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Introduction: Metamaterials consist of periodic arrangements of artificial
subwavelength units that possess electromagnetic properties not present in
natural media. It has attracted more interest due to its ability to alter
electromagnetic radiation in a flexible manner, which has resulted in the
development of multiple radio frequency devices based on metamaterials.
Metamaterials with the required frequency band for electric or magnetic
resonance can be made using unit cell structure. The incident electromagnetic
wave will enter the metamaterials and be kept there in the absence of reflection.

Methods: This paper proposes a novel broadband THz absorber filter based on
graphene for emerging applications. The proposed structure comprised of three
parts. The top layer consists of graphene, the middle layer consists of dielectric
and the bottom layer is made up of gold.

Results: The proposed structure is experimentally designed and validated using
the COMSOL simulator.

Discussion: Simulation results show that the proposed absorber has better
performance as compared with existing methods.
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1 Introduction

Terahertz absorbers have become a research hotspot in the field of terahertz and
metamaterials due to their potential application value in detection, imaging and sensing.
The huge application prospects of terahertz technology make it of great strategic significance
in the future development of high-tech.

The terahertz band is located between visible light and infrared light, has rich spectrum
resources, and has great strategic significance in fields such as communications (Olariu et al.,
2023), biomedicine (Yin et al., 2022) and spectral detection (Liu et al., 2022). However, the lack of
effective terahertz functional devices is one of the important factors limiting the development of
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terahertz technology (Zhang et al., 2020; Chen et al., 2022a). Terahertz
absorbers have received widespread attention in the fields of imaging
(Sung et al., 2018), sensing (Wu et al., 2021) and stealth (Cheng et al.,
2020). In practical applications, once a traditional terahertz absorber is
manufactured, its structural size is fixed and it can only absorb terahertz
waves of a specific frequency (Huang et al., 2021; Hossain et al., 2023).
Therefore, it is particularly important to design a tunable high-
performance terahertz absorber.

A brand-new class of electromagnetic materials created through
artificial synthesis called metamaterials is made up of regular arrays
of subwavelength unit structures. They typically consist of
fundamental electric or magnetic resonance units and can cause
electromagnetic waves to resonate in specific bands.

In order to adapt to more complex electromagnetic environments,
many scholars have used temperature-sensitive, light-sensitive and
magnetic-sensitive materials (Bing et al., 2019; Zheng et al., 2021;
Ning et al., 2022). Among them, graphene, as a typical electrically
tunable material, is composed of six carbon atoms in a hexagonal
molecular structure (Nie et al., 2023). Graphene has unique high-
mobility carriers, and the Fermi level can be precisely controlled by
adding electrodes (Zhou and Song, 2022; Pan et al., 2023), and it has
ultra-fast response from visible light to terahertz bands (Liu et al.,
2021a). Due to its outstanding mechanical, optical, and electrical
conductivity as well as its great carrier mobility, graphene has
attracted a lot of attention. Therefore, the properties of graphene
materials are very consistent with the requirements of tunable
terahertz absorbers. Graphene and metamaterials are combined to
design flexible tunable terahertz absorbers.

Different patterns of graphene excite plasmons at different resonant
frequencies. There are two main design methods to achieve multi-peak
or broadband absorption: The first is top-level plane design (Han and
Chen, 2020; Zhang et al., 2021a), that is, designing structural units of
different shapes and sizes on the top layer to generate resonance modes,
and couple and superimpose each other to achieve broadband
absorption. The second is vertical coupling design (Shen et al., 2020;
Zhu et al., 2021), that is, hybridization and fusion between multi-layer
structures to formmulti-level resonance. The authors in (Fardoost et al.,
2017) designed a 3-layer absorber with an annular porous graphene top
layer. The simulation results showed that the absorption rate reached
more than 90% in the range of 0.91–1.86 THz. In addition, by adding a
layer of ring like porous graphene, the absorption bandwidth increases
by 0.2 THz. Reference (Xie et al., 2021a) proposed an absorber
composed of different geometric resonator structures. The absorber
has a wide absorption bandwidth and achieves a broadband range of
1.26 THz (absorption > 80%). In the same year, a graphene layer
absorber composed of a ring and a cross structure was proposed. There
are fourth-order resonance and surface plasmon resonance in the
1.23 THz to 1.68 THz band, and its absorption rate reaches more
than 99% (Feng et al., 2021). But so far, the absorption effect and
width of graphene-based ultra-broadband perfect absorbers still need to
be improved, and the device structure needs to be simplified.

This research work designed a graphene-based polarization-
insensitive broadband THz absorber. The main contributions are as
follows.

• The main structure from top to bottom is disk-shaped and
L-shaped graphene, SiO2 and metallic gold. By calculation
through theoretical and simulation methods, it was found that

the absorption rate of the device exceeds 90% and reaches a
spectrum width of 4.14 THz.

• The electromagnetic field distribution is used to specifically
analyze the generation mechanism of broadband absorption,
and the impact of changes in the geometric parameters of the
device structure on the absorption performance is studied.

• The proposed design has great application potential, including
smart switches, energy harvesting, modulators and filters.

The remaining of this paper is organized as follows. In Section 2,
the proposed absorber model is described. Section 3 provides
detailed simulation results evaluation while Section 4 gives the
conclusion.

2 Model description

The proposed designed absorber is shown in Figure 1A. Among
them, the graphene pattern on the top layer is shown in Figure 1B,
which is mainly composed of L-shaped and circular shapes. Its
optimized structural parameters are P = 4 μm, L = 1. 9 μm, R =
1.35 μm. The middle layer is made of SiO2 material with dielectric
constant εs = 3.8 and thickness d = 7.5 μm. The lower layer is made
of metallic gold, with thickness t = 2 μm and conductivity σ = 4.09 ×
107 S/m (Lan et al., 2022).

The absorber is simulated and its structural parameters are
optimized through COMSOL simulation software. The
absorptivity of the device A� 1−R − T (Li et al., 2022a; Zheng
et al., 2023), where R and T are the reflectivity and transmittance
of the device. To achieve perfect absorption, R, T need to be
minimized, and the designed metal layer can effectively prevent
the transmission of THz waves. That is, when T� 0, a reasonable
model structure is illuminated by external electromagnetic waves,
electromagnetic resonance will occur, that is, R� 0, thereby
achieving perfect absorption (Zheng et al., 2022a).

To clearly reveal the principle of terahertz absorbers, multiple
reflection interference theory (MRIT) is used (Chen, 2012; Yang
et al., 2020). Figure 1C shows the propagation path of THz waves in
the absorber. The terahertz wave enters the absorber obliquely from the
air. Part of it is reflected on the upper surface of the graphene layer with a
reflection coefficient of R12, and the other part is transmitted into the
SiO2 layer with a transmission coefficient of T12. When the THz wave
transmitted into the SiO2 layer reaches the metal layer, a complex phase
factor will be added. After total reflection, after passing through the SiO2

layer again, part of it is transmitted into the air. The amplitude of the
transmitted terahertz wave at this time is T12T21R23e(2iβ), R23 is the
reflection coefficient of themetal plate, andT21 is the THzwave incident
from SiO2 Transmission coefficient to air. Another part will undergo
multiple reflections, and this superimposed multiple reflections can
offset the direct reflections from the air and the graphene surface,
thereby a high level of absorption is achieved. The total reflection
coefficient of the device (Zhuo et al., 2022) can be expressed as:

R � R12 + T12T21R23e
2iβ( ) + T12T21R21R23e

4iβ( ) + . . . (1)
In the formula: R23� −1; β � ��

εs
√

k0d is the propagation phase of
the SiO2 layer; k0 is the size of the wave vector in free space.
Simplifying Eq. 1 we get:
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R ≈R12 − T12T21e 2iβ( )
1 + R21e 2iβ( ) (2)

The total electrical conductivity σ of graphene is mainly
composed of two parts: the intra-band electrical conductivity
σ intra and the inter-band electrical conductivity σ inter (Xu et al.,
2013; Pan et al., 2023). For the THz band at room temperature,
according to the Pauli repulsion principle, σ intra is negligible relative
to σ inter, so it is only necessary to mathematically solve σinter and
convert it into Drude conductivity form. Therefore, σ (Andryieuski
and Lavrinenko, 2013; Xu et al., 2013; Chen et al., 2021a) can be
expressed as:

σ ≈σ inter ≈
ie2 Ef

∣∣∣∣ ∣∣∣∣
πh2 ω + i

τ( ) (3)

In the formula: τ is the relaxation time of graphene; Ef is the
Fermi level of graphene; ω is the angular frequency of the incident
THz wave; h is Planck’s constant (1.05 × 10−34 J s); e is the electron
charge (1.6 × 10−19 C). The relationship between the dielectric
constant e and conductivity σ of graphene (Chen et al., 2021a;
Xie et al., 2021b) can be expressed as:

ε� 1+ iσ

ωε0tg
(4)

In the formula: ε0 is the dielectric constant in vacuum; tg is the
thickness of graphene. Graphene is a typical two-dimensional
material, so the thickness of a single layer of graphene is set to
1 nm (Deng et al., 2016; Liu et al., 2021b; Qian et al., 2021; Lu et al.,

2022). In addition, the results of relevant research papers (Han and
Chen, 2020; Li et al., 2021a; Liu et al., 2021c; Zheng et al., 2021) are
reproduced to ensure the accuracy of the overall design method.

3 Results and discussion

Set graphene’s τ � 0.1 ps and Ef � 0.95 eV in the COMSOL
simulator. When the incident electromagnetic wave is irradiated
perpendicularly to the device, the absorption and reflection curve of
the absorber at 2–8 THz is shown in Figure 2A. It can be seen from
the dotted line in Figure 2A that the absorber has three peaks, and
the absorption rate in the range of 3.02–7.16 THz exceeds 90%. The
bandwidth of the absorber reaches 4.14 THz, and the relative
bandwidth reaches 80%. The above greatly improves the
performance of graphene-based tunable terahertz absorbers. It
can be clearly seen that the simulated absorption spectrum has a
very small deviation from the MRIT theoretical absorption
spectrum. The main reason for the deviation is that the absorber
is theoretically considered to have no loss. In addition, as shown in
Figure 2B, the absorption effects on the transverse electric (TE) (the
electric field of the external electromagnetic wave only exists in the y
direction) and the transverse magnetic (TM) (the magnetic field
only exists in the x direction) modes completely overlap, so the
design structure is highly symmetrical on both the X-axis and Y-axis,
and subsequent discussions will be conducted in TE mode.

To explore the intrinsic procedure, the absorption spectra of
graphene layers with different patterns were drawn, as shown in
Figure 3A.

FIGURE 1
Proposed THz absorber design. (A) 3D-view; (B) top view; (C) wave propagation.
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The electric field distribution diagram (Ez) in the z direction at
the marked frequency position in Figure 3A is shown in Figure 3E.
Figures 3B–D are separate circles, four top views of two L-shaped
and circular + L-shaped graphene absorbers. First, for the two
separate arrays, the disk structure has a peak at the high-
frequency position f1, and the absorption rate reaches 80%,
while the overall L-shaped structure absorption is good, and
there are two bumps at the low and mid-frequency positions (f1

and f3). The absorption produced by the two separate arrays is due
to the weak surface plasmon excitation at the edge position of the
graphene, forming a small number of dipole distributions along the
direction of the incident electric field. For the combined structure,
there are also three peaks, which may be caused by coupling between
separate arrays. Combined with the electric field distribution
diagram at each frequency in Figure 3E, the electric fields at f1

and f6 are distributed in the vertical direction, the electric fields at
f2 and f4 are distributed in the horizontal direction, and the electric
fields at f3 and f5 are distributed in the horizontal and vertical

directions. There is a partial electric field distribution. The L-shaped
graphene layer is responsible for the absorption of the middle and
low frequency bands, and the disk shape dominates the absorption
of the middle and high frequency parts. There is a dipole distribution
in the electric field at each frequency. This distribution causes a
strong dipole resonance, which is related to the incident
Electromagnetic waves act and lead to high absorption (Bordbar
et al., 2020; Amin et al., 2021; Zhang and Song, 2021; Li et al., 2022b).

In addition, analyzing the electric field mode distribution |E| of
the absorber is also an important step in explaining the broadband
absorber (Zhang et al., 2021b; Xu et al., 2021). Further, draw |E|
diagrams of the limit frequency (3.02, 7.16 THz) and 3 peak
frequencies where the absorption rate is greater than 90%, as
shown in Figure 4. At low frequencies (2.9, 3.32 THz), the
electric field is mainly localized to the intersection of the
horizontal slit of the cross structure and the disk shape (Cai
et al., 2021; Miaofen et al., 2023). The graphene layer couples
with the THz wave incident from the outside and it causes the

FIGURE 2
Results comparison of the proposed absorber. (A) Absorption, reflection and MRIT simulation; (B) TE and TM modes evaluation.

FIGURE 3
Absorption evaluation under different frequencies. (A) Absorption results of different shapes; (B) top view of circular design; (C) top view of four
L-shaped design; (D) top view of circular and L-shaped design; (E) corresponding E-field in z direction.
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electric dipole resonance, so that the energy of the incident light is
consumed in the SiO2 layer, thereby achieving perfect absorption of
the absorber (Bordbar et al., 2020; Zhang and Song, 2021). As the
frequency increases, the local electric field gradually moves from the
edge to the middle position (Yao et al., 2023). The electric field at the
middle frequency position (5.02 THz) has been mostly localized to
the slit of the disk and L-shaped combined structure along the
direction of the electric field, and the electric field at the high
frequency position (6.76, 7.16 THz) has been completely localized
here. From the outside to the inside, the coupling between the
electric dipole resonances at different positions is also an important
reason for the generation of broadband absorption (Lu et al., 2017;
Ding et al., 2023). This view can also be reflected from the absorption
curve. To sum up, the ultra-broadband absorption produced by the
device is caused by the mutual coupling between the dipoles
generated by the two shapes of graphene and the dipole
distribution generated at the main concentrated slits and their
electric dipole resonance, namely, hybridization and coupling
effects between combined structures (Wang et al., 2023; Zhao
et al., 2023).

The designed absorber characteristics are further characterized
by changing the shape of the internal graphene. As can be seen from
Figure 5A, the internal absorption of circular, regular rhombus and
octagonal graphene absorbers are shown in Figures 5B–D. The
circular graphene changes into regular quadrilateral and regular
octagonal graphene, and it can be found that the absorption rate of
the absorber does not change much (An et al., 2023; Zhang et al.,
2023). The slits generated by the coupling of L-shaped and other
intermediate graphene shapes always exist, and most of the
electromagnetic field should be strongly localized at the slits.

Therefore, a very efficient way to design ultra-broadband
absorbers is to design different shapes of patterns on the top
plane to construct air slits to form couplings, thereby increasing
the FB and enhancing the absorption rate.

By changing the parameters of the absorber structure, the
magnetic permeability and dielectric constant of graphene can be
adjusted (Shi et al., 2023). In order for the absorber to maintain
perfect absorption, its structural parameters need to be optimized. In
addition, in the actual manufacturing process, it is difficult to
accurately control the geometric parameters of the device, so the
impact of geometric errors on device performance will be discussed
later.

As shown in Figure 6A, as the thickness of the SiO2 layer
increases, the absorption curve gradually shifts to red. The
absorption rate in the low-frequency part has always
maintained an increasing trend. The peak at the intermediate
frequency continues to maintain an absorption of more than
99%, while the high-frequency absorption peak first increases and
then decreases. This is a change in SiO2 thickness that causes the
absorber’s effective impedance and free space impedance to
match each other at low and mid-range frequencies (Zhao
et al., 2022), while matching and then breaking down at high
frequencies. In Figures 6B–D, the effects of the radius R of the
disk and the length L and width W of the L-shaped graphene on
absorption are discussed respectively. As R increases, the
absorption rate of the high-frequency part changes
significantly, while the absorption effect of the mid- and low-
frequency parts remains almost unchanged (Li et al., 2021b). As L
becomes longer, the change in absorption rate is exactly the
opposite, which also proves that the previously mentioned L

FIGURE 4
Electric field under different frequencies. (A) 3.02 THz; (B) 3.32 THz; (C) 5.02 THz; (D) 6.76 THz; (E) 7.16 THz.
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structure dominates the absorption of mid-to low-frequency
parts, and the disk structure is responsible for the absorption
of mid- and high-frequency parts. It can be seen from Figure 6D
that whenW changes from 0.45 to 0.60 μm, the absorption rate in

the entire frequency band continues to increase (Li et al., 2021c).
Because the width of the L-shaped structure can also be defined as
the distance between the L-shaped structure and the disk, as the
distance decreases, the resonant coupling between the disk and

FIGURE 5
Comparison of absorption under different shapes. (A) Absorption evaluation; (B) circular; (C) quadrilateral; (D) octagonal.

FIGURE 6
Impact of different geometrical parameters on absorption. (A) Variation with d; (B) variation with R; (C) variation with L; (D) variation with W.
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the L-shaped graphene increases, resulting in continued
enhancement of the device’s absorption rate. However, if the
distance between the two is too small, the slit will become smaller,
thereby reducing the local electric field and reducing the
absorption rate. In summary, the structural parameters of the
device can be changed within a certain range while maintaining
high absorption, which will reduce the cost and difficulty in the
actual manufacturing process.

During the actual use of the device, the THz wave incident
from the outside is not necessarily perpendicular to the surface of
the device, so it is very necessary to study the sensitivity of the
polarization angle of the device. Figures 7A, B shows the
absorption spectra of the device as the incident angle changes
in TE and TM modes. In TE mode (Huang et al., 2023), when the
incident angle changes from 0° to 70° and when it is 30°, the
absorption intensity and spectrum width do not change much. As
the incident angle continues to increase, the spectrum width and
absorption rate slowly decrease until the incident angle is 50°, and
the spectrum width with an absorption rate greater than 80%
exceeds 4 THz (Lan et al., 2023). When the incident angle is
greater than 50°, the absorption effect is significantly reduced,
and the energy of the THz wave acting on the absorber surface is
greatly reduced, so the absorption rate will decrease rapidly (Feng
et al., 2021). In TM mode, when the incident angle is in the range
of 0°–60°, the absorption effect and spectrum width are both very
good, and when the electromagnetic wave is incident at an angle
of 40°, its absorption effect is better than when it is vertically
incident (Yang et al., 2023). This angle increases in TM mode, the
dipoles on the surface of the absorber are effectively excited,
which ultimately enhances the absorption effect. In summary,
although the performance of the designed metamaterial will
decrease as the incident angle increases, the designed absorber
can still achieve very good absorption effects under wide-angle
incidence in both polarization states.

The active tunable nature of the device will have more
application space in practice. Figure 8 compared the impact of
different Ef on the absorption. The Fermi level of graphene can be
adjusted by applying an external DC bias voltage Vg using an ion gel

on the graphene layer, and the relationship (Amin et al., 2021; Pan
et al., 2023) can be described as:

Ef � Vf

�������
πε0εsVε

ed

√
(5)

In the formula: Fermi speedVf � c/300. First, when Ef� 0 eV, the
absorption rate of the absorber only reaches 1%, almost no absorption
occurs (Chen et al., 2021b), and total reflection occurs on the surface of
the upper graphene layer. When Ef � 0.95 eV, the absorber achieves
ultra-wideband perfect absorption, and the device can be precisely
controlled to flexibly switch between a perfect absorber and a complete
reflector by applying an external voltage, which will make the designed
absorption modulators play an important role in fields such as optical
switches and modulators. In addition, as Ef continues to increase from
0 eV to 1.1 eV, the absorption curve continues to blue shift, and the size
and bandwidth of the absorption rate also continue to increase. When
Ef = 0.95 eV, the comprehensive effect of the absorption rate is the best

FIGURE 7
Impact of incident angle on absorption. (A) TE mode; (B) TM.

FIGURE 8
Impact of graphene fermi energy levels on absorption.
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(Li et al., 2022c). As Ef increases, more carriers can excite plasmons. In
general, the designed absorber has active tunable properties and can
better meet the requirements of practical applications.

Table 1 compared the performance parameters of the proposed
design with other similar absorbers. The proposed design has a
simple structure and far exceeds other similar absorbers in terms of
bandwidth >90% (FB) and relative bandwidth, which can be
deployed in emerging applications such as energy conversion and
electromagnetic shielding.

4 Conclusion

In this article, a polarization-insensitive, functionally tunable
and highly sensitive ultra-broadband absorber is designed based on
graphene metamaterial. The proposed absorber dynamically
alternates between ultra-wideband perfect absorption and total
reflection by adjusting the applied voltage to change the Fermi
level of graphene. When the Fermi level of graphene is adjusted to
0.95 eV, the absorption rate of the device is higher than 90% in the
range of 3.02 ~ 7.16 THz. Through the analysis of electromagnetic
field distribution (| E | and Ez) and changing the shape of internal
graphene, it is found that the coupling between the localized
plasmon resonance at the slit and the electric dipole resonance is
the main reason for producing broadband perfect absorption.
Therefore, this research has broad application prospects in the
fields of THz sensors, filters, smart switches, and also provides
specific ideas for the design of THz ultra-wideband absorbers. The
proposed absorber can be implemented using phase change material
vanadium dioxide (VO2).
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