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Exosomes are secreted by various cells including stem cells, dendritic cells, and
tumor cells, also known as the cell-derived extracellular vesicles. Exosomes, can
carry informative cargos from host cells, thus have been employed as potential
nanomaterials for their multifarious biological functions in biomedical fields, such
as drug and genes delivery, tumor targeting, and disease treatment. Recently, the
biological applications of exosomes in bone tissue engineering have gained
increasing attention. Some important progress has been made while the tissue
regeneration and functional recovery of boneremain as the key challenges to be
addressed. In this article, we first made a summary of exosomes and their
applications in the regeneration of bone and cartilage tissue. Then,
modification approaches used for exosomes to equip them with excellent
capacities are summarized. Finally, current concerns and future outlooks of
exosomes in bone/cartilage tissue engineering and regeneration are discussed.
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1 Introduction

Bone-related diseases have a high incidence for many pathogenesis, including infection,
inflammation, traumatism, malignant tumor, ageing, and congenital malformation. (Liu
et al., 2018; Hayashi et al., 2019; Wan et al., 2020; Ling et al., 2021; Yang et al., 2022) The
regeneration and reconstruction of bone tissues embraces an extensive set of biological and
clinical significance. For clinical strategies, the main concept is the morphological and
functional reestablishment of bone tissue. Current therapeutic treatments for bone tissues
include bone transplantation (e.g., autogenous bone or allogeneic bone), (Behrend et al.,
2016), bone substitution materials (e.g., titanium plate), (Diwu et al., 2020), stem cell
transplantation (e.g., bone marrow stem cells, bMSCs), (Benavides et al., 2021), biological
agents (e.g., growth factors), (Kitaura et al., 2022), gene therapy, (Gao et al., 2022), distraction
osteogenesis, (Qi et al., 2009), and barrier membrane to guide bone regeneration. (Han et al.,
2018) The purposes of applying bone filling materials in guided bone regeneration (GBR)
procedures are: 1) supporting the barrier film to avoid collapse; (Cox et al., 2022) 2)
scaffolding for new bone to grow in from the receptive area; (Roseti et al., 2017) 3)
stimulating the growth of new bone from the receptive area; (Robling and Bonewald,
2020) 4) resisting to surface soft tissue pressure; (Hao et al., 2022) 5) protecting the new bone
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mass and avoiding its absorption. (Cosman, 2009) Therefore, four
basic characteristics of bone defect repair materials must be
considered: 1) biocompatibility, 2) mechanical tolerance, 3)
biodegradability, and 4) induce reproduction. (Wang et al.,
2021a) Over the past decades, the research and development of
biological materials have been intensive, with the purpose to create
or complete the designed materials with the abovementioned
properties. (Wang et al., 2021a) However, since the process of
bone regeneration is complicated, the biological materials using
for healing bone injury/diseases are still under active investigation ,
and the challenges to be addressed are the poor biocompatibility,
undesirable morphological regeneration, and limited functional
restoration. (Tandon et al., 2018; Yang et al., 2022) Therefore,
the biological materials and nanomedicines with the excellent
properties of bone regeneration are highly desired.

Nowadays, some biological products have been incorporated
into the clinical usages, such as human bonemorphogenetic proteins
(hBMPs; e.g., hBMP-2 and hBMP-7), (Salazar et al., 2016), β-
tricalcium phosphate (β-TCP), (Bohner et al., 2020), and
hydroxyapatite. (Palmer et al., 2008) These bone formation
materials could promote the bone tissue regeneration to some
extent, but there is still work to do. For examples, the hBMP-2
and hBMP-7 have been approved for use in Europe and the
United States, but the high financial costs, disappointed clinical
efficacy, and the adverse side effects limited the wide applications of
them. (Garrison et al., 2007; Huang et al., 2014; Gillman and
Jayasuriya, 2021) Moreover, the gene therapy provides a
promising and alternative approach for bone tissue regeneration.
For the essences of gene therapy such as the delivery of
complementary DNA (cDNA) and messenger RNA (mRNA), the
cost, disadvantages of current available genetic delivery methods,
unpredictable osteogenic effects, safety concerns, and delivery
barriers (e.g., blood bone barrier) of the genetic strategies also
limited the clinical applications. (Chaudhuri et al., 1993)
Therefore, the regenerative medicines, which could autonomously
regulate the bone formation, have drawn more attentions than other
therapies. Recently, the exosomes have been widely investigated for
bone tissues regeneration, which could act as the carriers of various
genes or drugs and alsoregulate the bone formation process
themselves. (Guo et al., 2021a; Bei et al., 2021; Chang et al.,
2022; Yao et al., 2022)

Exosomes are identified as the nanovesicles which could be
constitutively released by plasma membrane fusion, with the
responsibility of mediating local and systemic cell-to-cell interaction
by transferring the mRNAs, miRNAs, or proteins. (Kalluri and LeBleu,
2020; Kimiz-Gebologlu and Oncel, 2022) Exosomes, with the
nanostructures ranging from 50 nm to 200 nm, are an emerging
promising therapeutic nanomaterials in biomedical fields, such as
targeted drug delivery, clinical diagnosis, and immune regulation.
(Kimiz-Gebologlu and Oncel, 2022; Paskeh et al., 2022; Yu et al.,
2022) The potential of exosomes in tissue engineering has been valued
as a promising strategy. (Alvarez-Erviti et al., 2011; Tevlin et al., 2022)
For bone tissue engineering, the applications of exosomes are attracting
significant attention. (Li et al., 2018) Various studies have demonstrated
that stem cell derived exosomal-based nanomaterials could effectively
restore the critical-sized bone defects and promote bone regeneration.
(Li et al., 2018; Tevlin et al., 2022) Exosomal-based therapeutic
strategies for various bone defects are promising. Some studies have

proven that exosomes played significant parts in various physiological
or pathological progresses of bone tissues regeneration, such as
immunomodulation, angiogenesis, and wound healing. (Dai et al.,
2020a; Li et al., 2021a; An et al., 2021; Yu et al., 2021a) Moreover,
the exosomes markedly reduce the immunogenicity. (Xu et al., 2020;
Liang et al., 2021) Recent studies of exosomal-based technology, led by
various structural modifications and with the applications of lipid
vectors for agent delivery, have triggered interests in the
employment of exosomes in bone regeneration medicine as a safe,
available and effective means of bone tissue restoration. (Batrakova and
Kim, 2015; Barile and Vassalli, 2017) Here, we would introduce the
sources of various exosomes, and also summarize the various structural
modifications of exosomes. Particularly, the unique properties and
biological functions of exosomal-based nanomedicines in bone tissue
engineering would be highlighted, and the current challenges and
prospects would also be discussed.

2 Sources and characterizations of
exosomes

2.1 Construction of exosomes

Some previous studies have found that exosomes existed in
abundance in blood, milk, feces, and saliva, (Ayyar and Moss, 2021;
Heo and Kang, 2022), which could be secreted by various sources,
such as mesenchymal stem cells (MSCs), macrophages, monocytes,
and endothelial progenitor cells (Figures 1A, 2A). (Kamerkar et al.,
2017; Zhou et al., 2019; Zhao et al., 2020; Sun et al., 2021) Therefore,
researchers could collect various exosomes for the clinical or
laboratory samples via ultracentrifugation (Figure 2B). These
exosomes could polarize immune cells, osteoblasts, osteoclasts,
chondrocytes, and endothelial cells (ECs) to favorable phenotypes
for osteochondral regeneration. (Zhang et al., 2018) For the
inclusion compounds containing nucleic acids, proteins, and
metabolites (Figure 1B), exosomes could kindle some
physiological changes, such as mediating over inflammatory
response, affecting gene expression, and inducting signaling
pathways by various load or surface modifications. (Valadi et al.,
2007; Yu et al., 2021a; Lai et al., 2021; Zhong et al., 2021)

The original cell types are diverse, so the representation of tissue-
specific molecules of exosomes are polyphyletic and complicated.
(Valadi et al., 2007) Therefore, some studies have proven that the
biomarkers of exosomes could serve as the disease-specific markers,
which would be applied for detection and diagnosis of some diseases,
such as tumors, inflammatory, and autoimmune diseases. (Hoshino
et al., 2015; Huang et al., 2020; Li et al., 2021b; Yu et al., 2021b;
Kawada-Horitani et al., 2022) The host cell and the physiological
microenvironment types both would regulate the content of their
secreted exosomes. (Kalluri, 2016; Thery et al., 2018) For example, the
cell types determine the exosomes as anti-inflammatory (e.g., MSCs
and dendritic cells) or pro-inflammatory (e.g., tumor cells,
macrophages, and intestinal epithelial cells), which would also
control their effectiveness in regulating biological behaviors of
various cellular phenotypes. (Arabpour et al., 2021; Hassanzadeh
et al., 2021) Therefore, the interactions between cells and
microenvironment would alter the final contents of the secreted
exosomes, which is critical process in achieving homeostasis and
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regulating immune responses. (Mashouri et al., 2019; Wortzel et al.,
2019) In normal physiological state, the quantity of secreted exosomes
was limited. (Mashouri et al., 2019) Therefore, some researchers made
some stimulus onto cells, then the stimuli-introduced exosomes
would be secreted with a greater number and contain alteration of
nucleic acids, proteins, andmetabolites (Figure 3A). (Dai et al., 2020a)
Moreover, some studies have reported that the stimuli-introduced
exosomes possessed the increased therapeutic potential and the
enhanced targeting to specific microenvironments. (Kalluri, 2016;
Wang et al., 2019) The external stimulus applied in current studies
includes biochemical factors (e.g., lipopolysaccharides, LPS; BMP-2;
Kartogenin; IFNγ and TNFα) (Zhou et al., 2019; Jiao et al., 2020;
Zhang et al., 2020; Wang et al., 2021b) and mechanical factors (e.g.,
centrifugal force and three dimensional (3D) culturing environment;
shown as Figure 3A). Taken together, these promising strategies give
us with abundant technologies to engineer progenitor cells for the
high-efficiency extraction of exosomes.

2.2 Functionalization of exosomes

While some exosomes could be functionalized at the progenitor
cells, some artificial modifications or various cargos were also applied
to exosomes for specialized purposes. (Liang et al., 2021) The
application potentials of native exosomes mainly include gene
therapy, in-vivo imaging, and drug delivery. (Luan et al., 2017;
Salunkhe et al., 2020) Therefore, for endowing theranostic
properties, enhancing targeting, and improving drug encapsulation
into exosomes, some molecules would be functionalized with
exosomes artificially to gain the gene knockdown or imaging
capabilities (Figures 1B, 3B). (Ocansey et al., 2020)

The membrane of exosomes could flexibly deform with proteins
embedded in the phospholipid bilayer. (Luan et al., 2017) The
membrane proteins have abundance of amine groups and alkyl
groups, which provide the sites for various surface modifications of
biological macromolecules. (Urano et al., 2016; Irfan et al., 2020) For

FIGURE 1
The sources of exosomes for the applications of bone/cartilage tissue engineering. (A) The cells or tissues sources of exosomes applied for bone/
cartilage tissue engineering, which includeMSCs, ADSCs, chondrocyte, osteoblast, osteoclast, and synovium. (B) The intrinsic and exogenous contents of
various functionalized exosomal-based nanomaterials. For somematerials, the exosomes were applied as the multifunctional carriers, such as inorganic
material, drugs, DNA or RNA fragments, and some functional proteins. Moreover, some surface modifications could be loaded onto the exosome
membrane, such as imaging or targeting ligand.
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example, to improve the affinity to recipient cells, aptamers, the
oligonucleotides with high specificity and great targeting to MSCs,
were used to functionalize with exosomes by covalent bonds. (Su et al.,
2019; Salunkhe et al., 2020) And then, the Apt-exosomes could be
largely internalized MSCs and accumulation in bone tissue, showing
great potential for osteoporosis. (Su et al., 2019) Moreover, the
amphiphilic property of phospholipid bilayer allows for partition
fixation of cholesterol fibrils, and the cholesterol fibrils could be
modified with oligonucleotides. (Dai et al., 2020b) The DNA or
RNA aptamers grafted exosomes showed optimized
pharmacokinetics, circulatory stability, and improved biological
functions in bone diseases. (Luo et al., 2019) In addition to the
surface modification strategies, the exosomes also possess the high-
capacity loading ability of various materials, such as phospholipidic
shell, microRNA-155, and curcumin (Figures 1B, 3B). (Liao et al., 2018;
Tian et al., 2018; Pang et al., 2020; Varga et al., 2020) The encapsulation
methods of exosomes mainly include freeze-thaw method, passive
diffusion, and electroporation. (Liu et al., 2021; Xi et al., 2021; Shi et al.,
2022) Taken together, exosomes are highly flexible nanocarriers with
both exterior and interior editability structures for efficient delivery of

small molecule drugs, siRNAs, miRNAs, and surface ligands to achieve
targeted delivery and imaging with exceptional loading capacity.

3 Cell internalization mechanisms of
exosomes

The cell internalization of various exosomes is the precondition for
exosomes to exert their functions. (Mulcahy et al., 2014) Various
exosome uptake mechanisms have been reported, such as protein
interactions, clathrin-mediated endocytosis, phagocytosis,
macropino-cytosis and plasma or endosomal membrane fusion. The
protein interactions have proven that specific protein-protein
interactions could mediate exosomes attachment and internalization
into target cells, such as tetraspanins, (Hemler, 2001), integrins,
(Wortzel et al., 2019), immunoglobulins, (Inoue and Tsukahara,
2021), proteoglycans, (Baietti et al., 2012), and lectins (Song et al.,
2021). For endocytosis of exosomes, clathrin-mediated endocytosis,
(Tian et al., 2014), caveolin-dependent endocytosis, (Tu et al., 2021),
micropinocytosis, (Tu et al., 2021), and phagocytosis were widely

FIGURE 2
The physiological distributions and the main extraction method of exosomes. (A) The physiological distributions of exosomes, which could exist in
blood, milk, salivary gland, and excrements (urine or feces). (B) The main extraction method of exosomes. For clinical samples, the exosomes could be
collected from blood, milk, or saliva. In laboratory, the exosomes mainly were extracted from cell culture mendium.
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investigated. (Patil et al., 2021) The essence exosome membrane is
phospholipid bilayer, and the membrane fusion of exosomes and cells
would happen, and some studies have suggested that the fusion could
be enhanced under acidic microenvironment. (Colombo et al., 2014;
Robbins and Morelli, 2014; Patil et al., 2021) Moreover, cell-specific
exosome uptake was also detected, which mainly due to artificial
modifications, such as DNA aptamer, (Ma et al., 2019; Ma et al.,
2022), RGD peptide, (Tian et al., 2021), and small molecule drugs. (Wu
et al., 2021) Understanding cell internalization mechanisms of
exosomes is a vital object of the exosomal-based materials.
However, limited number of studies could not reveal the total
mechanisms of cell internalization processes for various exosomes,
which requires further exploration.

4 Application of exosomes for bone and
cartilage tissue engineering

Recently, some studies have demonstrated that exosomes could
intervene bone reconstruction process in different bone diseases.
The protein and microRNAs contained in exosomes could be used
to treat osteoporosis, fractures, and other bone diseases. (Li et al.,
2016; Ni et al., 2020; Nakao et al., 2021) The underlying mechanism
of bone reconstruction underwent a paradigm shift from cell

differentiation and replacement to secretory and paracrine
signaling. In this part, we would summarize that application of
exosomes for treating bone diseases.

4.1 Bone regeneration

Various bone diseases could lead to bone loss, such as
osteoarthritis, osteoporosis, bone fracture, parodontopathy, and
osteonecrosis (Figure 4D; Table 1). (Cosman et al., 2016) Osteal
and chondral conditions might due to various sources other than
disrupted homeostasis of the bone or cartilage tissues. (Jiang and
Tuan, 2015) Therefore, bone tissue regeneration is a vital process for
various bone diseases. (Dimitriou et al., 2011) The exosomes applied
in bone regeneration were mainly derived from bMSCs, and some
other stem cells were also included, such as adipose-derived stem
cells (ADSCs) and embryonic stem cells (ESCs). (Li et al., 2018;
Zhang et al., 2019a; Nakao et al., 2021) In exosomes, some growth
factors or RNA have been founded, such as the receptor activator of
NF-κ B ligand(RANKL) and microRNA-214. (Nakao et al., 2021;
Wang et al., 2022a) For instance, the RANKL is one of the major
regulators of osteoclastogenesis, which can be contained in
exosomes and secreted by osteoblasts. (Nakao et al., 2021) The
exosomes with RANKL could bind to RANK on osteoblasts, and

FIGURE 3
Engineering methods to improve exosome properties. (A) Engineering of progenitor cells with various physiological (pro-inflammatory factors,
growth factors, and transcription factors) or mechanical stimulations (vibration, rotation, and magnetic field). (B) Direct functionalization approaches of
exosomes. Researchers could modify the exosome membrane with direct surface modifications and fusion with artificial liposomes. Moreover,
exosomes could load other materials by simple diffusion or electroporation. Finally, the functionalized exosomal-based nanomaterials could
achieve specific purposes, such as imaging, targeting, and encapsulation.
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then kindle the progress of osteoclastogenesis. (Nakao et al., 2021)
On the contrary, the osteoblasts could secrete RANK-loaded
exosomes, and the exosomes subsequently intercept the RANK
signal pathway with inverse feedback by binding to RANKL on
osteoclasts. Moreover, osteoclasts also could secrete exosomes
enriched with miRNA-214, which could be internalized by
osteoclasts through the recognition of ephrinA2/EphA2 and then
inhibit the functions of osteoclasts. (Wang et al., 2022a)

Exosomes with osteogenic functions have presented great
potential in therapies of bone defect. For example, osteogenic
exosomes could promote the healing of bone fractures in CD9−/−
mouse model. (Furuta et al., 2016) The underlying mechanism of
the healing progress includes the recruitment of progenitor cells
or stem cells, and more important process is that the miRNAs

coated in exosomes could facilitate angiogenesis and osteogenesis.
(Furuta et al., 2016) Osteogenic exosomes can accelerate progenitor
cells or stem cells to osteogenic differentiation and matrix
mineralization, and the regenerated new bone showed a more
robust calcium deposition and calcium phosphate nucleation. (Lei
et al., 2022) Moreover, the exosomes show excellent delivery
properties. (Vader et al., 2016) For example, exosomes could
integrate with titanium nanotubes to form a new type
nanomaterial, which could effectively promote bone regeneration.
Wei et al. (2019) used BPM-2 to pretreat macrophages, and then the
macrophage-derived exosomes were collected and applied to cate
titanium nanotube implants (Exo@Ti). (Wei et al., 2019) The Exo@Ti
could significantly increase the expression of alkaline phosphatase and
BPM-2, which were the osteoblastic differentiation markers in the

FIGURE 4
Multiple biological applications of exosomal-based nanomaterials by combining with other materials. (A) The exosomal-based nanomaterials could
combine with polymer, hydrogel, and metal nanoparticles. (B) The formations of exosomal-based complexes of polymer@Exo, hydrogel@Exo, and
metal@Exo. (C) Various exosomal-based complexes possess the improved capacities of proliferation, migration, and anti-apoptosis. (D) The bone and
cartilage conditions in the limelight of exosomal-based research.
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early stage of osteogenesis. (Wei et al., 2019)Wang et al. found that the
macrophage-derived exosomes carrying titania nanotube arrays
(Exo@TNAs) could simultaneously promote the osteogenesis of
MSCs and angiogenesis of endothelial cells (Figure 4B). (Wang
et al., 2022b) Furthermore, some researchers have found that
exosomes could regulate macrophages and then promote bone
regeneration. (Guo et al., 2021b) Li et. at had reported that ASC-
derived exosomes (ASC-Exos) loaded with gelatine nanoparticles
(GNPs) by inverse charge attraction, which could regulate M1/
M2 macrophage polarization. (Li et al., 2022) The ASC-Exos
containing abundant miRNA-451a, miRNA-21, and miRNA-148a
could inhibited the expression of M1 macrophage markers and
upregulated the expression of M2 macrophage markers, which
could regulate the immune metabolism of bone tissue and further
enhance bone healing. (Li et al., 2022)

For further enhancing the bone regeneration, some polymer
materials were applied with exosomes (Figures 4A, B). Li et al.
combined the polydopamine-coating poly(lactic-co-glycolic acid)
(PLGA/pDA) scaffolds with exosomes derived from human
adipose-derived stem cells (hASCs). (Li et al., 2018) The hASC-
derived exosomes could be immobilized and released by the PLGA/
pDA scaffold under different environmental conditions. (Li et al.,
2018) The slow and consistent release of hASC-derived exosomes
could enhance bone regeneration significantly, at least partially
through its osteogenic induction effects and capacities of
promoting MSCs migration and homing in the newly formed
bone tissue. (Li et al., 2018) Mi et. at constructed a natural
polymer hyaluronic-acid-based hydrogel (HA hydrogel),
engineered endothelial cell-derived exosomes (EC-ExomiR-26a-5p),
and APY29, an IRE-1α inhibitor, which could specifically deliver
EC-ExomiR-26a-5p to osteoblast/osteoclast and promote bone fracture
repair (Figure 4). (Mi et al., 2022) Moreover, Li et. at had reported
the ASC-Exos loaded with GNPs, and the GNP-Exos exhibited good
biocompatibility and strong mechanical adaptability. (Li et al., 2022)
The combination of exosomes and biological materials shows great
potential in enhancing the mechanical propertoes and achieving
controlled release of exosomes, which might provide a promising
therapeutic direction for expending the biological applications
various bone diseases (Table 1). (Shin et al., 2016)

4.2 Cartilage regeneration

In some bone diseases, defects of bone tissue might also be
accompanied by the loss of cartilage. (Wu et al., 2022) Therefore, the
cartilage regeneration is also significant for the bone tissue
engineering. Cartilage, a connective tissue without vascular tissue,
has abundant collagen fibers, proteoglycans, hyaluronic acid, and
chondrocytes components. (Krishnan and Grodzinsky, 2018) The
regeneration of injured cartilage is difficult for the avascular
structure, which would result in limited supply of oxygen,
nutrients, and infiltration and the delivery of available signal
molecules to precursor cells. (Bhattacharjee et al., 2015)

Among various diseases, osteoarthritis is the most representative
disease, which could cause physiological changes in the composition
and structure of cartilage tissue. (Scanzello and Goldring, 2012)
Osteoarthritis can occur in various joints, such as knee-joint and
temporomandibular joint (TMJ), and some researchers have
conducted many studies to explore the therapeutic potential of
exosomes for cartilage regeneration (Table 2). (Scanzello and
Goldring, 2012; Zhang et al., 2019b; Jansen and Mastbergen, 2022)
For example, Tao et al. demonstrated that exosomes derived from
miRNA-140-5p-overexpressing synovial mesenchymal stem cells
(SMSC-140-Exos) could enhance cartilage tissue regeneration by
activating Yes-associated protein (YAP) with the Wnt signaling
pathway. (Tao et al., 2017) Zhang et al. reported that the MSC-
derived exosomes could promote cartilage repair by increasing
proliferation, suppressing apoptosis, and modulating immune
reactivity (Figure 4C). (Zhang et al., 2018) They also found that the
MSC-derived exosomes possessed the ability of attenuating
inflammation and restoring matrix homeostasis, which could relieve
TMJ osteoarthritis. (Zhang et al., 2019b)

Beyond the alone application of exosomes in cartilage tissue
regeneration, the exosomes are also combined with other materials
to enhance their biological functions. Zhang et al. synthesized an
injectable mussel-inspired highly adhesive hydrogel enriched with
exosomes, in which the hydrogel with high bonding strength to the
wet surface was prepared using a crosslinked network of alginate-
dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/
RSF). The AD/CS/RSF/EXO hydrogel could promote the cell

TABLE 1 Application of exosomes for bone tissue engineering.

Exosome souece Functions References

ADSCs Combining with PLGA/pDA, promoting MSCs migration and homing in bone tissue Li et al. (2018)

Containing RANKL and kindling the progress of osteoclastogenesis Nakao et al. (2021)

Inhibiting the expression of M1 macrophage markers and upregulating the expression of M2 macrophage markers Li et al. (2022)

Osteoclasts Exosomes enriched with miRNA-214 could be internalized by osteoclasts through the recognition of ephrinA2/EphA2 and
then inhibit the functions of osteoclasts

Wang et al. (2022a)

Osteogenic exosomes Promoting the healing of bone fractures in CD9−/− mouse model by facilitating angiogenesis and osteogenesis Furuta et al. (2016)

Accelerating progenitor cells or stem cells to osteogenic differentiation and matrix mineralization Lei et al. (2022)

Macrophages Exo@Ti could significantly increase the expression of alkaline phosphatase and BPM-2 Wei et al. (2019)

Promoting the osteogenesis of MSCs and angiogenesis of endothelial cells Wang et al. (2022b)

Endothelial cells Combining with HA hydrogel and promoting bone fracture repair Mi et al. (2022)
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migration, proliferation, and differentiation of bMSCs, which could
help the repair of cartilage defects. (Zhang et al., 2021) Hu et al.
reported a Gelatin methacrylate (Gelma)/nanoclay hydrogel (Gel-
nano) loaded with human umbilical cord MSCs derived exosomes
(hUC-MSCs-Exos), and the hUC-MSCs-Exos contained abundant
miRNA-23a-3p. The miRNA-23a-3p could promote cartilage
regeneration via activating the classical PTEN/AKT signal
pathway. Gel-nanoclay@Exos hydrogel showed great potential for
the regeneration of cartilage defects. (Hu et al., 2020) Furthermore,
exosomes also can be employed as the carriers to deliver genes,
proteins, or drugs to cells. (Duan et al., 2021) WNT3a can run to
the benefit of cartilage regeneration by activating the WNT-β-catenin
pathway. (Bertrand et al., 2020) Bethan et al. demonstrated that the
WNT3a loaded exosomes activated canonical WNT signaling and
improved the repair of osteochondral defects. (Thomas et al., 2021) In
addition to the exosomes derived from variousMSCs, some exosomes
secreted by platelets (pExos) also presented promising therapeutic
effects on subtalar osteoarthritis. Zhang et al. incorporated the pExos
into thermosensitive hydrogel for prolonging the retention time of
pExos in the joint, thereby the pExos could cloud continuously be
released from the thermosensitive hydrogel and promote the cell
proliferation and migration of bMSCs and chondrocytes. Moreover,
the long-time controlled-release of pExos also could facilitate the
chondrogenic differentiation of bMSCs and suppress inflammation-
induced chondrocyte degeneration. (Zhang et al., 2022)

5 Advantages and challenges of
exosomes in bone/cartilage tissue
engineering

In the field of bone and cartilage regenerative medicine, the “cell-
free regeneration strategy” in which exosomes are used as carriers of a
variety of bioactive molecules has many advantages, (Chew et al., 2019),
including that: 1) almost no cytotoxicity and low immunogenicity, and
the possibility of immune rejection after allogeneic administration is
low, and then the exosomes have a wide range of application; (Mai et al.,
2021) 2) the exosomes can avoid the potential risks of embolism and
infection spread caused by direct cell transplantation, which indicates
the exosomes possessing excellent biological safety; (Mao et al., 2021) 3)
the exosomes can be prepared into convenient storage and clinical

application of biological agents, stored at −20 °C for 6 months without
loss of biological activity. (Sohrabi et al., 2022) However, the
mechanisms of communication between cells by exosomes carrying
various bioactive molecules are still unclear, which cannot be accurately
regulated and has certain risks. (Wang et al., 2019; Wortzel et al., 2019;
Dai et al., 2020a; Kalluri and LeBleu, 2020)

It has been found that mesenchymal stem cell-derived exosomes
can promote the occurrence and development of tumors by
delivering related miRNAs to neighboring cells or activating
signaling pathways. Cancer cells can use exosomes to release
signals to normal cells in the local microenvironment to promote
their carcinogenesis. (Dai et al., 2020a; Jiang et al., 2021) Exosomes
released by distant metastatic cancer cells have a stronger ability to
induce cell migration. (Sung et al., 2021) In addition, the biological
distribution of exosomes in vivo is one of the important
determinants of their toxicity. (Zhou et al., 2021) When
exosomes are used for regenerative therapy, the delivery path,
dose, biological distribution and metabolic dynamics of exosomes
in vivo should be clearly defined in order to guide exosomes to reach
the tissue defect area to play their functions and ensure the safety of
their clinical application. (Zhou et al., 2021; Kimiz-Gebologlu and
Oncel, 2022) Combining exosomes with various forms of tissue
engineering scaffolds can not only effectively load exosomes, but
also effectively retain exosomes in the tissue defect site for a long
time. The combined exosomal-based materials could meet the need
for efficient retention and continuous release of exosomes, improve
the stability of proteins and nucleic acids and other contents, and
provide an ideal microenvironment for tissue regeneration to
effectively play its repair role. To further improve the therapeutic
effects, exosomal-based materials would provide a new strategy for
the repair of tissue injury in the field of tissue engineering.

6 Conclusion and future perspectives

Recently, various cell-derived exosomes have presented great
capacities in bone and cartilage tissue engineering for the
therapeutic strategies of osteoarticular diseases. (Lara-Barba et al.,
2021) Exosomes derived from different cells might contain disparate
biological information for the diversities of proteins, microRNA,
and biomarkers. (Yu et al., 2021b) Compared with the stem-cell or

TABLE 2 Application of exosomes for cartilage tissue engineering.

Exosome souece Functions References

Synovial mesenchymal stem
cells

Enhancing cartilage tissue regeneration by activating Yes-associated protein (YAP) with the Wnt signaling pathway Tao et al. (2017)

MSCs Promoting cartilage repair by increasing proliferation, suppressing apoptosis, and modulating immune Zhang et al. (2018)

Attenuating inflammation and restoring matrix homeostasis, which could relieve TMJ osteoarthritis Zhang et al.
(2019b)

Combining with AD/CS/RSF hydrogel, promoting the cell migration, proliferation, and differentiation of bMSCs, and
helping the repair of cartilage defects

Zhang et al. (2021)

Combining with Gelatin methacrylate (Gelma)/nanoclay hydrogel, containing abundant miRNA-23a-3p and
promoting cartilage regeneration

Hu et al. (2020)

Platelets Incorporating the pExos into thermosensitive hydrogel for prolonging the retention time of pExos in the joint,
promotong the cell proliferation and migration of bMSCs and chondrocyte

Zhang et al. (2022)
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liposome based therapies, the exosomal-based nanomaterials show
safer and more efficient therapeutic efficacy. (Mori et al., 2019; Zhu
et al., 2019; Yu et al., 2021b; Liu et al., 2022a) The nanostructures,
low immunogenicity, capacities of infiltrate-multiple biological
barriers (such as blood brain barrier and blood bone barrier),
and properties to carry various therapeutic drugs make it
considered as the great potential direction for bone tissue
engineering. (Xu et al., 2016; Mori et al., 2019) Moreover, various
modification loaded to the natural exosomes might promote the
capacity of exosome to permeate multiple biological barriers and
enhance the targeting of certain tissues, which would be the frontier
hotspots of exosomal-based nanomedicines for bone tissue
engineering. (Xu et al., 2016; Song et al., 2019)

In this review, we have summarized the biological
applications of exosomes and exosome-derived materials on
bone and cartilage tissue engineering, where more studies are
needed to make the biological applications of exosomes moving
forward. Further investigations of exosomes would be focusing
on the improvements of production and purification techniques
of exosomes, establishments of the standardized guidelines,
protocols of drug delivery methods, and enhancements of
specific tissue targeting capabilities. (Barile and Vassalli, 2017;
Wei et al., 2021; Liu et al., 2022b; Lai et al., 2022) Moreover, the
origin sources of exosomes also highly draw great concerns. The
abundant sources of exosomes, various combination with
artificial liposomes, and multiple modification strategies make
the exosomal-based nanomaterials with great biological
application prospects. (Lai et al., 2022) Furthermore, we
expect that more exosomal-based nanomedicines can be
developed and used for clinical diseases.
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