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Introduction: Among alloys of medium-carbon and high-strength steel, EN
24 steel is characterised by its nickel-chromium-molybdenum composition.
EN 24 steel is highly suitable for application in heavy-duty projects due to its
notable resilience to damage, especially when exposed to low temperatures.
With the objective of minimising surface irregularities, this research endeavours
to enhance the milling process of EN 24 steel by employing coated tungsten
carbide (WC) tool inserts.

Methods: Feed rate, cutting speed, depth of cut, and cutting fluid are all crucial
process factors in the experimental investigation. Four distinct levels are applied
to each factor. The research utilises the Design of Experiments (DOE)-based
Central Composite Design of Response Surface Methodology. To predict output
parameters, mathematical models are developed utilising analysis of variance
(ANOVA) for optimisation purposes.

Results and discussions: Through the utilisation of multi-objective optimisation,
the optimal combination for tungsten carbide inserts was determined,
which provided surface irregularities of 0.301 µm. Cutting speed (CS) of
149.507 m/min, feed rate (FR) of 340.27 mm/min, depth of cut (DOC) of
0.599 mm, and cutting fluid (CF) of 12.50 L/min are the optimal parameters.
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The surface morphologies of the machined workpiece at particular parameter
values can be discerned through scanning electron microscope (SEM) analysis,
yielding significant insights. The optimal parameters that have been identified
provide practical recommendations for improving the milling method of EN
24 steel when tungsten carbide inserts are utilised. Understanding the milling
process in its entirety is facilitated by SEM analysis of surface morphologies
and microstructures under particular cutting conditions. The morphology
and surface irregularities of the machined workpiece are evaluated using
profilometry, which provides additional insight into surface integrity. The
discourse investigates the potential applications and implications of the results,
as well as suggests directions for further study concerning the enhancement of
milling processes for similar steel alloys.

KEYWORDS

surface roughness, response surfacemethodology, tungsten-coated carbide inserts, EN
24 steel, SEM, profilometry

1 Introduction

Computer Numerical Control (CNC) vertical milling machine
technology has advanced significantly in recent years to meet the
advanced requirements in different manufacturing domains due
to the ability to enhance the machine’s performance, reduce costs
while accomplishing shorter lead times, and increase productivity,
particularly in the precision metal cutting industry (Kotaiah et al.,
2010). Better surface quality is the central aspect of engineering
materials (Özel and Karpat, 2005). Surface integrity is vital in
specifying the surface quality of manufactured components. Better
surface roughness improves the final product’s microstructural
characteristics, fatigue strength, and visual look (Asiltürk and
Çunkaş,2011).Also,surfaceirregularityinfluencesvariousproperties
of machined components, including friction, wear, and heat
transmission (Fetecau and Stan, 2012). Surface roughness is
described as a collection of irregular surface waves evaluated in
micrometers (Yahul and Saravanan, 2022) surface integrity data
identified from testingmay be used to calculate the roughness factor
(Praveen Chowdary and Saravanan, 2022). Many roughness factors
have been used, and Ra is considered the most prevalent. Rz and Rq
are two more significant parameters (Hamdan et al., 2012). Surface
irregularity is influenced by milling factors that can be programmed
in advance, like feed rate, cutting speed, and cut depth (Patil et al.,
2021). It has been influenced by uncontrollable factors like the
mechanical qualities of the materials, the cutter type used, and the
vibration created throughout the operation (Praveen Chowdary and
Saravanan, 2023).The rate of the cutting speed is a machining factor
that influencessurface integrity,but thedepthof thecuthas littleeffect
(Mohammed Yahu, 2023).Optimizing these parameters to attain the
minimum surface integrity and tool wear is critical for efficiency
(Xavior andAdithan, 2009). Coating tools have always been assumed
to accomplish several valuable functions, like lowering the cutting
temperature and cutting force and enhancing abrasion resistance
(Sayit et al., 2009; Sequeira, 2012). The coated cutting tool reduces
surface integrity. However, assistance depends on various aspects,
including the substrate material, combinations of tool coatings, and
the thermo-physical circumstances of both the tool and workpiece.
Coated carbide tools broaden the range of machining conditions
where a lower wear rate is observed (Bauer et al., 2024).

Mandal et al. (2011) evaluated the machining of AISI 4340
steel by a newly designed zirconia-toughened alumina ceramic
tool insert, applying the Taguchi L9 with three variables (depth of
cut, feed rate, and cutting speed) approach. They concluded that
the best optimal cutting condition was based on mean of response
and signal-to-noise ratio (SNR), with a cutting speed of 280 m/min,
depth of cut of 0.5 mm, and feed rate of 0.12 mm/rev. The cut
depth was observed to have the most significant impact on tool
wear. This study also focuses optimizing process parameters but
optimized with use of RSM for EN 24 Steel with WC-Coated inserts
in the milling cutter. (Dawood et al., 2012) applied the Taguchi
approach and a genetic algorithm to minimize surface integrity
during milling MS with three zinc-coated tools placed into a 25-
mm-diameter face miller. The machining parameters studied were
the number of passes, depth of cut, spindle speed, and feed rate.The
effect of these parameters on surface roughness was evaluated. The
predicted values were validated through experimental confirmation,
with a deviation of 4.308 between the predicted and confirmed
values. This study also employed optimization but RSM used for
optimizingmilling parameters with coated tool formachining EN24
steel. Palanikumar (2008) examined the outcome of input factors
on surface integrity during GFRP composite milling by building
a second-order model using a polycrystalline diamond tool to
determine surface roughness. The experimental findings indicate
that the feed rate is the most influential machining parameter for
surface roughness, followed by cutting speed.This study also focuses
to investigate influence of process parameters but for milling of
EN24 Steel with coated tool.Thakre et al. (2013) examine the impact
of various milling factors with three levels of cutting parameters.
Experiments on face milling operations are conducted by deploying
theTaguchi approachL9 array on 1040mild steelmaterial on vertical
milling with carbide tool inserts. Experiment findings revealed
that the surface integrity parameter is influenced by coolant flow,
around 60% of the aggregate. With an optimal coolant flow rate,
a good surface finish is achieved. The second most significant
factor is spindle speed (22%). But this investigation for optimizing
machining parameters with RSM for EN24 steel machining in
milling process. Akhyar et al. (2008) applied the Taguchi approach
to enhance cutting factors during turning Ti-6%Al-4%V with an
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incredibly minimal interstitial using uncoated and coated tools
in dry circumstances and maximum cutting speed for enhanced
surface quality. An L27 with three levels for each parameter was
employed to find the ideal combination. An analysis of variance
utilizing the tool gradewill investigate if cutting speed and tool grade
is influenced by surface quality. The experimental findings indicate
that the feed rate is the most influential machining parameter for
surface roughness. This study also aimed to improve surface finish
but with coated tool in milling operation on EN24 steel. Suresh et al.
(2002) used a two-stage technique to optimize surface roughness.
RSM first utilized experimental findings to develop mathematical
models for surface integrity. A second-order mathematical model
was used as the objective function, and milling conditions for the
specified surface quality were optimized using a genetic algorithm
(GA). This investigation aims to optimize milling parameters with
RSM and develop with quadradic equation for prediction for EN24
steel milling. Bhanu Prakash et al. (2017) During optimized CNC
milling during the machining of AA 6082, the surface integrity
degrades with decreasing spindle speed and increasing cut depth
and feed rate. The RSM technique estimated the optimal surface
roughness value to be 1.192 microns, using a spindle speed of
3,000 rpm, feed rate of 1,000 mm/min, and depth of cut of 0.2 mm.
The GA technique estimated the optimal surface roughness value
to be 1.195 microns, using a spindle speed of 2997.64729 rpm, feed
rate of 1,005.94134 mm/min, and depth of cut of 0.20862 mm but
in this study also used RSM for EN24 steel milling with specially
coated tool. Nadaf and Shinde (2020) examined milling operations
using E250 material with three levels of variables (output variables
are MRR and surface integrity were utilized to develop a genetic
algorithm (GA) and coupled objective function (COF) for optimal
input variables of the L18 orthogonal array. The primary factors
influencing surface roughness are feed rate, depth of cut, and speed,
contributing 85.51%, 7.72%, and 4.58%, respectively. Feed rate
(by 50.13%), depth of cut (31.46%), and speed (10.10%) all have
a substantial impact on the rate of material removal. This study
focused on optimizing process parameters to maximize Surface
finish. Haja Syeddu Masooth et al. (2020) The Taguchi technique
was deployed to examine the effect of milling variables on surface
integrity in dry machining of the AA Al6061-T6 utilizing uncoated
and TiAlN-coated carbide inserts. An L9 orthogonal array is
used for experimentation. Spindle speed has a substantial effect
on irregularities. The excellent surface irregularity value for an
uncoated tool is 0.365 m. Unlike DOC and feed rate, spindle speed
is the main parameter impacting surface integrity on coated TiAlN
carbide tool surfaces.The better surface irregularity value for coated
carbide tools is 0.1406 m. This study analyses to maximize surface
finish in machining EN 24 Steel with WC-Coated inserts in milling
operation Patil et al. (2022) investigated the effect of end milling
factors such as the number of revolutions, feed rate, and DOC on
the surface integrity of Al 6061 and Al 6463. Grey relation analysis
(GRA) and Principal component analysis (PCA) were used to
determine the extent of surface integrity during the milling process
and analyze the pre-measured trial data. Experimental results show
that spindle speed is more efficient than feed and DOC. Raju et al.
(2011) investigated the influence of different control factors on
surface integrity while end milling 6061 AA using HSS and carbide
inserts in both dry and wet factors and used a multiple regression
study to identify investigational measures using analysis of variance.

According to the findings, feed rate had an impact on roughness.
Surface irregularity decreases when a carbide tool is used instead
of an HSS tool. Surface roughness is reduced when coolant is
used. Satyanarayana et al. (2023) aimed to analyze the optimal
parameters for fly (face) milling of components composed of AISI
1045 steel in terms of surface finish and energy consumption. The
study found that the most effective fly milling performance for fast
manufacturing (case 1) is achieved with a feed per tooth of fz =
0.25 mm/tooth, cutting speed of vc = 392.6 m/min, and machined
length of l = 5 mm.The optimal parameters for conserving resources
(tools) in case 2 are feed per tooth (fz) = 0.125 mm/tooth, cutting
speed (vc) = 392.6 m/min, and machined length (L) = 5 mm. This
study also used for optimizing process parameters in milling of EN
24 Steel with WC-Coated inserts. Equbal et al. (2022) examined the
CNC milling capabilities for the machining process of AISI 316
stainless steel. The study indicates that with surface roughness, the
primary influential factor is the feed, with the depth of cut (DOC)
and cutting speed following in order of significance. This study
focuses the machinability of surface roughness response to optimize
the process parameters. Mahir et al. AKGÜN and DEMİR, (2020)
aimed to optimize cutting conditions and perform a numerical
analysis of flank wear during the milling of Inconel 625 superalloy.
The results showed that feed rate was the most significant parameter
affecting flank wear.This study focuses the experimental values after
machiningwas considered.Themachinability wasmeasured in term
of surface roughness response to optimize the process parameters.
Cuong and Khanh (Lam Khanh and Van Cuong, 2021) studied the
optimal input parameters for milling SCM440 steel. The objective
was to analyze the impact of input factors on the surface roughness
and the MRR during the milling process. The analysis of the results
determined the impact of the input parameters on surface roughness
and material removal rate (MRR). But this investigation used SR
for optimizing the input parameters Vikas et al. Marakini et al.
(2022) analyzed the impact of face milling procedures on the
surface properties of AZ91magnesium alloy using uncoated carbide
inserts. The research also explored material behavior. Further,
a time-domain analysis is conducted to establish a correlation
between the machining vibration signals and surface integrity
characteristics. This study investigates the tool behavior in surface
finish. Silveira et al. (2023) analyzed the surface integrity of annealed
AISI H13 steel concerning the impact of face milling parameters
and tool grade. The study found that the milling force components
were primarily influenced by the depth of cut and feed per tooth
parameters. The EN 24 Steel with WC-Coated inserts is used in
this investigation. Chen et al. (2023) This study comprehensively
assessed the serpentine channel pouring (SCP) process, considering
its impact on microstructure, mechanical properties, and yields.
The application of numerical multiple-response optimization
criteria was used to enhance the quality of semi-solid metal
(SSM) slurry, thereby contributing to the advancement of the
SCP process. This study emphasizes the potential benefits of
using the comprehensive assessment concept and multiple-
response optimization method in the mass-scale production and
application of the SCP process. Chen et al. (2021) Investigated
the Strong interfacial bonding and uniform GNP dispersion in
the metallic matrix are hallmarks of AZ91D magnesium alloy-
graphene nanoplatelets (AZ91D-GNPs) nanocomposites, which are
produced through thixomolding. Microstructures, dispersibility
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of GNPs, and mechanical characteristics were analyzed as a
function of injection velocity (V I) and the rotational speed of
the screw (RS). Nanocomposites uniformly distributed GNPs by
embedding them inside -Mg grains rather than only along their
periphery. Due to the MgO nanoparticles’ strong bonding surfaces,
GNPs and the alloy matrix created an Mg/MgO semi-coherency
interface and MgO/GNPs contact. Hence, this investigation is
unique and considerably important in machining EN 24 Steel with
WC-Coated inserts.

The selection of EN 24 steel for this investigation is based on
its remarkable material characteristics, which render it an ideal
choice to perform machining experiments. EN 24 steel is renowned
for its notable tensile strength, exceptional resistance to wear,
and favourable machinability characteristics (Appoh and Yunusa-
kaltungo, 2021; Liang et al., 2023a; Yang et al., 2023a). The inherent
characteristics of this material present challenges for the machining
process, and the optimisation of machining techniques for this
material holds considerable potential for industrial applications,
particularly in sectors that demanddurable/robust components such
as the aviation and automotive sectors (Yunusa-kaltungo et al., 2015;
Luwei et al., 2017; Balali et al., 2023).

The relevance of this research to industrial applications is
significant.

The EN 24 steel is widely employed in numerous engineering
uses whereby components need the ability to sustain substantial
loads and demonstrate resilience against wear, fatigue, damage,
and strain (Appoh and Yunusa-kaltungo, 2021; Wu et al., 2022;
Tang et al., 2023). The investigation concentrates around the
optimisation of surface roughness in the machining process of EN
24 steel, that’s a material extensively employed across several sectors.
This research addresses a significant issue within these industries.
The findings of this study have the potential to immediately
enhance the quality and performance of components manufactured
employing EN 24 steels, consequently profiting manufacturers
(Liao et al., 2020; Niu et al., 2022; Chen et al., 2024).

The focus of discourse is to the enhancement of machinability
through the utilisation of coated inserts.

Utilising tungsten carbide (WC)-coated inserts in the process of
machining EN 24 steel is a strategic decision. WC-Coated inserts
are chosen based on their exceptional hardness and resistance to
wear (Zhu et al., 2017; Fang et al., 2019a; Fu et al., 2020). These
characteristics contribute to the prolongation of tool lifespan and
enhancement of machining efficiency, particularly when working
with tough materials such as EN 24 steel (Fang et al., 2019b). The
selection of WC-Coated inserts is in accordance with the goal
of enhancing machinability while retaining optimal metal cutting
performance (Yang et al., 2022a).

Now, in order to examine the real-world applications of
employing CVD TiAlN-coated carbide inserts for the machining
of EN 24 steel.

1.1 Enhanced tool longevity/durability:

Carbide inserts coated with CVD TiAlN exhibit enhanced
tool durability and prolonged tool lifespan owing to their
exceptional resistance to wear. When employed in the machining
of EN 24 steel, these inserts have the capacity to considerably

diminish the frequency of tool replacements, consequently
leading to reduced downtime within industrial operations or
manufacturing processes (Yang et al., 2022b; Wang et al., 2023a;
Liang et al., 2023b).

1.2 Enhancement of surface finish:

The application of TiAlN coatings results in the formation
of a surface that is both smooth and possesses a high degree
of hardness on the carbide inserts. The presence of a smooth
surface facilitates the reduction of friction during the machining
process, leading to enhanced surface finish on the workpiece.
Components that undergo machining employing chemical vapour
deposition (CVD) TiAlN-coated inserts have the potential to
exhibit enhanced surface quality (Hua et al., 2022; Long et al.,
2023; Su et al., 2023). This characteristic has considerable
significance in sectors where both aesthetics and precision play a
critical role.

1.3 Reducing expenses

Enhanced tool longevity and enhanced surface finish not
only contribute to heightened productivity/performance efficiency,
however, additionally resulted in financial economic benefits.
A reduction in tool modifications leads to a drop in tooling
expenditures, while an enhancement in surface quality diminishes
the necessity for further post-processing and finishing processes
(Gao et al., 2022; Li et al., 2022; Yang et al., 2023b).

1.4 The environmental consequences

The study indirectly aids in sustainability by enhancing the
machining process through the utilisation of CVD TiAlN-coated
inserts. The mitigation of tool wear and the extension of tool
lifespan leads to a decline in the volume of tool disposals, therefore
minimising the adverse environmental impacts related with the tool
manufacturing and disposal processes (Xu et al., 2023a; Yang et al.,
2023c; Meng et al., 2023).

All in all, the authors’ rationale for choosing EN 24 steel as
the material for their workpiece and employing CVD TiAlN-coated
carbide inserts in their investigation is substantiated by scientific and
practical considerations (Rahman et al., 2019).The study focuses on
addressing significant concerns related to the machining of difficult
materials, with the aim of providing possible advantages to many
sectors and contributing to the progress of machining technology.

The novelty of that investigation was that the promising coating
materials were considered to minimize tool wear by maintaining
consistency of tool profile for a long time to perform well with
extended tool life by means of hybrid coating of TiAlN and CVD
to cut with superior performance in machining commercial steel
materials. This work aims to investigate the impact of process
variables on surface irregularities in the machining of EN 24
steel with CVD TiAlN-coated carbide inserts. DOE based on
Central Composite Designs (CCD) of RSMwas generated in Design
Expert 13 analysis software, which was deployed for optimization
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FIGURE 1
Machined workpiece.

techniques. Identifying optimal machining conditions (feed rate,
cutting speed, cutting fluid, and depth of cut) for minimum
surface roughness which is an output parameter. In addition,
regression analyses and multi-optimization were utilized to predict
the experimental value. Lastly, confirmation experiments test the
reliability of developed models.

The novelty of this investigation is the commercial material of
EN 24 steel surface milling with coated WC inserts embedded tool
is experimented and operating parameters like feed rate, cutting
speed, cutting fluid, and depth of cut were optimized with the use
of response surface methodology for CNC milling so that high-rate
production and high quality are ensured. The mathematical model
was developed to be personalized as per business requirements and
ensured its accuracy through confirmation experiments. The tool
wear study was also conducted and analysed through SEM analysis.
Hence, this investigation is unique and novel in the surface milling
of N24 steelworks.

2 Experimental methodology

2.1 Workpiece and tool insert material

Selecting workpiece and tool insert is essential because both
considerably impact responses. EN24 steel (length 100 mm, width
45 mm, and thickness 20 mm) was used as a work sample, and
coated WC inserts were used in the present experimental study.
Quaker Houghton (semi-synthetic) oil was employed as a coolant
(30 lit/min) for CNC milling machining. Figure 1 shows machined
workpiece samples. The composition of the work sample is
shown in Figure 2.

2.2 Experimental setup

The experiment was carried out on HURCO VM1O CNC
Milling Machine (VMC), Figure 3 shows the experimental setup
CNCMilling Machine.

2.3 Experimental design

Response surface methodology-based CCD method is applied
for developing the design of the experiment (DOE) by Design-
Expert 13 software. Four parameters were chosen for this
experiment. The pilot studies performed using the One factor-at-a-
time approach (OFAT) helped to give the proper ranges of the input
variables for the CNC milling machining, as shown in Table 1.

The experimental run order is generated by Response surface
methodology with the CCD given 30 experimental runs, and
experiments conducted according to the order of the run are
depicted in Table 2.

3 Results and discussions

3.1 Surface roughness

The selection of the Ra model for all experimental conditions
is determined by referring to Table 3. The quadratic model seems
significant and not aliased with the highest-order polymer. It is
suggested to use quadratic models for response parameters in all
experimental conditions. The sequential sum of squares measures
the contribution of terms of increasing complexity to the model
(Kiranakumar et al., 2022; Lashin et al., 2022; Kumar et al., 2023c).
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FIGURE 2
A spectrum of EN 24 Steel.

FIGURE 3
(A) CNC milling machine set up (B) CNC milling operation.

This test selects the ultimate polynomial order with no aliased terms.
The estimated model terms will be aliased if the design only gives
a few points or selects the incorrect points. The analysis cannot
separate them. In general, the model with the greatest F-value and
the lowest p-value is chosen.

3.2 Analysis of variance

The idea of utilizing ANOVA is to break down the total
variability of the experimental data into components of variance
and then assess their significance (Sehar et al., 2022; Prasanthi et al.,
2023). A quadratic model was selected for the surface integrity of

the machining of EN 24 steel.The developedmodel was tested using
ANOVA for its significance.The test for lack of fit was accomplished
for the significance of the regressionmodel.TheANOVA for surface
roughness machining of EN 24 steel is illustrated in Table 4.

R2 is a statistic that provides information on the fit of the
regression model; the R2 coefficient of identification is a measurable
statistic of how fit the regression line corresponds to the actual data
point (Ganeshkumar et al., 2023; Kumar et al., 2023). An R2 of 1
implies that a regression line fits the data exactly. Table 5 illustrates
the R-square Table for Surface irregularity.

A predicted R2 of 0.5074 is accepted reasonablywith anAdjusted
R2 of 0.7058, and the variance is less than 0.2. Adeq. Precision
measure signal-to-noise ratio. A ratio larger than 4 is preferable.The
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TABLE 1 Process parameters and their levels.

Sl.No. Parameters Level (−1) Level (+1)

1. Cutting speed (m/min) 120.00 140.00

2. Feed rate (mm/min) 300.00 350.00

3. Depth of cut (mm) 0.45 0.55

4. Cutting fluid (lit/min) 15.00 30.00

signal-to-noise ratio of 7.727 suggests a good signal. This method
helps navigate the design space.

3.3 Mathematical modelling and regression
analysis

Models were created for every response function, and statistical
analysis of variance was performed on the experimental data
(Shahid et al., 2022; Vemanaboina et al., 2023). Below are the
regression equations that express the output parameters regarding
the actual factors. The mentioned equations are applicable for
forecasting the outcome corresponding to specific levels of
individual factors. The regression equation for surface roughness
of machining of EN 24 Steel is identified from the linear regression
in equation 1.

“Surface Roughness = - 31.4705 + 0.114335∗A +
0.0975075∗B + 34.2237∗C - 0.0244361∗D - 0.000027∗AB +
0.057875∗AC + 0.000033∗AD - 0.05745∗BC + 0.000053∗BD
+ 0.00616667∗CD - 0.000501979∗A2 - 0.000097∗B2

- 24.2292∗C2 - 0.000021∗D2” - (1).
Positive values denote an excellent effect on optimization,

whereas negative values indicate a negative correlation between
the parameter and the response. The equations mentioned above
demonstrate that the output variables are impacted by parameters
such as Cutting speed, Feed rate, Depth of cut, and Cutting fluid.

Figure 4A shows the predicted vs. actual value of the surface
irregularities. The graph illustrates that the actual model of surface
roughness developed is near the predicted theoretical values
generated during the experimental performance, which can be
validated easily by seeing the spread of the actual values to
the predicted actual line. According to the predicted models
(Equations (1)), the calculated predicted values for SR Figure 4A,
were compared to the actual values.There is a modest misalignment
between the data points, but the predicted and actual data points
are close to the y = x optimal line. Figure 4B shows a perturbation
graph for the surface roughness, which will assist in comparing
the influence of various variables at a suitable point location in
the design area. The output is characterized by varying each factor
within its given range during possession, keeping all variables
constant (Singh et al., 2023a; Dikshit et al., 2023; Singh et al., 2024).
A steeply inclined slope or curvature in the characteristic curve
shows the input parameter factor as the response is sensitive to

TABLE 2 Central Composite Designs with process parameters of milling
of EN24 steel.

Run Cutting
speed
(m/min)

Feed
rate
(m/min)

Depth
of cut
(mm)

Cutting
fluid
(lit/min)

Surface
Roughness
(μm)

1 130 325 0.50 22.5 0.752

2 130 325 0.50 22.5 0.751

3 120 300 0.45 15.0 0.419

4 130 325 0.50 22.5 0.751

5 140 350 0.55 15.0 0.545

6 130 375 0.50 22.5 0.638

7 130 325 0.50 22.5 0.751

8 140 300 0.45 15.0 0.418

9 120 350 0.55 15.0 0.407

10 130 325 0.50 22.5 0.472

11 140 300 0.55 30.0 0.472

12 130 325 0.60 22.5 0.446

13 120 300 0.55 15.0 0.336

14 130 325 0.50 7.5 0.751

15 140 300 0.55 15.0 0.533

16 120 300 0.55 30.0 0.336

17 150 325 0.50 22.5 0.654

18 130 325 0.50 37.5 0.752

19 120 350 0.45 30.0 0.726

20 140 300 0.45 30.0 0.419

21 140 350 0.55 30.0 0.545

22 140 350 0.45 30.0 0.751

23 120 350 0.45 15.0 0.726

24 120 350 0.55 30.0 0.407

25 130 325 0.40 22.5 0.581

26 140 350 0.45 15.0 0.754

27 110 325 0.50 22.5 0.456

28 130 325 0.50 22.5 0.752

29 130 275 0.50 22.5 0.389

30 120 300 0.45 30.0 0.320

Frontiers in Materials 07 frontiersin.org

https://doi.org/10.3389/fmats.2024.1269608
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Patil et al. 10.3389/fmats.2024.1269608

TABLE 3 Selection of model for average surface roughness (Ra).

Source Sum of Squares df Mean Square F-value p-value

Mean vs Total 9.64 1 9.641

Linear vs Mean 0.30 4 0.072 4.41 0.007

2FI vs Linear 0.09 6 0.014 0.94 0.488

Quadratic vs 2FI 0.22 4 0.050 7.41 0.001 Suggested

Cubic vs Quadratic 0.01 8 0.001 0.12 0.995 Aliased

Residual 0.09 7 0.017

Total 10.38 30 0.343

the output parameter surface roughness. As closeness to a flat line
displays insensitivity to make a difference in that specific factor
(Amoljit Singh et al., 2020; Paswan et al., 2023).

Figure 5A illustrates the relationship among residuals and
predicted values of surface roughness.

Figure 5A depicts the relationship among the residuals, which
indicate the variations among the actual experimental values
and the values predicted by the mathematical models, and the
expected values of surface roughness. The application of this
visualisation graph is crucial in evaluating the adequateness,
precision, adequacy, and goodness of fit of the formulated
mathematical models (Singh et al., 2023b; Zhang et al., 2023). The
following is a comprehensive elucidation:

i. Scattered Data Points: Figure 5A illustrates the presence of
randomly distributed data points around the horizontal axis,
which represents the projected values of surface roughness.
The widespread scattered or dispersion of data points
suggests the absence of any discernible systematic structure
or consistent deviation in the residuals when compared
to the predicted values (Raj et al., 2022; Xu et al., 2022;
Saravanan et al., 2023). This observation is indicative of a
favourable outcome as it implies that the models possess the
ability to effectively capture the broad spectrum of variations
for the response variable, specifically surface roughness.

ii. Regression Assumption Validation: The validation of
regression assumptions is an essential step in the analysis
of regression models. One critical assumption to examine is
homoscedasticity, which pertains to the constancy/consistency
or uniformity of residual variability over all predicted values
(LIU et al., 2021; Singh et al., 2022; Wang et al., 2023b).
Figure 5A demonstrates the fact that the distribution of
data points remains constant while the projected values
vary, suggesting that the presumption hypothesis of
homoscedasticity remains valid thus the model predictions
can be considered valid.

iii. Goodness of Fit: The measure of goodness of fit may be
assessed by examining the dispersion of residuals around
the zero point on the horizontal axis, which indicates that
the models are generating unbiased predictions (Cui et al.,
2021; Khan Aqib et al., 2021). In other words, the models
exhibit neither a consistent tendency to overestimate nor

underestimate the actual levels for surface roughness. This
finding provides evidence that the suggested models are
suitable for predicting surface roughness within the specific
experimental parameters.

Figure 5B depicts the relationship correlation among residuals
and run values for surface roughness.

Figure 5B displays a figure whereby the residuals are graphed
against the run values, which represent the experimental run
numbers or conditions under which the data points were collected.
The chart presented beyond provides valuable information into
the extent to which the models accurately capture the variations
in surface roughness observed across numerous experimental
trials (Pramanik et al., 2021). The following is a comprehensive
elucidation:

i. Random Distribution of Residuals: Comparable to its
depiction in Figures 5A, B exhibits a random distribution of
residuals into the horizontal axis, which represents the run
values. This finding suggests that the models do not exhibit
any consistent systematic bias when tested under various
conditions of experimentation (Kumar et al., 2022). In other
words, the predictive abilities of the models remain consistent
in assessing surface roughness irrespective of the particular
experimental-run.

ii. Model Consistency: The presence of randomly distributed
residuals in Figure 5B indicates that the developed models
exhibit consistency, uniformity, reliability, and retain their
ability to predict across all experimental conditions. The
ensuring of consistency is of utmost significant in order to
facilitate the utilisation of models for optimisation objectives
over a wide range of parameters (Aggarwal et al., 2020;
Narayan et al., 2022).

iii. Optimization Criteria: The reference of optimisation criteria
pertains to the primary goal of the research, which is
to minimise surface imperfections or defects or failures,
specifically surface roughness. The observation that the
residuals demonstrate a random distribution within the
range of −2 to +2 nearly provides evidence in favour of
the proposition that the experimental design and models
employed are appropriate for attaining the objective of
optimisation. The findings indicate that the models have the
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TABLE 4 ANOVA for MRR of machining of EN 24 steel.

Source Sum of
Squares

df Mean
Square

F-
value

p-
value

Model 0.6205 14 0.0443 5.97 0.0007 Significant

A-
Cutting
speed

0.0552 1 0.0552 7.43 0.0156

B-Feed
rate

0.1839 1 0.1839 24.77 0.0002

C-DOC 0.0617 1 0.0617 8.31 0.0114

D-
Cutting
fluid

0.0010 1 0.0010 0.1348 0.7186

AB 0.0007 1 0.0007 0.0964 0.7605

AC 0.0134 1 0.0134 1.80 0.1991

AD 0.0001 1 0.0001 0.0128 0.9114

BC 0.0825 1 0.0825 11.11 0.0045

BD 0.0016 1 0.0016 0.2128 0.6512

CD 0.0001 1 0.0001 0.0115 0.9159

A2 0.0691 1 0.0691 9.31 0.0081

B2 0.1006 1 0.1006 13.55 0.0022

C2 0.1006 1 0.1006 13.55 0.0022

D2 0.0000 1 0.0000 0.0053 0.9429

Residual 0.1114 15 0.0074

Lack of
Fit

0.0463 10 0.0046 0.3560 0.9227 not
significant

Pure
Error

0.0651 5 0.0130

Cor
Total

0.7318 29

The F-value model of 5.97 shows it is significant. F-value this high may arise due to noise
just 0.07% of the time. Model terms with the p-values under 0.0500 are significant. In this
case, a, B, C, BC, A2, B2, and C2 are binding model terms. Values larger than 0.1000 show
that the model terms are unimportant. The F-value for Lack of Fit of 0.36 specifies that the
Lack of Fit is not significant compared to the pure error. A significant Lack of Fit F-value
owing to noise has a 92.27% chance of happening. Our goal is to model to be fit; thus, a
non-significant lack of fit is ideal.

TABLE 5 R-square table for Surface Roughness of Machining of EN
24 steel.

Std. Dev. 0.0862 R2 0.8478

Mean 0.5668 Adjusted R2 0.7058

C.V. % 15.20 Predicted R2 0.5074

Adeq. Precision 7.7274

potential to be utilised in determining the most optimal-
amalgamation combination of factor-levels that result in a
significant reduction in surface roughness (Garg et al., 2022;
Sharma and Sudhakara, 2019; Gong et al., 2023).

Figures 5A, B depict the residuals of models plotted against
the predicted models for all experimental conditions. The figures
demonstrate that the data points are dispersed, indicating the
absence of a discernible trend. This supports the conclusion
that the developed models are appropriate for the current study
(Hu et al., 2023). The error percentage was calculated by comparing
the predicted and experimental values. The outcomes indicate a
high concurrence between the predicted and obtained optimized
values. If the regression assumption holds, approximately 95%
of data points are expected to fall within 2σ of the fitted
curve. Approximately 95% of the standardized residuals are
expected to exhibit random distribution within the range of
−2 to +2. Therefore, the experimental design is appropriate
for the study. The optimization of the SR model focuses on
minimizing surface irregularities (Xu et al., 2023b). This process
involves determining the optimal combination of factor levels that
satisfy the optimization criteria for both response and input factors
(Liang et al., 2023b).

3.4 Contour plot

The contour plot is a 2D depiction of the response plotted
against numeric factors and mixed component combinations
(Appoh and Yunusa-kaltungo, 2021; Yang et al., 2023a; Balali et al.,
2023). It can illustrate the link between responses, mixture
components, and numerical variables. Figures 6A–F illustrates the
contour plot for surface roughness. Here blue colour in the graph
represents the lowest value and the red colour value represents the
highest values.

The contour plot in Figure 6A depicts the correlation among
surface roughness and two significant machining parameters,
namely feed rate and cutting speed.The following is a comprehensive
elucidation:

The color-coded contours depict the surface roughness values
corresponding to various combinations of feed rate and cutting
speed. The blue regions on the surface correlate to lower degrees of
surface roughness, whilst the red regions show greater amounts of
surface roughness.

The primary goal in the field of machining frequently revolves
on the minimization of surface roughness. Inside this plot,
it was conceivable to observe the presence of a distinct area
characterised by blue contours. This particular region implies that
a reduction in surface roughness may be attained by acting inside
its regions/boundaries (Yunusa-kaltungo et al., 2015; Luwei et al.,
2017). The provided information holds significant value in the
context of optimising machining operations.

The impact of interaction may be revealed through the
utilisation of contour plots, which provide a visual representation
of the relationship among input parameters (Appoh and Yunusa-
kaltungo, 2021). For instance, in a given region exhibiting elongated
or distorted contours, it may be inferred that the interaction among
feed rate and cutting speed exerts a substantial influence on the
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FIGURE 4
(A) Predicted vs. actual value of the Surface Roughness; and (B) Perturbation graph for the Surface Roughness.

FIGURE 5
(A) Residuals vs. Predicted value of the Surface Roughness; and (B) Residuals vs. Run value of the Surface Roughness.

resulting surface roughness. This information serves as a guiding
framework for the optimisation of processes.

Figure 6B provides a contour plot illustrating the relationship
among the depth of cut and cutting speed.

Figure 6B displays a contour map that investigates the
interaction relationship among the depth of cut and cutting speed
in relation to surface roughness. This analysis is conducted while
maintaining a constant feed rate and cutting fluid.

The color-coded contours in accordance with Figure 6A
illustrate the impact of variations in depth of cut and cutting speed
on surface roughness.

The optimal zone may be observed in a comparable way
as depicted in Figure 6A, where an array of blue contours can
be discerned, indicating lower values of surface roughness. The
figure provided in this study illustrates that certain combinations of
depth of cut and cutting speed yield more favourable outcomes
in terms of generating smoother surfaces (Chu et al., 2023;
Sun et al., 2023).

The presence of contour distortion or elongation, if detected,
would suggest the existence of interaction effects among the
variables of depth of cut and cutting speed (Li et al., 2023). These
interaction effects should be taken into account during the process
optimisation phase.

A contour plot depicting the relationship among cutting fluid
and cutting speed appears in Figure 6C.

Figure 6C presents a contour map that examines the impact
of cutting fluid and cutting speed on surface roughness, while
maintaining a constant depth of cut and feed rate.

The utilisation of colour coding is employed in this study to
visually represent the impact of cutting fluid and cutting speed on
surface roughness.

Similarly, to prior visual representations, the regions
delineated by blue outlines signify the advantageous amalgamation
of cutting fluid and cutting speed parameters, hence facilitating
the attainment of reduced surface roughness (Li et al., 2023;
An et al., 2024).
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FIGURE 6
(A–F) Contour plot between two parameters of surface roughness.

Contour line distortions can serve as indicators of interaction
effects between cutting fluid and cutting speed, thereby necessitating
their consideration in the optimisation process.

A contour plot illustrating the relationship between feed rate and
depth of cut is presented in Figure 6D.

Figure 6D presents a contour map that investigates
the correlation among feed rate and depth of cut on
surface roughness, while maintaining a constant cutting speed and
cutting fluid.

The use of colour coding in this study enables the visual
representation of the impact of variations in feed rate and depth of
cut on surface roughness.

Regions with blue contours highlight combinations of feed rate
and depth of cut that result in lower surface roughness.

The examination of contour shape alterations can provide
insights into the presence of interaction effects among feed rate
and depth of cut, necessitating cautious consideration during
optimisation attempts.
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FIGURE 7
(A–F) Surface plot between two parameters of surface roughness.

Figure 6E analyses the influence of feed rate and cutting fluid
on surface roughness while retaining cutting speed and depth of
cut constant:

The utilisation of colour coding is employed to visually represent
the impact of variations in feed rate and cutting fluid on the
surface roughness.

The regions delineated by blue outlines on the graph represent
the optimal combinations of feed rate and cutting fluid leading to
reduced surface roughness.

The presence of distortions in contour lines suggests the
potential of interaction effects among the variables of feed rate and
cutting fluid.

A contour plot illustrating the relationship
among the depth of cut and the use of cutting fluid is presented
in Figure 6F.

Figure 6F investigates the correlation among the depth of cut and
the use of cutting fluid on surface roughness, while maintaining a
constant cutting speed and feed rate.

Frontiers in Materials 12 frontiersin.org

https://doi.org/10.3389/fmats.2024.1269608
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Patil et al. 10.3389/fmats.2024.1269608

FIGURE 8
Experimental runs vs. Experimental and predicted surface roughness.

TABLE 6 Range of parameters for desirability.

Name Goal Lower Limit Upper Limit Lower Weight Upper Weight Importance

A: Cutting speed is in range 110 150 1 1 3

B: Feed rate is in range 275 375 1 1 3

C:DOC is in range 0.4 0.6 1 1 3

D: Cutting fluid is in range 7.5 37.5 1 1 3

Surface Roughness minimize 0.32 0.754 1 1 3

Color-coded contours depict the influence of variations in depth
of cut and cutting fluid on surface roughness.

Regions with blue outlines indicate combinations of depth of cut
and cutting fluid that resulted in dropped surface roughness.

Distortions in contour lines suggest potential interaction effects
among depth of cut and cutting fluid.

Figure 6A depicts a contour plot for surface roughness vs. feed
rate and cutting speed.This plot maintains a constant cut depth and
cutting fluid. Figure 6B depicts a contour plot for surface roughness
against the cut and cutting speed depth. In this plot, the feed rate
and cutting fluid are held constant. Figure 6C. Illustrates the contour
plot of surface roughness vs. cutting fluid and cutting speed. This
figure holds the depth of cut and feed rate constant. Figure 6D
demonstrates a contour plot of surface roughness vs. cut and feed
rate depth. In this plot, the cutting speed and fluid are held constant.
Figure 6Edepicts a contour plot of surface roughness vs. cutting fluid
and feed rate. In this plot, cutting speed and depth of cut are held
constant. Figure 6F displays a contour plot of surface roughness vs.
cutting fluid and depth of cut. In this plot, cutting speed and feed
rate are constant.

3.5 Surface plot

The surface plot is a 3D depiction of the response plotted
against numeric factors and mixed component combinations. It
can illustrate the link between responses, mixture components,
and numerical variables. The surface plot for surface roughness is
illustrated in Figures 7A–F.

Figure 7A depicts a surface plot for surface roughness vs. feed
rate and cutting speed, depth of cut and cutting fluid are maintained
constant in this plot. SR decreases with the increase of cutting speed
and it slightly grows initially and then decreases with the further rise
of feed rate. Figure 7B depicts a surface plot for surface roughness
against depth of cut and cutting speed. In this plot, the feed rate
and cutting fluid are held constant. As the cutting speed and DOC
increase the SR increases and then decreases. Figure 7C Illustrates
the surface plot of surface roughness vs. cutting fluid and cutting
speed. This figure holds the depth of cut and feed rate constant. SR
decreases with the increase of cutting speed and it slightly grows
initially and then decreases with the further rise of cutting fluid.
Figure 7D demonstrates a surface plot of surface roughness vs. cut
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depth and feed rate. In this plot, the cutting speed and fluid are
held constant. SR increases with the rise in cut depth and feed rate.
Figure 7E depicts a surface plot of surface roughness vs. cutting
fluid and feed rate. In this plot, cutting speed and depth of cut are
held constant. SR decreases with the increase of feed rate and it
slightly grows initially and then decreases with the further rise of
cutting fluid. Figure 7F displays a surface plot of surface roughness
vs. cutting fluid and depth of cut. In this plot, cutting speed and feed
rate are constant. In this plot, the SR increases slightly beginning
with the rise in cutting fluid and depth of cut and drastically
decreases lastly.

Figure 8 displays a comparison between the measured surface
roughness results obtained from the experiments and the predicted
values created by the model. The bar chart highlights that the
thirtieth experimental run had the lowest surface roughness values.
Furthermore, it indicates that the observed surface roughness
values of the experimental runs were closer to the predicted
values.The experimental runs were conducted using high-precision,
non-contact measurements to quantify the surface integrity of
the profile. The minimum recorded surface roughness was 0.32
µm, whereas the predicted surface roughness was found to be
0.37 µm. All thirty runs were significantly impacted by four
parameters and four levels. Each run corresponds to the observed
surface roughness values within distinct ranges. Surface roughness
values ranging from 0.320 µm to a maximum of 0.754 µm
were attained.

The range of parameters, goals, limits, and importance for
all conditions of experiments is shown in Table 6. Goals and
limits were set for each response to assess their influence on
overall desirability accurately. The highest or lowest level for each
response characteristic needs to be optimized. The multi-response
optimization was achieved through the desirability function.
Weights were assigned to emphasize a target value, the upper or
lower bounds, or both. The importance of each response is assigned
to the other responses. Importance varies from the least important
(1) to the most important (5).

3.6 Confirmation experiments

Confirmation experiments were conducted to ensure the
optimal combination of input parameters for surface roughness.The
proposed numerical model of the process was validated through
experimentation conducted under identical machining conditions
as the simulation results. The error rate of the experimental
and predicted values for the optimal configuration was also
computed. The experiment’s confirmation error has a confidence
level of 95%, demonstrating the accuracy of the predicted models.
The Table 7 has exhibited the optimal set of input processing
parameters.

A high-quality JEOL JSM-6510 LV Series SEM set to 15 kV
was used to examine the surface morphologies and micrographs
of the treated inserts. Figures 9A, B illustrates the SEM analysis of
themachined workpiece surface at CS 130 m/min, FR 325 mm/min,
DOC 0.50 mm, and CF 22.5 L/min.

SEM micrographs provide the visual evaluation of the impact
of various cutting parameters on the surface of the machined
material. At a cutting velocity of 130 m per minute, a discernible

TABLE 7 The optimal set of input parameters.

Sl. No Cutting
speed

Feed
rate

DOC Cutting
fluid

Surface
Roughness

1 139.99 285.506 0.442 20.656 0.239

modification in the surface topography was noticed in comparison
to lower velocities. The raised cutting speed is presumed to have
contributed to a rise in tool wear, which may be ascribed to rising
temperature and wear rates. This phenomenon may be rationalised
by the observation that higher cutting speeds produce enhanced
heat production as a result of rising friction among the cutting tool
and the workpiece. Consequently, this enhanced heat generation
contributes to a more pronounced adherence of material to the
cutting tool edge.

The role of cutting fluid in machining processes.
The maintenance of a consistent flow rate of 22.5 L per

minute of cutting fluid is of paramount significance for ensuring
the maintenance of surface integrity. The utilisation of SEM
images revealed that when an appropriate flow rate was
employed, the cutting fluid demonstrated a notable reduction
in temperature at the cutting interface. Additionally, it allowed
the efficient removal of chips, resulting in an enhanced surface
finish characterised by enhanced smoothness. The scientific
rationale behind this phenomenon can be attributed to the
cooling and lubricating characteristics demonstrated by the
cutting fluid. These attributes effectively mitigate tool wear and
minimise friction.

a. Microstructural alterations: SEM images can offer valuable
insights into the alterations in microstructure caused by
machining processes. Deformation bands and recrystallized
grains were detected in close proximity to the machined
surface while employing a depth of cut measuring 0.50 mm.
Plastic deformation and dislocation formation within the
material were induced by the substantial mechanical forces
associated with the milling process. Grain recrystallization
occurred as a result of the heat generated during themachining
process. This phenomenon has been extensively reported in
the field of materials research and is substantiated by the
observations of microstructure.

b. Mechanisms of ToolWear:The SEM analysis may be employed
to analyse the wear scratching patterns observed on the cutting
edge of the tool. The findings of this study indicate that the
SEM micrographs demonstrated the presence of flank wear
and crater wear on the WC-Coated Inserts. Flank wear is a
phenomenon that arises as a consequence of abrasion caused
by the contact among the cutting tool and the workpiece. On
the other hand, crater wear is an appearance that emerges
from interactions at higher temperatures. The wear processes
discovered in the present investigation correspond to the
observed wear behaviour of WC-Coated Inserts in high-speed
machining operations.

The SEM microstructure of the machined workpiece at CS
120 m/min, FR 350 mm/min, DOC 0.45 mm, and CF 15 L/min
is shown in Figures 10A, B. These images were captured at a
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FIGURE 9
(A, B) SEM picture of machined workpiece (at CS 130 m/min; FR 325 mm/min; DOC 0.50 mm; CF 22.5 L/min).

FIGURE 10
(A, B) SEM picture of machined workpiece CS 120 m/min; FR 350 mm/min; DOC 0.45 mm; CF 15 L/min.

high magnification level (i.e., 500x, 1000x).a. The impact of
cutting parameters:The examination for SEMmicrographs provided
valuable information into the surface integrity of EN 24 Steel
when subjected to the specified machining conditions. The use of
a reduced cutting speed of 120 m/min, together with a moderate
feed rate of 350 mm/min and a depth of cut of 0.45 mm, yielded
discernible surface characteristics. Reducing the cutting speed has
the effect of minimising the thermal load on both the tool and
workpiece, hence reducing the probability of tool wear and resulting
in a more refined machined surface.b. The role of cutting fluid
in machining processes: The maintenance of surface integrity is
contingent upon the inclusion of cutting fluid at a flow rate
of 15 L per minute. The SEM images provided visual evidence
of the effectiveness of the cutting fluid in both heat dissipation

and prevention of adhesion among the tool and workpiece.
Consequently, this phenomenon played a role in facilitating a more
efficient process of chip formation, and mitigating the prevalence
of built-up edge (BUE). The scientific rationale for this practise is
rooted in the realisation that the provision of sufficient cooling and
lubrication through the use of cutting fluid is essential for preserving
the longevity of the tool and attaining the required quality of the
surface finish.

The scientificmechanisms and rationales for the aforementioned
trend has been exhibited as follows,

3.6.1 Microstructural changes
The SEM images revealed microstructural variations that are

related to the machining process. Upon performing experiments
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FIGURE 11
(A) Surface profile; and (B) Profile graph of surface roughness.

with a depth of cut of 0.45 mm, we noticed an appearance of
localised plastic deformation, a slight rise in material hardness
caused by work hardening, and a limited reduction in grain size
in the vicinity of the machined surface. The aforementioned
observations correspond with the anticipated mechanical
deformation that occurs during the process ofmachining.The depth
of cut, which was substantially lower, had a significant impact on
limiting the magnitude of plastic deformation. This is consistent
with the fundamental principles of metal cutting and the field of
material science.

3.6.2 Mechanisms of tool wear
The utilisation of SEM analysis facilitated the evaluation of the

tool’s advanced technology in order to detect any indications of
deterioration. The micrographs shown in this study revealed the
presence of mild flank wear and minimal crater wear on the WC-
Coated Inserts. The observed wear, which was limited in nature,
alignswith the selectedmachining parameters.These parameters are
specifically designed to prioritise reduced tool wear by employing
lower cutting speeds and optimising chip formation. This assertion
is substantiated by extensively reported wear processes observed in
milling operations.

The surface integrity-determining machine used for analysing
surface integrity is the Contour GT-K 3D surface profilometer. This
profilometer has been designed to provide high-precision, non-
contact measurement of a surface profile to quantify its surface
integrity. Crucial dimensions such as curvature, step, and flatness are
computed from the surface topography. Profilometry is a method
of extracting topographic features from the texture of a surface. It
can be a single data point scan, a three-dimensional scan, or a line
scan. Profilometry is utilized to find the morphology of machined
surfaces and surface irregularities are shown in Figure 11A. It can
be done with a physical probe or with a light. Figure 11B shows the
profile graph of surface roughness, where X profile graph variation
of X at 124.1831 m, Z at 0.4417 m, and Y profile graph variation of

X at 940.1467 m, Z at 0.7784 m is achieved to attain the minimum
surface integrity.

4 Conclusion

This experimental study examines the effect of process
parameters on surface roughness during milling EN 24 steel with
tungsten carbide (WC) coated inserts. An increase in tool hardness
improves machinability and helps maintain high metal cutting
performance. Through a hybrid coating, this was fabricated, tested,
and ensured improved performance while cutting the EN24 steel.
The design of experiments using Central Composite Designs (CCD)
of RSM was generated in Design Expert 13 software deployed for
analysis, and a total of 27 experimental trials were conducted under
various input parameter settings. The EN 24 specimen was used in
this research work. It finds broad applicability in various fields due
to its high strength and wear resistance. Before experiments, the
chemical composition of the workpiece specimen was determined
by the EDX technique. Tungsten carbide with a coating of TiAlN
tool insert has been selected for this study because of its greater
ductility and an excellent choice for interrupted cuts. SEM analysis
examines the surface microstructure after machining the workpiece
at high magnification (i.e., 500x and 1000x). A surface profilometer
is deployed to examine the surface irregularity of the workpiece.
The following conclusions are drawn from experimental work and
optimization result analysis:

i. The optimal surface roughness value is 0.209 μm at a cutting
speed of 139.9 m/min, a feed rate of 285.506 mm/min, a depth
of cut of 0.442, and a cutting fluid flow rate of 20.656 L/min

ii. The feed rate had a more significant influence on the surface
roughness than other variables.

iii. The observed results were analyzed in terms of regression
models using ANOVA. The developed models were able to
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predict the results with reasonable accuracy. The R-square
values for all models were observed to be greater than 0.95.

iv. An optimum parameter for machining EN 24 steel was
obtained and validated experimentally. Confirmation
experiments have been conducted to validate the analytical
part of the study. The investigational findings attained after
experimentation are closer to the predicted findings. The
developed models are suitable for predicting the results with
reasonable accuracy.
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