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Nuclear energy is considered a clean, reliable, and an inexhaustible energy source
for power generation. Nuclear power is harnessed from nuclear fission reactions
in a dedicated power plant. The by-products (produced in the nuclear power
plant) are radioactive and pose a threat to the environment. The safe disposal of
nuclear waste is vital to ensure the sustainable use of the nuclear energy. The
immobilization of radioactive waste before final disposal is essential for the interim
storage and transportation. This review summarizes the recent work on glass,
ceramics, and glass–ceramics matrices to immobilize high-level waste. The
synthesis methods, leaching behavior, and radiation resistance of matrices are
discussed briefly.
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1 Introduction

Primarily, nuclear energy is used in power generation, producing nearly 15% of
electricity. Nuclear reactors (437 operational reactors in 2021 worldwide) produce more
than 10% of all the energy consumed globally. Nuclear energy can fulfill the increasing
demand of energy and contribute to reducing the consumption of fossil fuels and emission of
greenhouse gases. Moreover, energy consumption in the future will rise, so the demand for
building new nuclear power reactors to meet energy requirements will increase.
Consequently, the generation of radioactive waste will be enhanced, owing to the
increased use of fuel (uranium and plutonium oxide) to run the reactors (Englert et al.,
2012). Radioactive waste is generated from chemical sludges, fission products, reactor
decommissioning, and spent nuclear fuel; the radioactive waste or nuclear waste is
generally categorized, based on its radioactivity level, as low-level waste (LLW),
intermediate-level waste (ILW), and high-level waste (HLW), as summarized in Table 1
(IAEA Safety Standards, 2009).

The total radioactive waste comprises LLW, ILW, and HLW. HLW has the lowest
volume in total radioactive waste and generates extensive heat due to radioactive decay. The
reprocessed nuclear fuel constitutes the bulk of “high-level waste” (HLW), as defined by the
International Atomic Energy Agency (IAEA) (McCloy and Goel, 2017). In order to reduce
the amount of radionuclides in the spent nuclear fuel, efforts are being made to extract Pu
and U using the PUREX process. The PUREX process is a liquid–liquid separation process
that utilizes tri-n-butyl phosphate (TBP). In addition, normal paraffinic hydrocarbon (NPH)
and numerous solvents are used (Baumgärtner and Ertel, 1980; Herbst et al., 2011). TBP is
used for selective extraction of Pu and U from spent nuclear fuel. The modern PUREX
processes include more than two cycles of extraction, scrubbing, and striping the fuel
(Kumari et al., 2020). The extracted Pu and U from the spent nuclear fuel can be reused after
enrichment and conditioning. Later, the resulting waste obtained after reprocessing the spent
fuel can be immobilized in a matrix, followed by final disposal in the deep geological
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repository. Invariably, the radioactive waste generated from nuclear
power plants is chemically complex and contains a wide range of
fission products (Lee et al., 2006; Lee et al., 2013a; Jantzen et al.,
2013). In addition to the spent nuclear fuel, legacy waste (generated
during the Second World War and decommissioning of a nuclear
site or reactor) comes under the category of HLW (Zorpette, 1996;
Rao, 2001; Beckitt, 2012).

Depending upon the category of radioactive waste, the disposal
of wastes can be carried out in landfill disposal, shallow-level
disposal, and deep geological repositories (Darda et al., 2021).
HLW is further categorized as i) long-lived radionuclides and ii)
short-lived radionuclides. The half-life time of long-lived
radionuclides, such as 239Pu, 129I, 99Tc, and 93Zr, is of the order of
millions of years. On the other hand, the half-life time of short-lived
radionuclides, such as 90Sr, 137Cs, 60Co, and 192Ir, is hundreds to
thousands of years (IAEA, 2017; Ojovan et al., 2019; Ojovan, 2023).
Long-lived radionuclides containing HLW are proposed to be
disposed using the concept of a multi-barrier system (as shown
in Figure 1). The multi-barrier system has different layers of barriers.
The first barrier is wasteform; the second barrier is the HLW
container; the third barrier is an engineered barrier; and the
fourth is a geological barrier (Lee et al., 2006; Jantzen and
Ojovan, 2019).

HLW is immobilized in a suitable wasteform before disposal in
the multi-barrier system. Immobilization is the process where the

waste is made immovable in the form of wasteforms through
various routes, such as containment, solidification, and
vitrification (Jantzen et al., 2013; Li et al., 2021; Jo et al., 2022).
The containment process includes pumping, capping, and
installation of slurry walls. The solidification process involves
the transformation of waste into a stable and immovable form
for storage or disposal, such as cementation. The vitrification
process transforms hazardous waste into a chemically stable
wasteform, such as glass, glass–ceramic, and ceramics (Meegoda
et al., 2003).

The chemical durability and radiation stability of matrix/
wasteforms of any chosen wasteform should be good for
immobilizing waste radionuclides (Lee et al., 2006). The
wasteforms for immobilization of HLW are primarily of three
types i) glass, ii) ceramic, and iii) glass–ceramic wasteforms. A
potential wasteform/matrix should have the following features
(Wang and Liang, 2012; Lee et al., 2013a; Ojovan and Lee, 2014;
Hyatt and Ojovan, 2019; Jantzen and Ojovan, 2019).

1) The loading capacity (ability to accommodate waste inside the
matrix) should be high. In addition, the wasteform should be able
to incorporate daughter products as well.

2) The wasteforms should have good durability under aqueous
conditions. The waste must always be isolated from the
biosphere until the radionuclide becomes non-radioactive
(10 half-lives) (Khan et al., 2010). The porosity of the matrix
should be negligible as minimal porosity will help avoid
permeability and hence leachability under aqueous conditions.

3) The matrix should be highly radiation-tolerant to sustain under
the α- and β-decays of radionuclides against any phase changes,
owing to the heat generated during the decay processes inside the
matrix.

4) The volume of wasteforms should be as small as possible. It
should have good mechanical properties, which will be helpful in
avoiding fracture or crack during transportation and handling.

5) The composition of wasteforms should be close to natural
analogs. However, there is no true natural analog for
borosilicate glass wasteform as it includes a high content of
boron and radionuclides. However, natural basaltic glass can be
considered a natural analog of borosilicate glass because of its
chemically durable properties (Techer et al., 2001; Crovisier et al.,
2003).

The different types of wasteforms are discussed in the following
subsection.

TABLE 1 Classification of radioactive waste and their sources.

Nuclear waste
type

Volume in total
waste (in %)

Radioactivity percentage of total
nuclear waste (in %)

Source

LLW 90 1 Paper, clothing, tools, and rags from industries, hospitals, and nuclear fuel
cycles

ILW 7 4 Contaminated materials from reactor decommissioning, resins, chemical
sludges, and metal fuel cladding

HLW 3 95 Fission products, transuranic elements, and minor actinides from burning
of uranium fuel in the nuclear reactor and from hospitals

FIGURE 1
Multi-barrier system of HLW disposal.
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2 Types of wasteforms

2.1 Non-crystalline wasteforms

Glass is an inorganic solid prepared by quenching from the melt
while preventing the crystallization. The typical glass structure has
mainly three constituents, namely, 1) network formers, 2)
intermediates, and 3) network modifiers (Lee et al., 2006; Lee
et al., 2013b; Hyatt and Ojovan, 2019). The open and random
structure of glass is primarily responsible for achieving high waste
loading and chemical durability (Jantzen, 2011). The radionuclides in
glass are immobilized by primary or/and secondary bonding within
the glass network. The glass has a random structure with specific
characteristics as per the model proposed by Zachariasan (Varshneya
and Mauro, 2019; Shelby, 2020). The characteristics are i) no oxygen
atom may be linked to more than two cations; ii) the cation
coordination number should be 3 or 4; iii) the oxygen polyhedra
should share corners only (not edges or faces); and iv) for a 3D
network, at least three corners must be shared. Glass has been
considered for immobilizing matrix due to its structural flexibility,
simple synthesis route, high waste loading capacity, and inexpensive
rawmaterials. The glass wasteforms have good radiation stability. The
high chemical durability enables the glass to remain stable in corrosive
environments for thousands of years (Kavaz et al., 2020).

2.2 Crystalline wasteforms

The ceramic wasteforms have widely been divided into a)
single-phase ceramics, such as zircon, to accommodate a limited
range of active species, such as Pu; and b)multi-phase systems, such as
Synroc (composed of hollandite (BaAl2Ti6O16), zirconolite
(CaZrTi2O7), and perovskite (CaTiO3)), to accommodate a wide
range of active species (Ringwood et al., 1979; Ojovan et al., 2019;
Orlova et al., 2019). However, Synroc has its own disadvantages, such
as being thermodynamically unstable (Nesbitt et al., 1981). Synroc is
not being used for immobilization of HLW by any country to the best
of our knowledge. Furthermore, the pyrochlore-structured titanate/
zirconate ceramics, such as Gd2Zr2O7 and Er2Zr2O7, are potential
ceramic wasteforms (Maddrell, 2001; Ewing et al., 2004; Sattonnay
et al., 2008). Zirconolite is mainly used to immobilize the long-lived
radionuclides (Pu), while the perovskite phase is primarily suitable for
the short-lived radionuclides (Sr and Ba). The hollandite phase is a
potential candidate to immobilizing Cs, K, Rb, and Ba radionuclides
(Ringwood, 1978; Xu and Wang, 2000). The major disadvantage of
crystalline wasteforms is their inability to accommodate a wide range
of radionuclides (Wang and Liang, 2012).

2.3 Glass–ceramic wasteforms

Recently, the glass–ceramic materials (GCMs) with mineral-like
phases are reported for the immobilization of complex waste (Ojovan
et al., 2021). The major component of GCM may be either the
crystalline phases with the glass acting as a binding agent or the
vitreous phase with the crystalline particles dispersed in the glass
matrix (Ojovan et al., 2008; Donald, 2010; Ojovan et al., 2021). The
most exciting feature of GCMs is that both the long-lived and short-

lived radionuclides can be immobilized. The long-lived radionuclides
can be immobilized in stable and durable crystals, whereas the short-
lived radionuclides can be immobilized in the vitreous phase. The
advantages of immobilizing complex HLW in GCMs are as follows: a)
GCMs have nearly zero porosity and hence lead to minimal leaching.
It can be synthesized on a mass scale by existing glass-forming
techniques; b) the desired glass and ceramic can be incorporated
in a single matrix (Zanotto, 2010).

Glass–ceramic wasteforms possess higher durability, high
thermal stability, and superior mechanical properties than glass
and ceramic wasteforms (Davis and Zanotto, 2017). The ceramic
crystals are embedded in a glass network of the glass–ceramic
matrix, as shown in Figure 2.

The leaching of radionuclides will be initially hindered by the
glass phase surrounding the ceramic phase. Hence, the glass is
another barrier to the outgoing movement of radionuclides from
the ceramic phase. The highly durable crystals homogeneously
dispersed in the bulk of the glass matrix will form an enhanced
containment barrier for radionuclides. There is a potential risk that
conventional glass wasteforms partially crystallize during cooling or
because of radiation effects over long periods, especially in HLWs
(Mahmoudysepehr and Marghussian, 2009). The glass–ceramic
wasteforms are chemically more flexible and less expensive to
prepare than pure ceramics, and in addition, they offer higher
chemical durability than conventional glass and ceramic
wasteforms. The different wasteforms, their suitability, and
composition are tabulated in Table 2.

3 Synthesis of wasteforms

Wasteforms can be synthesized by different methods, rendering
different properties. The wasteforms are invariably synthesized by
employing the melt-quench, solid-state sintering, hot pressing,
microwave sintering (Wei et al., 2020), self-propagating high-
temperature synthesis (SHS) (Barinova et al., 2008), and spark
plasma sintering (SPS) methods (Aldean et al., 2022). The
synthesis method should be simple, cost-effective, and capable of
avoiding the production of secondary radioactive waste. The
synthesis temperature should be low so that evaporation of
volatile radionuclides (such as I, Cs, and Ru) can be minimized.
The viscosity of the molten glass should be optimum so that

FIGURE 2
Schematic representation of glass–ceramic wasteforms.
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homogenization and pouring can be achieved. The following
subsections briefly describe a few selected conventional and
modern methods for the synthesis of wasteforms.

3.1 Melt-quench method

In this method, oxide/carbonates/nitrates of parent materials are
mixed and heated in a crucible to a desired temperature to get a
molten liquid (melt). To get homogeneity, the melt is continuously
stirred. When the melt is quenched (non-equilibrium cooling), it
produces a glass structure. The traditional method is preferred
because it is simple and efficient even at the mass-scale production.

3.2 Internal crystallization and encapsulation
method

The glass–ceramic can be synthesized under slow and controlled
molten liquid cooling conditions by employing the internal

crystallization method. Under controlled cooling, nucleation
occurs, and growth of crystals takes place in the glass matrix.
The method results in the formation of crystals inside the glass
structure (Rawlings et al., 2006; Zhang et al., 2022). The thermal
stability of these glass–ceramic wasteforms is relatively high
compared to the glass and ceramic wasteforms (McCloy and
Goel, 2017).

In the encapsulation method, the ceramic phase is added directly
to the glass charge. The powder-containing glass charge and ceramic
are invariably maintained at the melting temperature of the glass.
Subsequently, the homogeneous melt is quenched, and the glass-
ceramic wasteform is obtained. The schematic representation of
both the methods for the synthesis of glass–ceramic wasteforms is
shown in Figure 3.

3.3 Sintering Methods

The ceramic wasteforms can be synthesized using conventional
solid-state sintering, hot pressing, and the most recent microwave

TABLE 2 Different types of wasteforms and their composition.

Wasteform Composition Country Waste type Reference

Magnox 47.2SiO2-16.9B2O3-4.8Al2O3-5.3MgO-8.4Na2O-17.4Others UK HLW Backhouse et al. (2019)

R7T7 45.5SiO2-14B2O3-4.9Al2O3-9.9Na2O-2.9Fe2O3-22.8Others France HLW Gin et al. (2011)

K26 48.2SiO2-7.5B2O3-2.5Al2O3-16.1Na2O-15.5CaO-10.2Others Russia LILW Ojovan et al. (2005)

CCM 52P2O5-19Al2O3-21Na2O-7.8Others Russia HLW Ojovan and Batyukhnova (2019)

DWPF 50SiO2-8B2O3-4Al2O3-8.7Na2O-1.4 MgO-27.9Others United States HLW Ojovan and Batyukhnova (2019)

PAMELA 52.7SiO2-13.2B2O3-2.7Al2O3-5.9Na2O-4.6CaO-20.9Others Germany–Belgium HLW Ojovan and Batyukhnova (2019)

FIGURE 3
Schematic representation of glass–ceramic wasteform synthesis. (A) Internal crystallization and (B) encapsulation method.
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sintering methods. In recent days, the wasteform synthesis through
microwave energy is a novel concept. The microwave (MW) heating
method can be employed to synthesize different wasteforms to
minimize melting time/temperature and thereby power
consumption. MW heating is rapid and volumetric in nature
(Knox and Copley, 1997). The heating of materials under
microwaves depends upon materials’ dielectric and magnetic
properties. Most of the oxide precursors are poor microwave
absorbers at room temperature. Nevertheless, above a critical
temperature, oxides start absorbing microwaves (Mandal and
Sen, 2015). In a non-absorbing system, initially, oxides are raised
to a critical temperature with the help of a microwave susceptor
(SiC) (Mandal and Sen, 2017).

4 Immobilization mechanism

The wasteforms discussed in the previous section can be utilized
for immobilization of HLW mainly using two concepts (Donald
et al., 1997; Ojovan and Lee, 2014):

(A) Waste dissolution: the waste can be incorporated into the glass
or crystalline (single or multiphase) phase. The radionuclides
are immobilized at a microscopic scale in the wasteforms
(National Research Council, 2011).

(B) Waste encapsulation: the wasteforms can be envisaged, where a
high loading of radionuclides can be encapsulated in a durable
glass/ceramic/glass–ceramic phase. This method mainly
immobilizes radionuclides at a microscopic scale. If the
resultant matrix (obtained after incorporating radionuclides)
exhibits good chemical durability, the matrix can be considered
a secondary barrier against dissolution through water (Donald
et al., 1997). The inclusion of foreign atoms in the random glass
network can improve the stability and durability of the matrix.
The foreign atomsmay settle into interstitial/substitutional sites
of the crystal structure of ceramic wasteforms. In a
glass–ceramic wasteform, foreign atoms may settle either in
the random glass network or at interstitial/substitutional sites in
the ceramic phase. The chemical durability and radiation
stability of the wasteform play important roles in the
selection of wasteforms. The chemical durability and
radiation stability of different kinds of wasteforms are
discussed in the following subsections.

5 Chemical durability of wasteforms

The chemical durability of the matrix defines the long-term
structural integrity and the elemental release from the matrix
(Ojovan and Lee, 2014; Clark et al., 2021). The standard
protocols are employed to study the leaching behavior of the
immobilizing matrix. The frequently used protocols are described
as follows (Strachan et al., 1982; Thorpe et al., 2021):

i) Material characterization center (MCC-1): the leach test setup is
static in nature, and the test is performed at temperatures <100°C.
The reference temperatures are taken as 40°C, 70°C, and 90°C. The
glass monolith is immersed in de-ionized water (DI) water/

reference groundwater at the reference temperatures. The
sample surface area to water volume (SA/V) ratio is usually
maintained as low as ~10 m-1. The test duration is generally
28 days, but it can vary. The test is used to measure the initial
rate and residual rates, and to understand the mechanism of
alteration layer formation.

ii) Material characterization center (MCC-2): the static leach test
is performed in the temperature range 100°C–200°C. The
reference temperatures are taken as 100°C, 150°C, and
190°C. The glass monolith is immersed in DI water/
reference groundwater for a duration of 28 days. The test is
used for the analysis of the residual rate and alteration layer.

iii) Material characterization center (MCC-3): this test is
performed on powdered specimens. The powdered
specimens are kept under a constant agitation condition.
The sample surface area to water volume (SA/V) ratio is
maintained as high as 2000 m-1. The test temperature and
duration are similar to the MCC-2 test. This test gives
information related to the residual rate of leaching.

iv) Material characterization center (MCC-4): the additional
parameter of the leachant flow is introduced in the test. The
reference flow rates used are between 0.1 and 0.001 mL min-1.
The glass monolith is used for the test and performed at
temperatures <100 °C for 28 days. This test is suitable to
measure the initial rate of leaching.

v) Material characterization center (MCC-5): the glass monolith
is kept in the flowing leachant. The leaching solution is DI
water, and the test temperature ranges between 35°C and
300°C. The test is used to measure the initial rate of
leaching in distilled water only.

vi) Product consistency test (PCT-A): this is a static leach test and
performed at 90°C. The powdered sample (74–149 µm) is kept
in DI water for 7 days. The sample surface area to water volume
(SA/V) ratio is maintained as high as 2,000 m−1. The test is
performed to measure the initial rate of leaching.

vii) Product consistency test (PCT-B): this test is similar to PCT-A.
The sample powder is kept at temperatures <100°C. The test is
used to measure the initial rate and residual rates of leaching.

viii) Vapor hydration test (VHT): the leach test is performed with a
glass monolith sample in the temperature ranges 5°C–300°C.
This test is static in nature and performed under steam for
24 days. The residual rate and alteration layer thickness are
measured.

ix) Single-pass flow-through test (SPFT): the test is performed
with glass powder or monoliths at temperatures <100°C. This is
a dynamic test, and the forward rate of leaching/dissolution is
generally measured.

6 Leaching mechanism of the
wasteforms

The leaching of the matrix generally happens in three stages:
Stage (1): hydrolysis of network: in this process, ion exchange

reactions take place between the matrix (glass, ceramic, or
glass–ceramic type network) and the aqueous media; as a result,
the ion exchange reactions (hydrolysis of the matrix) occur (Bunker
et al., 1984; Abrajano et al., 1986; Clark et al., 1992).
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Stage (2): network dissolution: in this process, breakage of
bridging bonds occurs and secondary phases (possible phases:
analcime, phillipsite, sepiolite, and tobermorite) get precipitated.
In this process, dissolution can decrease or increase depending on
the type of phases on the matrix surface (Pierce et al., 2010; Corkhill
et al., 2013).

Stage (3): formation of the hydrated gel layer: the dissolution
rate is related to the formation of a gel layer/alteration products
(zeolites and calcium silicates). The amorphous gel layer’s
composition and thickness depend upon the matrix composition,
temperature, and pH of the aqueous media. The alteration products
are crystalline, sandwiched between the hydrated gel layer and the
aqueous media. This process plays a crucial role in the leaching of
the matrix as it will alter the thickness of the hydrated gel layer (Ma
et al., 2017; Hopf et al., 2018; Wilkinson et al., 2019; Gin et al., 2020;
Stone-Weiss et al., 2020; Zubekhina et al., 2020).

The normalized leach rate (g.m−2.day−1) of nuclide i from the
matrix can be calculated using the following expression (Ojovan
et al., 2019):

NRi � Ci

f i. (SA/V).t. (1)

Here, Ci: concentration of element “i” in the solution (g L−1);
fi: mass fraction of element “i” in the samples (unitless);
SA: surface area of the sample (m2);
V: leachant volume (L) and t is the leaching time.

6.1 Chemical durability of glass wasteforms

In order to investigate the chemical durability of wasteforms, the
United Kingdom HLW glass was synthesized with 25 wt% of
simulated high-level waste (Corkhill et al., 2013). The chemical
durability of glass was studied at pH 12.7 in a saturated Ca(OH)2
solution and alkaline water at pH 9.8. The dissolution of elements
was explained in three regimes that were named as the i) initial
incubation phase, ii) intermediate phase, and iii) residual phase. The
normalized dissolution rates of glass powder (S/V: 10,000 m−1) for
elements B, Li, Na, and Si were found to be 1.9 × 10−5, 1.7 × 10−5,
4.5 × 10−5, and 4.2 × 10−7 g m−2day−1 after 168 days, respectively, in
alkaline water, which was nearly an order lower than obtained rates
of 28 days. The normalized dissolution rates of glass powder in a
saturated calcium hydroxide solution of B, Li, Na, and Si were found
to be of the order of 10−5 g m−2day−1 after 168 days, respectively;
C–S–H (CaO–SiO2–H2O) phase formation was observed in the
initial incubation phase, which led to the reduction in dissolution
rates. The normalized dissolution rates of glass monolith samples (S/
V: 10 m-1) in the saturated Ca(OH)2 solution of B, Li, and Na were
obtained as 5.4 × 10−5, 1.8 × 10−4, and 3.6 × 10−4 g m-2.day−1 after
70 days, respectively. The leaching of Si was not observed
throughout the period in glass monolith samples. The same
group investigated the long-term leaching behavior of
International Simple Glass (ISG) in acidic to hyper alkaline
conditions using PCT and MCC-1 leaching tests for 120 and
720 days, respectively (Backhouse et al., 2018). The B, Na, and Si
dissolution rates were comparable to others (Inagaki et al., 2013;
Neeway et al., 2018). The localized preferential attack and cracks in

the high pH conditions were seen in the ISG samples. The leaching
behavior of the ISG samples was also tested as per MCC-1 protocol
at 50°C. The formation of C–S–H alteration products during the
initial incubation phase led to passivate the dissolution of ISG glass.

The aluminoborosilicate glass was synthesized using the
conventional method, and it investigated the roles of Mg and Ca
in structure and chemical durability using the PCT-B test
(Backhouse et al., 2019). The Na and B leaching rates were
obtained in the order of 10−3 g m-2.day−1 after 112 days. A novel
matrix of nanoporous alumino-borosilicate was developed for
cesium removal from liquid radioactive waste and its stable
immobilization (Abbasi et al., 2020). The matrix showed the
maximum Cs sorption (removal of a compound from solution by
solid-phase constituents) capacity. The leaching test results of heat-
treated samples at 1,100°C have shown the effective stabilization of
Cs in the alumina–borosilicate matrix. The effect of cerium doping
in borosilicate glass was investigated (Zhu et al., 2019). Ce doping led
to an increase in the breakage of B–O–B bonds in [BO3] units.
According to the product consistency test (PCT) results, normalized
leaching rates of the main elements (B and Si) and actinide surrogate
Ce in the glass were very low.

The stability of aluminoborate glass was studied in the acid,
basic, and neutral solutions. The hygroscopic nature of B2O3

deteriorates the chemical durability of glass. To avoid this
condition, Mascaraque et al. (2019) designed a glass in which the
modifier ion content was not more than 25 mol% and the aluminum
to boron ratio varied. The increased aluminum content in the glass
results in improved chemical durability in the neutral and acidic
media, but it is constant in the basic media. It can be concluded that
B2O3 is highly susceptible to nucleophilic OH− attack.

Furthermore, durability studies have been found on
pharmaceutical glass that contains a mixture of modifier ions in
the glass structure. A borosilicate glass was designed with the
substitution of CaO with MgO, and the effect of the increased
MgO concentration in the glass was observed; furthermore, aqueous
stability was tested at 80°C for 40 days (Yang et al., 2021). The
borosilicate glass undergoes the whole dissolution mechanism that
initiates from the ion exchange process forward to forming a silica-
rich layer at the surface of the glass. The increased concentration of
MgO led to the deterioration of the chemical durability of glass. The
selective leaching of phase-separated iron-containing sodium
borosilicate glass was studied (Konon et al., 2022). The chemical
durability was affected by Fe+3 cations. The acidic treatment on glass
led to formation of porous glass (PG), and increasing the time led to
an increased pore volume in glass.

The effect of the glass composition and SA/V ratio on the initial
and residual rates of leaching was investigated (Gin et al., 2013a).
The tests were performed at 90°C after 5 years and compared with
SON68 (French inactive R7/T7-type glass). It was found that, with
the increase in the SA/V ratio, the normalized leaching rates of Si
were decreased. The leaching studies were performed on the
SON68 glass under a dynamic test with a higher SA/V ratio
(~14,000 m−1) at 90°C. The normalized leaching rate was found
in the order of 10−4 g m−2day−1 at pH 10.5 after 200 days (Neeway
et al., 2011). In another study, the leaching behavior of glass was
investigated by using ISG as a reference and the leaching mechanism
was found (Gin et al., 2013b).
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6.2 Chemical durability of ceramic
wasteforms

The waste is immobilized into ceramics such as perovskite
(CaTiO3), hollandite (BaAl2Ti6O16), and zirconolite (CaZrTi2O7)
(Barinova et al., 2008). The perovskite/zirconolite matrix can
accommodate a wide range of the elements present in HLW. The
hollandite–perovskite composite ceramic matrix was synthesized
using the solid-state reaction method (Ma et al., 2021). The
hollandite and perovskite phases were chosen to immobilize Cs
and Sr radionuclides. The chemical durability of the ceramic matrix
was tested with the MCC-1 protocol. The normalized leach rate of Sr
and Cs was found in the order of 10−5 and 10−3 g m−2day−1 after
42 days, respectively, with the matrix of composition (75% of
hollandite and 25% of perovskite). The iodine and cesium
radionuclide loading was proposed to be immobilized in the
defect perovskite structure named Cs3Bi2I9 (Yang et al., 2020).
The chemical durability was tested in the form of a
silica–ceramic composite matrix (30% silica and 70% perovskite)
and a core-shell matrix (80% silica as shell and 20% perovskite as
core) with a semi-dynamic leaching experiment for 14 days. The
BiOI passivating layer was formed in the silica–ceramic composite
matrix, whereas the silica shell prevents the migration of elements in
the aqueous media in the case of the silica–perovskite (core-shell
structure) matrix. The normalized leach rate of iodine was found to
be 30 mg m−2day−1 for the silica–ceramic composite matrix and 5.0 ×
10−3 g m−2day−1 for the core-shell matrix at 90°C.

The powellite ceramic is a potential candidate for immobilizing
Mo and minor actinides. A series of ceramics (Ca1-xLix/2Gdx/
2MoO4) was synthesized using a solid-state reaction method, and
the sintering temperature was maintained between 525°C and 950°C
(Fillet et al., 2004; Frugi et al., 2008; Roessler et al., 2015; Claparede
et al., 2017; Meng et al., 2020). The Gd+3 ion was taken as a surrogate
of minor actinide Cm+3. The normalized mass losses of gadolinium
and molybdenum were 1.4 × 10−4 and 2.2 × 10−4 g m−2 after 28 days,
respectively.

The rare earth phosphates, such as Gd1-xYbxPO4 (where x = 0,
0.1, 0.2. . ..1), were synthesized using a solid-state reaction method
and sintered at different temperatures ranging from 600°C to
1,600°C (Li et al., 2018). Phase transformation was observed as
ytterbium ions replaced gadolinium ions at the lattice site of the
ceramic phase. The phase transformation led to distortion in the
PO4 tetrahedra, resulting in decreased elemental leaching. The
normalized mass loss of gadolinium and ytterbium was obtained
as 2.0 × 10−7 and 2.3 × 10−7 g m−2, respectively, with Gd0.9Yb0.1PO4

composition after 28 days. Gd2Zr2O7 was synthesized using the SPS
method at a sintering temperature of 1,800°C. The phase was loaded
with 45 mol% simulated waste (Wei et al., 2022). The phase
transformation occurred from fluorite to pyrochlore after the
inclusion of waste. The normalized leach rate of Gd was obtained
as 3.5 × 10−8 g m−2.day−1 after 42 days with 45 mol% loading of
waste. The zirconolite ceramic matrix was synthesized using the
solid-state method. Nd (up to 15 at% stabilized) was added as the
surrogate of actinides in the matrix (Cai et al., 2016). The leaching
study was performed at different pH values (5, 7, and 9) at 90°C. The
normalized leach rate of Ca was high at pH = 5 and was obtained as
5.6 × 10−3 g m−2day−1 after 42 days. The normalized leaching rate of
Nd was almost the same (in the order of ~10−5 g m−2day−1) at all the

pH values. Therefore, the zirconolite matrix was found suitable for
immobilizing the Nd radionuclide at different pH values. In
addition, the yttrium iron garnet [Y3-xCexFe5O12 (0 ≤ x ≤ 1)]
was found to be a potential host for the immobilization of HLW
(Luo et al., 2021). The normalized leaching rates of Ce and Y were
obtained in the order of 10−4 and 10−5 g m-2day−1 after 42 days,
respectively.

6.3 Chemical durability of glass–ceramic
wasteforms

The glass–ceramic matrix has gained attention widely due to its
ability to immobilize a wide range of actinides. The addition of
cerium (Ce) and neodymium (Nd) in the borosilicate glass–ceramic
wasteforms (crystalline phase: zirconolite) was investigated, and an
aqueous chemical durability test was performed (Zhu et al., 2020a).
Nd is invariably used as a nonradioactive or nonactive surrogate of
plutonium (Pu) and minor actinides. The aqueous chemical
durability was performed through PCT-B and MCC-1 methods
at 90°C for 28 days. The normalized leach rates of elements (Si, Ca
and Nd) were obtained as 4.5 × 10−3, 2.5 × 10−3, and 1.2 ×
10−4 g m−2day−1 with the MCC-1 method, respectively (with 20 wt
% of CeO2 + 20 wt%Nd2O3), and the concentration of Ce in leachate
was found negligible. It was also reported that with an increase in the
loading % from 15 to 40 of Nd and Ce (in equal amount), an
oxyapatite phase appeared in the glass–ceramics, and the appeared
phase did not significantly influence the chemical durability of
glass–ceramics.

A glass–ceramic wasteform containing calcium neodymium
cerium oxide silicate [Ca2Nd8-xCex(SiO4)6O2] as the ceramic
phase was synthesized to immobilize the rare-earth ions in
wastes generated by pyro-processing (Kim and Heo, 2015). The
normalized leach rate values of Nd and Ce were obtained as 2.2 ×
10−6 and 2.6 × 10−6 g m−2.day−1, respectively, from the PCT test, and
the leach rate values were found to be <0.1 ppb from the MCC-1 test
performed at 90°C for 35 days. The normalized leach rates of
elements were lower in glass–ceramic compared to the glass
matrix. The zirconolite–sodium borosilicate glass–ceramic
wasteforms were prepared using the one-step slow cooling
method (Zhu et al., 2020b). The normalized leach rates of Si, Ca,
and Ce were found to be minimal even after 56 days. The
zirconolite–borosilicate glass–ceramic matrix had shown good
aqueous durability and was found suitable for immobilizing
HLW. The barium borosilicate glass–ceramic containing CTZ
(Molar ratio of CaO, TiO2, and ZrSiO4—2:2:1) was prepared
with the addition of 0, 45, and 55 wt% CTZ in the glass (Li
et al., 2015). The CTZ45 glass–ceramic matrix (annealed at
950°C) showed lower normalized leaching rates. The normalized
leaching rates of Na, B, and Nd were obtained as 7.7 × 10−3, 8.8 ×
10−3, and 7.5 × 10−6 g m−2day−1, respectively after 28 days. However,
glass (CTZ0 matrix) was not chemically durable. The
CTZ55 glass–ceramic matrix had multiple crystalline phases,
resulting in decreased network formers and poor chemical
durability. Therefore, the CTZ45 glass–ceramic matrix was found
to be the most chemically durable.

The barium borosilicate glass–ceramics were synthesized with
neodymium oxide (0–12 wt%) (Wu et al., 2016). The loading of
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Nd2O3 in the range of 2–6 wt% results in mainly zirconolite and
titanate phases, whereas increasing the content of Nd2O3 up to 8 wt
% led to the formation of the titanate phase only. The normalized
leach rate of the glass–ceramics with 6 wt% loading of Nd2O3 was
low compared to 8 wt% loading in the glass–ceramic matrix. The
normalized leach rates of Nd, Ca, and B were 4.4 × 10−6, 1.6 × 10−3,
and 6.8 × 10−3 g m−2.day−1, respectively, with a loading of 6 wt%
Nd2O3 glass–ceramics after 42 days. Furthermore, the zirconolite
barium borosilicate glass–ceramics with simulated sulfate
containing liquid waste (0, 16, 20, 30 wt%) was synthesized (Wu
et al., 2018). The zirconolite phase and some minor baddeleyite
phases were present at 16 wt% liquid waste loading. In contrast,
increasing the content of liquid waste (20–30 wt%) led to the
perovskite phase formation. The normalized leaching rates of Si,
B, Na, and La were obtained as 8.1 × 10−4, 1.6 × 10−3, 7.2 × 10−3, and
1.2 × 10−3 g m−2day−1, respectively, after 28 days with 16 wt% liquid
waste content. The zirconolite barium borosilicate glass–ceramic
matrices were prepared with the loading of the SO3 content (0, 2, 6,
and 8 wt%) (Wang et al., 2017). The matrix with 4 wt% of SO3

content led to a new barite phase. The normalized leach rates of Si, B,
and Ba were found in the order of 10−3, 10−3, and 10−4 g m−2.day−1

after 14 days, respectively. The 8 wt% SO3-loaded glass–ceramic
matrix had shown higher leaching rates because it had pores and
an unstable nardite phase, leading to poor chemical durability.

The pyrochlore-based borosilicate glass–ceramics were
synthesized at 1,300°C and cooled to 1,050°C at the rate of
10°C min−1 using the one-step heat treatment method with a
uniform distribution of the crystalline phase (Wu et al., 2020).
The normalized leach rates of Na, B, Al, Si, Nd, Ti, and Nb were
obtained as 6.8 × 10−3, 3.7 × 10−4, 1.5 × 10−2, 2.2 × 10−3, 3.0 × 10−5,
5.1 × 10−5, and 5.5 × 10−6 g m−2day−1 after 28 days, respectively. The
borosilicate glass–ceramics were synthesized with the loading of the
strontium oxide content in the range of 10–25 mol% (Pilania et al.,
2023). The normalized leach rates of Si, B, and Sr were obtained as
1.2 × 10−8, 3.7 × 10−9, and 1 × 10−8 g m−2day−1 after 30 days,
respectively.

7 Radiation stability of wasteforms

In addition to chemical durability, the radiation stability of the
wasteforms/matrices plays a major role in selecting a matrix. The
actinides in the radioactive waste emit alpha particles and recoil
nuclei (Weber et al., 1998). The recoil nucleus undergoes several
cascade collisions within the matrix. These primary and secondary
collisions lead to defect generation within the matrix. The radiation
stability of different types of matrices is reviewed in the following
section.

7.1 Radiation stability of glass wasteforms

In order to obtain radiation-resistant wasteforms, efforts are
being made to explore a matrix with moderate radiation resistance.
The radiation stability of borosilicate glass was investigated by
electron paramagnetic resonance and ultraviolet-visible
spectroscopy (Wang et al., 2020). The glass samples were
exposed to 60Co gamma radiation with a dose rate of

5,560 Gy h−1, and we observed an increase in non-bridging
oxygen (NBO) ions, formation of peroxy radical, etc., which were
detrimental for the structural integrity of the matrix. The gamma
irradiation effect on the Fe- and Eu-doped Trombay nuclear waste
glass was investigated through electron spin resonance and
photoluminescence spectroscopy (Mohapatra et al., 2014). The
60Co gamma source was irradiated at doses 1 kGy h−1 and
8 kGy h−1. Europium (Eu+3) was used as a surrogate for
plutonium (Pu+3) in the glass matrix. The PL results showed the
stability of trivalent species in the matrix. The formation of the Eu+2

oxidation state was not observed in the glass, but Eu sites were more
disordered after gamma irradiation (de Bonfils et al., 2007). The
effects of beta irradiation on the 30 mol% Fe2O3-70 mol% P2O5

polyphosphate glass were studied. The glass was irradiated with a
beta emitter 90Sr/90Y source (varying dose from 5.4 to 22 kGy) (Goj
et al., 2019). The glass structure led to the breakage of P–O–P
bonding upon irradiation, and the broken bonds might form the
P–O–H bridges, which can decrease the chemical durability. The
knocking out process of phosphorous can create the P–O–O–P
linkage, which also relaxes in the form of P–O–P bridges and O2

(oxygen bubbles). The Fe–O–P bridges were radiation-tolerant, as
compared to P–O–P bridges. In another study on iron phosphate
glass (IPG: 45Fe2O3-55P2O5 in mol%) using electron beam
irradiation, an increase in electron dose from 1 × 1026 to 4.8 ×
1026 e m−2 led to the formation of Fe-rich and P-rich nanophases
along with phase separation (Sun et al., 2003). Self-heating and
charging were anticipated factors that led to the structural changes
in IPG. In order to investigate the effect of the 137Cs radionuclide on
the radiation stability of sodium alumino-iron phosphate glass, Ba
was taken as a surrogate of Cs (Stefanovsky et al., 2019). The Ba
replacement for Cs exhibited a slight modification in the glass
network but no substantial effects on the hydrolytic durability of
the phosphate glass. There was no change observed in the Fe3+ to
Fe2+ ratio.

The samples become radioactive after irradiation in existing
gamma and beta sources; therefore, induced activity inhibits detailed
investigation of irradiated samples. In addition, the availability of
irradiation sources and energy is limited. To overcome the activity of
irradiated samples, the ion irradiation method can be used as a
surrogate method with the added advantage of desired fluence and
energy. The ion-irradiated samples do not get activated and can be
tested in the existing laboratory setup. Similar conditions can be
simulated with high-energy ion beams, and radiation stability can be
performed (Dube et al., 2015). The radiation stability of iron
phosphate glass was studied by (Dube et al., 2020), in which
cerium was used as a surrogate of actinides. The pure and
cerium-doped iron phosphate glass (IPG) was irradiated with a
gold source of energy 750 keV at a fluence of 2 ×1015 ion cm-2 to
mimic ballistic damage due to the cascade of recoil atoms during the
decay of actinides. The Raman spectra confirmed the incorporation
of cerium as a modifier in the glass. A significant reduction of iron
was observed after gold ion irradiation. The iron reduction might
lead to the formation of crystals, so poor chemical durability of
cerium-doped glass was anticipated. Swift heavy ion irradiation
using 14.4 MeV Si ions at a fluence of 1 × 107 ions cm−2 on zinc
phosphate glass showed the formation of ion tracks and reduced the
number of bridging O atoms (Awazu et al., 2003). The heavy ion
irradiation using 4 MeV O+ ions from 5 × 1013 to 5 × 1016 ion cm−2
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on IPG leads to the formation of nanocrystals with different phases,
such as Fe4(P2O7)3 and Fe(PO3)3. The ion track was formed upon
irradiation, owing to stress in the matrix, which results in
considerable deformation (shear bands). The shear bands led to
the formation of nanocrystals (Jegadeesan et al., 2015).

7.2 Radiation stability studies on ceramic
wasteforms

The ceramic wasteforms exhibit long-term stability, radiation
tolerance, and leaching resistance, and most of the actinides and
fission products can be incorporated into polycrystalline phases
(Weber et al., 1998). A synroc is a widely known ceramic for the
immobilization of minor actinides, which are generated from the
nuclear fuel cycle and reprocessing of fuel. The synroc consists of
hollandite, perovskite, and zirconolite phases. Among these phases,
zirconolite has a better radiation stability, aqueous corrosion
resistance, and thermal stability (Rossell, 1992). Several attempts
have been made to study the radiation-induced modification in the
zirconolite matrix. The radiation stability of zirconolite ceramics was
investigated using a surrogate method of ion irradiation. The matrix
was bombarded with He+ ions (30 keV) at fluence ranging from
1 ×1017 to 1 ×1021 ions cm−2 (Gupta et al., 2016). The XRD results of
irradiated samples revealed the damage at fluence 1 ×1020 ions cm−2,
and the decrease in intensity of the XRD peaks with the increase in
fluence was attributed to the radiation-induced defects in the matrix.
However, the monoclinic structure was intact even at the maximum
fluence used for the study. Nd-doped zirconolite and perovskite (Nd
as Pu surrogate) were irradiated with Kr+ ions of energy 2 MeV at a
fluence of 5 ×1015 ions cm−2 (Davoisne et al., 2011). The micro-
diffraction patterns revealed radiation-induced structural changes in
the Nd-doped perovskite matrix, which indicated the symmetry
change (from orthorhombic to cubic) along with matrix
amorphization.

Nd-doped zirconolite pellets were irradiated with He+ ions
(30 keV) to observe the irradiation-induced effects in the matrix
(Gupta et al., 2020). A decrease in intensity and an increase in the
width of the peaks at the fluence of 1×1017 ions cm−2 in XRD peaks
were observed without loss of significant crystallinity. It was
anticipated that an increase in the fluence of He+ ions can lead
to the formation of helium bubbles in the matrix. Consequently, the
radiation stability property of the matrix might get deteriorated. The
same group further studied the effects of Au (120 MeV) ion
irradiation on the Nd-doped zirconolite to simulate the α-decay
events at a fluence of 3 ×1013 ions cm-2 (Gupta et al., 2019). The
broadening and reduction in the intensity of the XRD peaks
confirmed the induced defects and vacancies at the fluence of
3 ×1013 ions cm−2. The heavy ion irradiation-induced amorphous
track formation was observed in the matrix. The irradiation effect on
the pyrochlore ceramic matrix (A2Ti2O7; where A: Y, Sm, Gd, Er,
and Yb) was investigated with 197Au ions (2.2 GeV) (Shamblin et al.,
2016). The amorphous nature and track formation were observed in
all compositions. The Y2Ti2O7 ceramic was more amorphous
resistant than other compositions, whereas Gd2Ti2O7 was prone
to amorphization.

The Nd-doped zirconolite ((Ca0.8Nd0.2)Zr(Ti1.8Al0.2)O7)
ceramic was irradiated with i) Kr+ ions (2 MeV) at a fluence of

1 ×1014 and 5 ×1015 ions cm−2 and ii) He+ ions (200 keV) at a fluence
of 1 ×1014, 5 ×1015z and 1 ×1017 ions cm−2 (Gilbert et al., 2011). There
was no significant damage at a lower fluence of both the ions;
however, at a higher fluence (5 ×1015 ions cm−2) of Kr+ ions,
zirconolite got completely amorphized, whereas helium
accumulation or helium bubbles were observed at a high fluence
of He+ ions. The radiation-induced modifications in the single-
crystal yttria-stabilized zirconolite (YSZ) ceramic using He+ ions
(100 keV) have been studied (Yang et al., 2012). An effort was made
to investigate the damage evolution process in three fluence regimes:
i) at a low fluence in the range of 1 ×1016 to 4 ×1016 ions cm-2,
formation of point defects was seen; ii) at an intermediate fluence in
the range of 8 ×1016 to 1 ×1017 ions cm-2, volume defect clusters were
seen; iii) at a fluence of 2 ×1017 and 4 ×1017 ions cm−2, ribbon-like He
bubbles and cracks were observed, which cause the blistering on the
surface. A similar study was performed on polycrystalline yttria-
stabilized zirconolite ceramics, which were irradiated with He+ ions
(70 keV). The single crystal and polycrystalline samples of YSZ had
shown similar behavior (spherical and ribbon-like helium bubbles of
different shapes under irradiation) (Yang et al., 2015a).

The decay of 90Sr emits beta particles of energy in the range of
0.546–2.28 MeV. The interaction of beta particles and generated
recoil nuclei in ceramic wasteforms led to the deterioration in the
physical properties of the matrix (Aubin-Chevaldonnet et al., 2006).
Therefore, ceramic wasteforms are desired to be stable under the
beta decay of Sr. In order to simulate the effect of energetic beta
particles on the radiation stability of ceramic wasteforms, strontium
titanate was irradiated with an electron beam of energy 1.8 MeV
with a flux of 1.5 × 1013 electrons/cm2.s1 (Yang et al., 2015b). The
energetic electrons can produce atomic displacements by depositing
energy to the matrix, which may induce phase separation, chemical
disordering, or amorphization in irradiated materials (Kinsho et al.,
2003). The perovskite structure did not change after electron
irradiation, as revealed from the Raman spectrum of SrTiO3. The
electron microscopic images revealed a dense microstructure, which
was advantageous to avoid radioactive nuclide leaking into the
environment. The CaZrO3 perovskite was irradiated with the Au+

ions (940 MeV) at a fluence of 1.5 ×1013 ions cm−2 (Lang et al., 2012).
Perovskite got completely amorphized, and amorphous tracks of
size 6 ± 0.6 nm were seen.

The polycrystalline pyrochlore (Lu2Ti2O7) was irradiated with
the beam of He+ ions (200 keV) in a fluence ranging
2 ×1015—2 ×1017 ions cm−2 (Zhang et al., 2015). Micro-swelling
was observed at the fluence of more than 2 ×1016 ions cm−2; on
further increase in the fluence, the matrix turned into a completely
disordered structure. The pristine pyrochlore phase was intact up to
a fluence of 5 ×1016 ions cm−2, and at higher fluence, order to
disorder transformation was seen. The amorphization of pyrochlore
was not observed even at a fluence of 2 ×1017 ions cm−2. The
radiation stability of Gd2Zr2O7 pyrochlore with Au+3 ions
(7 MeV) at a fluence of 2.2 ×1015 ions cm−2 was investigated
(Taylor et al., 2016). The samples irradiated with Au+3 ions
underwent pyrochlore-to-defect fluorite structure transformation,
and swelling was also seen. Subsequently, the irradiated samples
were bombarded with He+ ions at a fluence of 2 ×1015 and 2 ×1016

ions cm−2; furthermore, an increase in lattice swelling was seen. The
lattice swelling was decreased at a higher fluence of 2 ×1017 ions cm−2

(Debelle et al., 2010).
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7.3 Radiation stability studies on
glass–ceramic wasteforms

In order to determine the radiation stability of glass–ceramic
matrices, the borosilicate glass–ceramic matrices incorporating Cs/Sr
(CS), lanthanide (LN), and transition metal (TM)) were investigated
under different irradiation conditions (Tang et al., 2014). The samples
were irradiated with a high-energy (5 MeV) alpha ion beam at a
fluence of 1 ×1021 ions m−2 and a low-energy (600 keV) Kr heavy-ion
beam at a fluence of 2.5 ×1019 ions m−2 to observe self-irradiation
effects in the matrix. The light-ion beam (alpha ion) did not induce
structural changes in thematrix, whereas the heavy-ion beam (Kr ion)
led to a change from crystalline phases into an amorphous phase. The
electron irradiation study was performed at a dose of 1013 Gy
(equivalent to 1,000 years of Cs/Sr-loaded wasteform irradiation
dose (Weber et al., 2009)) to observe the changes in the ceramic
phase. The studies show that the matrix was radiation-tolerant under
β- and γ-beam irradiation. The radiation stability of the zirconolite-
based aluminosilicate glass–ceramic matrix was investigated (Mir
et al., 2021). The matrix was irradiated with a He ion beam at
different energies and fluence. The 10-keV He ions at a fluence of
8 × 1016 He cm−2 h led to the formation of He bubbles in the ceramic
phase and oxygen bubbles in the glass phase. Helium bubble
formation was not observed in the glass phase, which may be due
to a large He diffusion coefficient. The amorphization of the
zirconolite phase was observed with 20-keV He ion irradiation at a
fluence of 1.2 × 1017 He cm−2 at 143 k temperature.

8 Summary

The review uncovers broader aspects of matrices for radioactive
waste immobilization. An introduction to wasteforms and types of
wasteforms for radioactive waste immobilization are discussed. The
glass, ceramic, and glass–ceramic wasteforms are introduced and
reviewed in detail. The glass–ceramic wasteforms revolutionized have
given a new perspective for the immobilization of radionuclides.
However, glass–ceramics are still under exploration. Glass–ceramics
can be potential wasteforms for the immobilization of waste
generated from next-generation nuclear reactors.

The immobilization of spent metallic fuels generated from next-
generation nuclear reactors needs to be addressed. The reprocessing
of used fuel to recover uranium reduces the wastage of uranium and
plutonium. Long-lived actinides are being reprocessed to be
converted into short-lived actinides. Short-lived actinides along
with traces of long-lived actinides can be immobilized in suitable
glass–ceramic wasteforms. In addition, spreading awareness about
storage among the public should be considered. At proposed
storage/disposal sites, a series of awareness campaigns should be
conducted to educate the public.
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