϵ measure deformation of the thin film and depends
upon the boundary layer. Finally ϵ1 defines deformation of sheet
and it depends on the deformation of thin film. Remember that
the nature of velocity is changed from increasing (decreasing) to
decreasing (increasing)with the variation of parameters.Theprofiles
in Figure 3 are decreased (increased) against η and different values
of γ2 (both injection and suction cases are taken). The increasing
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FIGURE 8
The linear and non-linear behaviour of skin friction is graphed against the compressed boundary layers. (A) Skin friction coefficient is plotted against
compressed boundary layer (ϵ0) for different values of deformation of sheet ϵ1. It is the case of expanding film and injection through sheet. (B) Skin
friction coefficient is plotted against compressed boundary layer (ϵ0) for different values of deformation of sheet ϵ1. It is the case of deforming film and
injection through sheet. (C) Skin friction coefficient is plotted against compressed boundary layer (ϵ0) for different values of deformation of sheet ϵ1. It is
the case of squeezing film and injection through sheet. (D) Skin friction coefficient is plotted against compressed boundary layer (ϵ0) for different values
of deformation of sheet ϵ1. It is the case of squeezing film and injection through sheet.

(decreasing) behaviour of the velocity profiles is observed against η
for injection (suction) in these plots. Each profiles in these figures is
increased and decreased gradually, whereas, it is increased suddenly
and the profiles have shown boundary layer patterns for large
injection and expanded boundary layer when the flow is maintained
over an expanded and contracting sheet.The profiles in Figure 4A,B
have shown increasing (decreasing) behaviour against η for γ1 < 0
(γ1 > 0). In these two plots, the analysis has carried out for the
expanded flow of thin film with suction and injection. Moreover,
an overshoot in the velocity profiles is observed at Figure 4C,D
for γ1 < 0 and ϵ0 > 0. Note that the overshooting values have been
seen increased (decreased) for large suction (deformation). Note
that the overshoots in the profiles are observed for the flow over
a compressed sheet. The velocity profiles are decreased against η
in Figure 5 for the flow over a non-stretching (non-shrinking)
sheet with an injection velocity. In Figures 5A,B the boundary layer
shrinking is compressedmore rapidly, andno stretching is taken into
account and the sheet is equippedwith injection velocity, whereas, in
Figure 5C,D, injection is combined with stretching and shrinking.

In Figures 5A,B, the velocity is decreased from zero to some fixed
value against η, whereas, it is increased in the vicinity of plate
and then decreased uniformly against η. In Figure 4; Figure 5, the
profiles have a common point of intersection between the interval
(0, 1) on η− axis, whereas, the profiles are linear (non-linear) on
the left (right) of point of intersection and the graphs have shown
asymptotic behavior on the right of the point. Moreover, the part
of profiles on the left (right) are increased or decreased suddenly
(gradually) against η. The reason is that the injection and expansion
(which supports the injection) of sheet are assisting the flow in
normal direction, whereas, the viscous nature of the fluid reduces
or slow downs the impact of injection, and the velocity adopts non-
linear nature after the point of intersection. In some cases overshoots
in the velocity profiles have been seen and it is obvious fact that
injection supports the flow in the normal direction. Note that the
response of h′ to γ1 between zero and the point of intersection
is opposite to the response between the point of intersection and
1. In Figures 4A–D, the point of intersections for different values
of γ1 are (0.42857, 0.50282), (0.40816, 4.1703), (0.5102, −8.7341),
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FIGURE 9
The increasing, decreasing and behaviour of skin friction is graphed against the expansion of sheet/thin film for different cases of expanding of thin
film/sheet. (A) Skin friction coefficient is plotted against the expansion of sheet (ϵ) for different values of deformation of sheet ϵ1. It is the case of
expanding film and sheet with injection. (B) Skin friction coefficient is plotted against the expansion of sheet (ϵ1) for different values of deformation of
sheet ϵ1. It is the case of expanding film and sheet with injection.

(0.58163, −11.5064), respectively, whereas, the point of intersection
moves, this means that it varies depending upon the value of the
parameters. Note that for certain ranges of the parameters value,
the point of intersection disappears as shown in Figures 4A–D.
In Figures 5A–D, the point of intersections for ϵ0 and γ1
are (0.4898, −8.4287), (0.45918, −13.881), (0.42857, −11.1422),
(0.42857, 1.0577), respectively, whereas, the point of intersection
moves, this means that it depends upon the set of parameters values.
The profiles in these two figures, i. e.,Figure 4;Figure 5) have shown
the linear (non-linear), increasing (decreasing) and asymptotic
behaviors against γ1 and ϵ0 before (after) point of intersection. It is
observed that the point of intersection moves to the right/left and
upward (downward) with the changes in the parameters value who
supported (resisted) injection. Note that the surface deformation
has played significant role in supporting and opposing the injection
rate.

In Figure 6, the velocity profiles are asymptotic near the free
surface for large injection/suction in the presence of squeezing
(expanded) thin film flow, maintained over a non-stretching and
non-shrinking sheet. Note that overshoot in velocity profiles is
observed near the surface of plate for large shrinking (quick
expansion of boundary layer) over a sheet with injection in case
of expanding film (see Figures 4C,D). It happens because the
injection provides extra momentum to the flows. Moreover, the
film and surface deformations have minimum effect on the flow
behaveiour in this special circumstances. The profiles of axial
velocity in Figure 5A,B showed odd behavior, however, in case
of squeezing film, the velocity profiles have been dropped more
rapidly for compressing thin films as compared to its profile for
expanding thin film. Furthermore, these observations are recorded
in Figure 6A–D. Note that in all subplots of Figure 6, the boundary
layer gets thinner and steaks to the sheet, whereas, it penetratesmore
quickly in case of squeezing thin film flow over an impermeable,
shrinking and expanding sheet and these observations are noted in
Figure 6E. A thin boundary layer is observed near the surface of the

permeable (injection case) and non-stretching non-shrinking sheet,
whereas, the boundary thickness is increased in case of flow over
an impermeable and non-stretching and non-shrinking plate.On the
other hand, Figure 7; Figure 8; Figure 9 show the profiles of skin
friction against ϵ0 (the boundary layer expansion and compression
are taken) for different values of ϵ (both expansion and squeezing
of thin film via boundary layer are considered) in the presence of
deformation of thin films. Note that the profiles are drawn for the
flow over a non-stretching and non-shrinking sheet with injection.
The profiles are linear for squeezed and expanded thin film, whereas,
they are decreased non-linearly against ϵ0 when the expanding
thin film is moved rapidly. On the other hand, the profiles are
straight lines for expansion of film via external stresses through
the boundary layer in the presence of shrinking sheet and they are
decreased linearly. Furthermore, the experiment is repeated and the
skin friction coefficient is graphed against ϵ0 (compressed boundary
layer is taken) for different values of stretching, shrinking and
deformation of walls in Figure 8. In all these figures, the profile of
skin friction are decreased rapidly and non-linearly against suction.
In Figure 9A the skin friction is decreased linearly and quickly
against injection for large stretching in case of expanding film.
Whereas, the profiles are increased quickly and non-linearly against
shrinking for abrupt expansion of surface in case of squeezing film.
Moreover, the profiles are converge to a fixed value (i.e. 10) in each
case and they converged asymptotically to 100 against ϵ. Finally, the
profiles exhibit increasing (decreasing) behaveiour against ϵ1 (ϵ) for
non-stretching and non-shrinking plate, uniform boundary layer
and rapid expansion of the boundary, respectively. In Figure 9B, the
skin friction shows increasing and decreasing behaveiour against ϵ
(expanding film) and ϵ1 (expanding sheet) respectively. The profiles
are decreased (increased) non-linearly for different values of ϵ and ϵ1
in these two subplots. Note that the profiles show divergent behavior
against ϵ1 for small values of it (weak expansion of thin film) and
they varied linearly against ϵ1 for large values of it (expansion of thin
film).
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5 Conclusion

In this paper, we analyzed the flow of viscous thin film over
a variably porous and moving sheet of non-uniform thickness.
The non-uniform nature of thin film and thickness of the porous
and moving sheet are major aspects of the present simulated flow
model.The continuity law and boundary layer momentum equation
are simplified in view of the generalized boundary conditions,
imposed at sheet and free surface of thin film. A set of new
variables is introduced for the velocity components and similarity
variables, whereas, multiple constraints have been imposed on the
set of transformations and they consequently provided multiple
problems of self similar nature. A special case is formed from this
transformation which is then converted into the classical problem
for specific choice of the parameters value. So the results are exactly
matched with the published work of (Wang, 1990; Andersson et al.,
2000; Dandapat et al., 2003; Liu and Andersson, 2008). Moreover,
the detailed discussion of this special case is also provided in view
of new transformation. The problem is classified into several cases
in which both steady and unsteady behaviors of the problem have
been studied, whereas, the additional information and observation
are also obtained from the present investigations. However, we
restrict ourselves only to one case due to the length of the paper.
Moreover, combined and individual effects of injection, suction,
stretching, shrinking, deformation of both thin film and sheet
have been seen on the axial velocity and skin friction. A narrow
momentum boundary layer is observed over an permeable non-
stretching and non-shrinking and expanding sheet of non-uniform
thickness for the flow of thin film. Moreover, linear, non-linear,
uniform, non-uniform, both sudden and gradual increasing and
decreasing responses of the skin friction are observed for the
different types of the boundary inputs. In nut shell three types of
deformations are focused in this investigations, i.e., deformation
of thin film, sheet and boundary layer. Moreover, two types of
variations have been observed in the thickness of thin film. One
is due to the surface stresses, whereas, the second one appears
due to the changes in boundary layer. Significant changes in the
flow behavior have been noted due to the variation of thin film,
boundary layer and sheet thicknesses and these observations have
been recorded in different graphs.
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Nomenclature

α1, α2, α3, α4, α5, α6, α7, α8, α9, α10 variable coefficients
D
Dt

material time derivative

F dimensionless stream function

f (x, t) variable thickness of sheet

g(η) represent the velocity component v

h(η) represent the velocity component u

r(x, t) variable size of the thin film

S unsteadiness parameter

t time variable

u, v velocity components in x(y) directions

U stretching(shrinking) velocity

V injection(suction) velocity

w controlling parameter for the deformation of thin film

x, y Cartesian Coordinates

Greek letters

η similarity variables

τ shear stress

β value of similarity variable at the surface of thin film

ϵ0 boundary layer deformation

ϵ deformation of thin film due to boundary layer

ϵ1 deformation of sheet

γ1 stretching and shrinking parameter

γ2 injection and suction parameter

γ3 dimensionless normal velocity at the surface of the film

γ4 value of similarity variable at surface of thin film
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