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Biomimetic spray coating for
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The application of edible coatings for preparing composite antibacterial spray
coatings for fruit preservation by incorporating antibacterial nanoparticles has
gained increasing attention. Chitosan (CS) is a natural polysaccharide used
as an edible coating to preserve fruit; it has properties such as reducing
water loss, enhancing appearance, and improving mechanical properties. By
combining it with antibacterial material, it can reduce fruit microorganisms.
Cerium (Ce) has excellent antibacterial activity combined with the advantages
of safety and low cost. Therefore, this study proposes a biocatalytic spray
coating for fruit preservation using a CS composite metal–organic framework
(CS@Ce-MOF) with strawberry as a model fruit. CS@Ce-MOFs are superior to
Ce-MOFs in the aqueous stability of their chemical structure, inoxidizability,
antibacterial duration, and validity. The well-characterized CS@Ce-MOF was
verified to simultaneously mimic good oxidase- and apyrase-like activities.
CS@Ce-MOF biocatalytic spray coating demonstrated excellent antibacterial
properties against two common foodborne pathogens: Escherichia coli and the
Gram-positive bacterium Staphylococcus aureus, with high killing rates of up
to 94.5%. This is due to the unique structure of the CS@Ce-MOF composite,
which presents a large surface area for contact with pathogens and enhances
the catalytic activity of the incorporated cerium oxide nanoparticles, leading to
efficient sterilization. Furthermore, the scavenging rate of DPPH and ABTS free
radicals is more than 80%, indicating that CS@Ce-MOF has excellent antioxidant
properties. Moreover, CS@Ce-MOF minimized the weight loss and firmness of
strawberries and bananas over 7 days of ambient storage. The use of such a
biocatalytic spray coating has enormous potential for preserving the quality
and safety of fresh produce, reducing food waste, and promoting sustainable
agricultural practices.

KEYWORDS

metal–organic framework, nanozyme, bioinspired spray coating, fruit preservation,
CS@Ce-MOF

1 Introduction

Fruits are an irreplaceable part of the human diet with a rich variety of
nutrients; as organisms, they constantly breathe, consuming oxygen and produce
carbon dioxide (Pontesegger et al., 2023; Valenzuela, 2023). In this process, many
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organic components such as organic acids, proteins, and fats are
metabolized (Jung et al., 2019). Therefore, over time, the nutritional
content, flavor, color, and other characteristics of fruit will diminish
(Ebrahimi et al., 2022; Pathare et al., 2023). Because it takes some
time for fruit to go through processing, transportation, and retail,
effective methods are needed to extend its duration of freshness
(Joung et al., 2021). Present methods of preservation are mainly by
refrigeration, ozone, chemicals, and coatings. Coating is considered
a simple, convenient, green, and safe method, and has attracted
attention and popularity in the food industry due to its simplicity,
convenience, and safety (Souza et al., 2010;Mantilla et al., 2013; Nor
and Ding, 2020; Stuparu-Cretu et al., 2023). A thin layer of edible
coating acts as a barrier to protect fruit and vegetables from external
causes of spoilage. By reducing water loss through transpiration, the
coating helps maintain the firmness and texture of produce. It also
helps retain natural color and flavor by protecting against oxidation
and reducing exposure to light. Additionally, some types of edible
coatings have antimicrobial properties that can help inhibit the
growth of microorganisms on the surface of the produce (Jung et al.,
2019).The coating is designed to be breathable, thus allowing for gas
exchange to occur, which can help prevent the buildup of harmful
gases like ethylene. Coatings can consist of natural polymers such
as chitosan, starch, cellulose, and essential oils, with or without
the addition of bioactive compounds or antimicrobial agents
(Bai et al., 2023).

Nanozymes are a subset of nanomaterials with enzyme
mimicking properties (Li et al., 2018; Fang et al., 2023; Meng et al.,
2023). They can catalyze corresponding substrates to produce
reactive oxygen species in the physiological environment. Their
advantages are simple preparation, low cost, high catalytic efficiency,
easy large-scale production, and high stability, which have broad
application prospects in the field of food preservation (Rao et al.,
2021; Sheng et al., 2023). Unlike analogous natural enzymes,
nanozymes exhibit many unique merits such as ease of synthesis,
low cost, a wide range of sources, high tolerance against adverse
environments, and multiple activities (Huang et al., 2019). A variety
of nanomaterials, such as metal nanoparticles (MNPs), metal oxide
or sulfide nanoparticles (MxOy/MxSy NPs), and metal–carbon
complex nanomaterials, have been found to have enzyme-like
properties (Kalinkevich et al., 2018; Stuparu-Cretu et al., 2023).
Metal–organic frameworks (MOFs) are a kind of material with a
periodic network structure formed by the self-assembly of a metal
center and organic ligand, with abundant adsorption sites and load
channels (Garkani Nejad et al., 2023). Previously, MOFs had been
mainly used for gas storage, catalysis, and separation. However,
with further study, MOFs have been found to have antibacterial
properties and can be used as a repository of antibacterial agents
(Alavijeh et al., 2018). For example,MOFs are used as repositories of
metal ions such as silver, zinc, copper, or nickel. The decomposition
of MOF skeletons is used to gradually release metal ions to provide
lasting antibacterial activity and achieve antibacterial durability,
which are useful for improving the quality and safety of food
storage (Park et al., 2016; Zhang et al., 2016; Slavin et al., 2017;
Alavijeh et al., 2018; Aryanejad et al., 2019).

Researchers have prepared a series of new nanoenzymes
based on MOFs, which show excellent enzyme-like activities
and good prospects for application (Natalini et al., 2021; Ni et al.,
2021; Zhang et al., 2023). Wang et al. synthesized a Cu-MOF

with peroxidase-like activity using Cu2+ and 4,4′-bipyridine using
a coordinated induction strategy (Chen et al., 2020). Dalapati
et al. synthesized a ceric MOF by a solvothermal method using
cerium(IV) ammonium nitrate and 3, 4-dimethyl and 2,3-b
thiophen-2, 5-dicarboxylic acid. Ce(III) and Ce(IV) ions were
present in the MOFs. It can oxidize 3,3′, 5,5′-tetramethylbenzidine
(TMB), 2,2′-diazodi3-ethylbenzothiazolin-6-sulfonic acid (ABTS),
o-phenylenediamine (OPD), and other substances, showing good
oxidase-like activity (Li et al., 2021).MOFs@NC compositematerial
not only integrates the inherent advantages of a single component
but also creates unique properties through the synergy between
MOFs and NC (Zhou et al., 2023).

However, most research into MOFs focuses on their
antimicrobial properties and less on their antibacterial properties.
The powdery form and water instability of MOFs also limit their
further actual application (Chai et al., 2022). An effective method
to fix MOFs on a solid substrate was proposed by Zhai et al., who
hydrothermally coatedAg-MOFs in nitrogen-doped porous carbons
(N-PC). Due to the strong interaction between the N atom of N-
PC and Ag+ ions, N-PC@Ag-MOFs composite material has high
stability, but the preparation conditions of N-PC are harsh, and
N-PC may cause food safety issues (Zhang et al., 2022). Therefore,
MOF nanozymes as bioinspired spray coatings for fruit preservation
still face many challenges.

The crossover between cellulose chemistry and MOF chemistry
has provoked a multitude of research interests in more versatile,
reliable, biocompatible, and sustainable packaging materials
(Vodyanoy, 2021). Huang Guohuan et al. constructed a carrier of
composite biologics through the chemical combination of porous
nano-MOFs and CMFP (Wang et al., 2016).The results showed that
the MOFs@CMFP film containing curcumin has good antioxidant
and antibacterial activities and can prolong the shelf life of dragon
fruit. This composite material has the potential for use as a super
long-lasting food preservative. Moreover, the release of curcumin
is controllable, which has a good application prospect in the
development of long-lasting and stable food preservation film.
MOFs containing iron ions were used to load Cap, and composite
packaging film Cap-FeIII-HMOF-5 containing gelatin and CS has
been prepared and coated onto fresh apple slices to observe the
preservation effect (Zhao et al., 2020). The results showed that there
was had been no bacterial decay and oxidation on the apple slices on
the fifth day of storage.This demonstrated that composite packaging
film can effectively prolong the shelf life of freshly cut apples.

CS is a product of chitosan deacetylated, which is the
only basic cationic polysaccharide found so far (Vargas and
Gonzalez-Martinez, 2010; Deng et al., 2020). It has broad-spectrum
antibacterial activity and good film forming and antioxidant
properties. Therefore, CS can be utilized in the food sector
as an efficient, non-toxic, biodegradable film preservative and
antibacterial agent for fruit and vegetables (Deng et al., 2020;
He et al., 2022). For example, CS nanoparticles were introduced into
potato starch (PS, film-forming matrix) to prepare a nanocomposite
film without incorporating additional antibacterial agents as a
potential candidate for food packagingmaterials (Deng et al., 2022).

This study developed nanozyme-based biomimetic active
packaging with natural polymer CS complexing enzyme-like
Ce@UiO-67-BPY (abbreviated as CS@Ce-MOF) as a spray-coating
colloidal agent. First, UiO-67-BPY crystals were prepared by the
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solvothermal self-assembly of zirconium salt (ZrCl4) and bipyridine
dicarboxylic acid ligand (H2BPYDC). The open bipyridine site in
the ligand was coordinated with Ce by post-modification to obtain
cerium-doped Ce@UiO-67-BPY material. This was made into a
CS@Ce-MOF nanozyme spray coating by complexing it with CS.
Spray is a convenient choice in fruit preservation, so a CS@Ce-MOF
suspension was sprayed onto strawberries and bananas to evaluate
its fruit-preserving effect.

2 Materials and methods

2.1 Materials

Zirconium tetrachloride (ZrCl4), 5,5′-dicarboxylic acid,
2,2' -bipyridine (H2BDC), glacial acetic acid, and N,N-
dimethylformamide (DMF) were purchased from Sinopharm
Chemical Reagent Co., LTD. (Shanghai, China). Chitosan, absolute
ethanol, and acetone were purchased from Maclin Biochemical
Technology Co., Ltd (Shanghai, China). All chemicals were of
analytical grade and could be used directly without further
purification.

2.2 Nanozyme fabrication

Ce-UiO-67 was synthesized by a solvothermal method. First,
H2BDC (152 mg)was dissolved in 5 mLofDMF solution in a beaker,
then ZrCl4(46.6 mg) and 4,4′-bifenthalic acid (48 mg) were added
to the solution in a Teflon-lined reactor, followed by an aqueous
solution of cerium(IV) ammonium nitrate (3 mL, 0.5 M) drop by
drop. Second, 15 mL DMF and 0.4 mL acetic acid were added to the
Teflon-lined reactor and reacted in an oven for 24 h. Finally, it was
cleaned twice with DMF and acetone, and white Ce@UiO-67-BPY
powder was thus obtained.

The Ce@UiO-67-BPY powder was then dispersed into 80 mL
DMF solution of CS (350 mg). The in situ templated growth of
MOF was accomplished by heating the mixture under stirring
for 40 min at 80 °C. After natural cooling, the final CS@Ce-MOF
samples were collected and washed thrice with acetone and water.

2.3 Characterizations

The morphology of CS@Ce-MOF samples was characterized
by a scanning electron microscope (SEM, Zeiss) model (S-3400,
working voltage 20 KV) manufactured by Hitachi, Japan. Energy-
dispersive X-ray diffraction (EDX) analysis was performed by an
X-ray spectrometer attached to a scanning electron microscope.
The X-ray diffractometer (XRD, Ultima IV, Rigaku Corporation,
Akishima, Japan) was selected to collect the diffraction patterns of
Ce-MOF and CS@Ce-MOF using Cu Kα radiation (λ = 0.15406 nm,
40 kV, 1.64 mA) in the ranges of 10°–80° of 2-theta angle. A NEXUS
6700 infrared spectrometer (FTIR) was used to characterize the
chemical structure of Ce-MOF and CS@Ce-MOF in the range
of 400–3,000 cm-1. Thermogravimetric analysis (TGA) of the as-
prepared samples was conducted by a thermogravimetric analyzer
(Netzsch TG 209 F1 Libra, Germany), and the temperature was
increased to 800°C at 10 °C/min in a nitrogen atmosphere.

2.4 Antibacterial experiments

Theantimicrobial performances ofCS@Ce-MOFwere evaluated
with Escherichia coli and Staphylococcus aureus (Wu et al., 2018).
Luria–Bertani (LB) liquid medium was prepared by mixing distilled
water, pancreatic peptone, yeast powder, and sodium chloride, and
LB solid medium was prepared by mixing distilled water, pancreatic
peptone, yeast powder, sodium chloride, and AGAR powder. The
prepared liquid medium and solid culture were cultured at 120 °C
and sterilized for 15 min. When the solid medium was cooled to
about 50–60 °C, it was poured into a Petri dish and solidified and
then incubated overnight (12 h) in a constant temperature stirrer
(37 °C, 200 rpm). Finally, the CS@Ce-MOF suspension was added
to the media of E. coli and S. aureus, respectively, and 100 μL
was taken with a pipetting gun, coated onto an LB plate, and
cultured at 37 °C for 24 h.

2.5 Antioxidant experiments

In order to test the antioxidant activity of the sample, DPPH and
ABTS free radicals were selected as the elimination targets for the
assay. We took 0.04 mg/mL DPPH–ethanol solution 1.5 mL, added
an appropriate amount of Ce-MOF and CS@Ce-MOF suspension in
95% ethanol to make up 3 mL. It stood for 30 min, and wemeasured
absorbance at 517 nm.

R =
1− (A1 −A2)

A0
× 100%. (1)

In Formula (1), R is the clearance rate, A1 the absorbance
of DPPH and ABTS solution after sample suspension, A2 the
absorbance of the sample suspension, and A0 is the absorbance
of DPPH and ABTS solution without adding the sample
suspension.

2.6 Fruit storage experiments

The preservation effect of CS@Ce-MOF nanozyme spray
coating was studied by a fruit preservation experiment. Strawberry
was selected as the model fruit. The CS@Ce-MOF suspension
(1 mg/mL) was sprayed three times with an airbrush with 50 μL
each time on the surface of the fruit to form a film to ensure
uniform coating. The fruit was then put into a pre-sterilized
box at 25–30 °C with relative humidity (RH) of 65%–70%. The
morphological changes and weight loss of the fruit were recorded
on days 1, 3, 5, and 7. The weight loss rate of the fruit was
measured gravimetrically, and the average weight loss rate of
each group of fruit samples was taken as the detection index.
The weight loss rate was calculated by the following formula
(Pirozzi et al., 2021):

WL = (1−
m0 −mt

m0
)× 100%. (2)

In Formula (2), m0 is the weight of the fruit sample on day 0
before storage and mt is the weight of the fruit sample on day t
after storage.
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FIGURE 1
(A, B) SEM images of UiO-67 and Ce@UiO-67; (C) EDX energy spectrum of Ce@UiO-67; (D) XRD patterns of CS, Ce-MOF, and CS@Ce-MOF; (E) FT-IR
spectra of Cs, Ce-MOF, and CS@Ce-MOF; (F) thermogravimetric analysis of CS and CS@Ce-MOF.

FIGURE 2
(A) UV–vis transmittance spectra of CS and CS@Ce-MOF suspension; (B) UV–vis adsorption spectra of CS and CS@Ce-MOF suspension.

3 Results and discussion

3.1 Structural characterization analysis

First, themorphologies of the synthesizedUiO-67 andCe@UiO-
67 were characterized. SEM was used to demonstrate the effective
preparation of UiO-67 and Ce@UiO-67. Figure 1A depicts the
morphology of the UiO-67 crystals, which have a cuboidal

granular structure with a uniform size of approximately 2 mm
and a good regular octahedral arrangement. Figure 1B shows the
microtopography of Ce-UiO-67, which also showed a relatively
intact regular octahedral configuration, indicating that Ce doping
penetrated deep into the skeleton rather than just surface adhesion.
However, the overall crystal structure was slightly broken, indicating
that the integrity of the crystals was reduced after the addition of
cerium ion. Figure 1C shows the EDX energy spectrum of Ce@UiO-
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FIGURE 3
(A) XPS survey of Cs@Ce-MOF; (B) high-resolution XPS spectra of Ce; (C) O in Cs@Ce-MOF.

FIGURE 4
(A) AGAR plates treated with Ce-MOF and CS@Ce-MOF for E. coli and S. aureus; (B) bacterial viability rates of E. coli and (C) S. aureus.

67, from which it is apparent that the component elements of
Ce@UiO-67 are Zr, Ce, Cl, C, and O. This indicates that the Ce-
UiO-67 preparation was successful. To further demonstrate the
successful preparation of Ce-MOF and CS@Ce-MOF, XRD patterns

of Ce-MOF and CS@Ce-MOF are shown in Figure 1D. For Ce-
MOF, the main diffraction peaks are found at 2θ = 5.8°, 15.4°, and
24.2°; for CS@Ce-MOF, the main diffraction peaks are found at
2θ = 5.8°, 10.2°, 15.4°, and 30.2°. The position of the characteristic
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FIGURE 5
Scavenging abilities of CS, Ce-MOF, and CS@Ce-MOF for DPPH (A) and ABST (B).

FIGURE 6
(A) Appearance of strawberries during storage; (B) weight loss rates of strawberries with different treatments; (C) appearance of bananas during
storage; (D) weight loss rates of bananas with different treatments.

diffraction peaks of the two samples is basically the same, indicating
that the crystal structure is also the same (Travlou et al., 2018;
Yang et al., 2020). In addition, the samples presented a broad peak
of around 5°, implying that amorphous Ce-MOF was formed on
the surface of CS (Thomas et al., 2018), and in the diffractogram
of CS@Ce-MOF, there is a peak at 10° that may be the CS.
This furthermore revealed that the crystal structure integrities of
CS@Ce-MOFwere consistentwithCe-MOF, indicating the presence
of Ce-MOF in the composites. The FT-IR spectra of Ce-MOF

and CS@Ce-MOF are shown in Figure 1E. For Ce-MOF and
CS@Ce-MOF samples, the peaks were at 1,028 cm−1, 1,384 cm−1,
and 1,450 cm−1. The appearance of the peak at 1,450 cm−1

corresponded to the stretching vibrations of the coordinated Ce-
O and Ce-O-C metal nodes, indicating the successful coordination
of cerium ions with the H2BDC (Ren et al., 2019). In addition,
the thermal properties of CS and CS@Ce-MOF were tested
by TGA at temperatures ranging from 30 °C to 800°C. For
the thermogravimetric analysis in Figure 1F, the degradation
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temperature of CS was 220 °C in the thermograms of CS, but
the decomposition temperature of CS@Ce-MOF was about 300 °C,
indicating an interaction between CS and Ce-MOF. However, a
weight loss of over 350°C would indicate the gradual carbonization
of CS and framework collapse of Ce-MOF (Sharma et al., 2022).
At the same time, it shows that CS@Ce-MOF has thermal stability
within 350°C.

3.2 Optical properties of CS@Ce-MOF

The optical properties of spray coating components affect the
preservation of fruit; thus, we investigated the optical properties of
the CS@Ce-MOF spray coating. Figure 2A shows the ultraviolet-
visible transmission spectrum in the range of 300–800 nm for the
CS and CS@Ce-MOF suspension. Figure 2B shows the ultraviolet-
visible adsorption spectrum in the range of 300–800 nm of the
CS and CS@Ce-MOF suspension. It can be observed that, in
the range of visible light (400–800 nm), the CS suspension has
a high transmittance of nearly 80% while the CS@Ce-MOF
suspension has a transmittance of about 40%. In the range of
ultraviolet light (300–400 nm), CS@Ce-MOF suspension has a
lower transmittance of about 40% (Figure 2A). Meanwhile, the
CS@Ce-MOF suspension has high adsorption in the range of
ultraviolet light (300–400 nm) that is observed from Figure 2B,
possibly due to the UV-barrier performance of Ce-MOF. The above
results demonstrate that CS@Ce-MOF has good light transmittance,
indicating its capability to preserve fruit against discoloration and
denaturation.

3.3 XPS analysis of Cs@Ce-MOF

The active spots on the surface of CS@Ce-MOF were
characterized by XPS survey. The characteristic peaks attributed
to the Ce s2p, O 1s, N 1, and C 1s regions can be seen in Figure 3A.
In addition, Figures 3B,C show the high-resolution XPS spectra
of Ce and O in Cs@Ce-MOF, with peaks at 88.5 eV and 530.8 eV,
indicating the presence of cerium ions.The signal ofO1 s at 530.8 eV
could be the Ce-O bond in the composite, revealing the successful
preparation of CS@Ce-MOF (An et al., 2014).

3.4 Antibacterial performance of
CS@Ce-MOF

In order to explore the antibacterial activity of the CS@Ce-
MOF nanozyme, the antibacterial activity of CS@Ce-MOF against
E. coli and S. aureus was investigated by the plate counting method
(Yang et al., 2020). Figure 4A shows the number of E. coli and
S. aureus colonies remaining after Ce-MOF and CS@Ce-MOF
treatment. We could observe an obvious reduction of plate colonies
when treated with Ce-MOF. More importantly, only a few plate
colonies were found in the groups treated by CS@Ce-MOF for all
these bacterial samples. In addition, separate quantification results
for the plate count assay are displayed in Figures 4B,C for E. coli and
S. aureus. It can be observed from Figures 4A,B that CS@Ce-MOF
has better bacteriostatic performance than Ce-MOF; in particular,

the bacteriostatic rate of CS@Ce-MOF to S. aureus reaches 94.5%.
The results indicate that CS@Ce-MOF shows better antibacterial
properties with longer lasting antibacterial duration against E. coli
and S. aureus.

The CS@Ce-MOF nanozyme thus exhibited promise in
combating foodborne pathogenic bacteria due to its antibacterial
properties.These allow the nanozyme to efficiently degrade harmful
biofilms and inhibit bacterial growth, making it an excellent
candidate for food industry applications such as disinfection
and preservation. Additionally, the broad-spectrum biocidal
activity of the CS@Ce-MOF nanozyme makes it useful for
targeting multiple types of foodborne pathogens, thus ensuring
a safer food supply chain. Such antibacterial performance
qualifies CS@Ce-MOF to serve as a spray coating for fruit
preservation.

3.5 Analysis of antioxidant activity

The oxidation of vitamins in fruit is one of the main causes
of nutrient loss and deterioration (Bobasa et al., 2023). Therefore,
fruit preservation coatings require excellent antioxidant properties.
We tested the antioxidant properties of the prepared Cs, Ce-MOF,
and CS@Ce-MOF with free-radical scavenging DPPH and ABTS
(Figure 4). It can be seen from Figure 5A that, with the increase in
the extract concentration, the ability of free-radical scavenging is
enhanced. When the sample concentration reached 0.5 mg/mL, the
DPPH free-radical clearance rate of the CS@Ce-MOF reached more
than 80%. In addition, it can be observed from Figure 5B that both
Ce-MOF and CS@Ce-MOF have slightly better scavenging ability
for ABTS than DPPH. When the sample concentration reached
0.5 mg/mL, the DPPH free-radical clearance rate of the CS@Ce-
MOF reached 85%. This result shows that the antioxidant activity
of the CS@Ce-MOF suspension is very high and can be widely used
in food preservation.

3.6 Fruit preservation study

A fruit preservation experiment was conducted to explore the
utilization of CS@Ce-MOF nanozyme for food preservation. We
choose strawberry and banana, which are not easy to store, for
a fruit storage experiment. Figure 6A shows the comparison of
the appearance changes of strawberries under different treatments
during storage. It can be observed that untreated strawberries
began to show signs of decay after storage for 5 days, and, after
storage for 5 days, most of the pulp was clearly rotten. Strawberries
sprayed with CS@Ce-MOF nanozyme suspension looked fresher
and remained fresh after storage for 5 days and only showed tiny
signs of decay after 7 days of storage. As a typical fruit of respiratory
menopause, water in strawberry is easily consumed and diffused
to the external environment during postharvest storage due to
respiration and transpiration, resulting in its reduced water content
and weight. Figure 6B shows the changing trend of the weight loss
rate of strawberry during storage. It is apparent that the weight-loss
rate of strawberry generally rises during the whole storage cycle;
the strawberry samples without any preservation treatment have
serious water loss, and the weight-loss rate rises faster, reaching
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43% after 7 days of storage. The weight-loss rate of strawberries
treated by spraying CS@Ce-MOF nanozyme suspension increased
slowly, reaching 29% after 7 days of storage, confirming the
good effect of the spray in preventing fruit rot. Morphological
observation of bananas at different times with various treatments
is shown in Figure 6c. During the green-yellow life of banana
(0–3 days of storage), CS@Ce-MOF nanozyme spray coating slowed
chlorophyll degradation. During the yellow-brown life of bananas
(5–7 days of storage), CS@Ce-MOFnanozyme spray coating further
reduced the incidence of browning spots on the fruit surfaces
compared to uncoated bananas (Deng et al., 2017). After 7 days,
the weight of control bananas at room temperature dropped
by more than 20% while the sprayed CS@Ce-MOF nanozyme
bananas retained about 90% of original weight (Figure 6D). These
results suggest that the CS@Ce-MOF nanozyme as a bio-inspired
spray coating can protect the freshness of fruit during storage
and can significantly delay its decay, with shelf-life extension
of up to 4 days.

4 Conclusion

CS@Ce-MOF nanozyme spray coating was successfully
prepared for fruit preservation. Combining Ce-MOF with CS
creates CS@Ce-MOF. This method is a possible strategy for
preparing a biocatalytic coating with good stability and anti-
microbial properties for fruit preservation. The two materials
before and after modification were then characterized by XRD,
FT-IR, SEM, EDX, and other basic methods. It was demonstrated
that the modified MOFs not only successfully introduced cerium
element but also maintained good morphology and crystallinity.
Through experimental research, we found that the CS@Ce-MOF
bionanocomposites attained UV-blocking capability, antibacterial
activity, and isolation ability against O2 and moisture. In
addition, spraying CS@Ce-MOF suspension effectively extended
the freshness and enhanced the quality of strawberries and
bananas during storage. The findings of this research contribute
to the advancement of metal-containing nano-materials and the
use of biocompatible nanozymes. Furthermore, this research
has potential application in the preservation of fresh food,
particularly fruit.
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