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Modeling a domain wall network
in BiFeO3 with stochastic
geometry and entropy-based
similarity measure
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A compact and tractable two-dimensional model to generate the topological
network structure of domain walls in BiFeO3 thin films is presented in this
study. Our method combines the stochastic geometry parametric model
of the centroidal Voronoi tessellation optimized using the von Neumann
entropy, a novel information-theoretic tool for networks. The former permits
the generation of image-based stochastic artificial samples of domain wall
networks, from which the network structure is subsequently extracted and
converted to the graph-based representation. The von Neumann entropy,
which reflects information diffusion across multiple spatiotemporal scales in
heterogeneous networks, plays a central role in defining a fitness function. It
allows the use of the network as a whole rather than using a subset of network
descriptors to search for optimal model parameters. The optimization of the
parameters is carried out by a genetic algorithm through the maximization of
the fitness function and results in the desired graph-based network connectivity
structure. Ground truth empirical networks are defined, and a dataset of network
connectivity structures of domain walls in BiFeO3 thin films is undertaken
throughmanual annotation. Both a versatile tool for manual network annotation
of noisy images and a new automatic network extraction method for high-
quality images are developed.
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1 Introduction

Ferroelectric domain walls (DWs) are the boundaries between two regions with
differently oriented electrical polarization on a crystal structure and can be one or
two atoms wide (Jia et al., 2007). They show enhanced conductivity compared to that
of the domains (Seidel et al., 2009; Catalan et al., 2012; Meier et al., 2012), and their
density and topological complexity can be modulated by the choice of the substrate
and the system dimensions (Vlooswijk et al., 2007; Nesterov et al., 2013; Feigl et al.,
2014), e.g., the film thickness. Their non-trivial electronic and transport properties have
been demonstrated to be suitable for new applications of domain wall nanoelectronics
(Catalan et al., 2012; Meier and Selbach, 2022). DWs can also provide memristive features
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(Maksymovych et al., 2011; Chen et al., 2023; Liu et al., 2023).
In particular, both DWs’ enhanced conductivity with respect
to domains (Chiu et al., 2011; Farokhipoor and Noheda, 2011;
2012) and DWs’ memristive behavior (Rieck et al., 2022) have
been observed in as-grown self-assembled ferroelectric–ferroelastic
DW networks where conduction is “lateral,” i.e., the charge
flows parallel to the surface through the DW network from
wall to wall.

Thus, self-assembled DW networks are potential candidates for
neuromorphic information processing. Neuromorphic computing
has emerged in recent years as a possible solution to the ever-
increasing demand for computational power. The paradigm was
ignited by Mead (2020), and it aims to the emulation of the brain
learning capabilities that arise from the collective dynamics of a
large number of interacting elements. Nowadays, new memristive
technologies have been proposed and effectively used to mimic the
brain’s ability to encode information and synapse-like dynamics
in materio (Indiveri et al., 2013; Christensen et al., 2022). Wiring
together memristive devices enables the realization of cross-bar
arrays for the fast and energy-efficient hardware implementation
of vector-matrix multiplications (Mannocci et al., 2023), which
is one of the most expensive computational steps in modern
neural network models in artificial intelligence. Nevertheless, the
full potential of biological neural systems is achieved through
the interplay between their complex topological structures
and the functional dynamics of several elements evolving on
them (Suárez et al., 2021). Self-assembled memristive networks
of nano-objects, such as nanoparticle self-assembled networks
(Bose et al., 2017; Mambretti et al., 2022; Profumo et al., 2023) or
nanowire networks (Hochstetter et al., 2021; Milano et al., 2021;
Montano et al., 2022), have been proposed as potential candidates
to emulate the structure–function interplay of biological systems.
Because ferroelastic DW formation is due to the release of an
epitaxial strain imposed by the substrate, they cannot be easily
moved, removed, or created with an electric field. Thus, this kind of
system might provide a more robust plastic connectivity structure
between input leads located on the substrate compared to other self-
assembled neuromorphic systems. Self-assembled neuromorphic
networks are complex systems, and unraveling their characteristics
along with their potential for information processing requires an
analysis of both their functional, i.e., dynamical, and structural
properties. The diversity of the response of a complex system can
be determined only by the coupling between both components
(Ghavasieh and De Domenico, 2023). The network anatomy has
a vital impact on a complete description of a complex system as
the structure affects the dynamics that cope with that topology
at different time scales (Pastor-Satorras and Vespignani, 2001;
Strogatz, 2001; Moreno and Pacheco, 2004) and ultimately affect
the function. In some cases, as for a memristive network, the reverse
is also true. The dynamics can also possibly affect the structure of
a system, where, in this specific case, we mean the distribution of
conductance. In this regard, such coupling has been investigated in
the case of other self-assembled materials with intricate structures
(Loeffler et al., 2020; Milano et al., 2022) through simulation. Even
though the ultimate task is to reassemble topology and function
in a complete mathematical description (Caravelli et al., 2023;
Caravelli et al., 2021), because of the non-linearity of some systems,
e.g., the memristive dynamics, simulations are still required to shed

light on their functional behavior, as shown in our previous work
(Cipollini and Schomaker, 2023).

The structural connectivity can be accessed experimentally
by modern imaging techniques, such as optical microscopy,
conductive atomic force microscopy (cAFM), electron backscatter
diffraction, or X-ray diffraction microscopy. Unfortunately, high-
quality microstructural images are particularly time-consuming
and costly in terms of laboratory equipment. Furthermore, it is
difficult to cover all possible “states of interest” as either the
image measurements might not disclose the degree of statistical
homogeneity desired or the parameter space might be too large
to be sampled within a reasonable time. Thus, solely relying
on experimental imaging techniques for obtaining the necessary
microstructural data is insufficient, and synthetic models for
materials provide a practical alternative to these issues.

In this work, we focus on the structural connectivity of the DW
network in BiFeO3 (BFO) thin films that show lateral conduction.
Under the framework of complex network theory together with
tessellation methods from stochastic geometry, this study defines
a two-dimensional generative model for the network structure of
ferroelectric–ferroelastic DWs in BFO thin films. The DW network
structure was experimentally accessible, thanks to the conductive
atomic force microscopy (cAFM) imaging technique, and manual
annotation of nodes and edges on the imagewas undertaken to build
a dataset of DW networks (see Section 2.1).

1.1 Complex network theory

Complex systems, both artificial and natural, find an abstract
yet powerful representation through network structures, which
are defined by nodes interconnected by edges. A complex
network theory provides a robust framework for modeling and
understanding the structural and functional organization of
such complex systems when encoded into the mathematical
form of graphs (Newman, 2010). Specifically, in the context of
self-assembled neuromorphic structures (e.g., DWs in crystal
structures and nanowire networks), when complemented with
a model for the dynamical memristive properties of the edges,
it facilitates the understanding of the transport properties of
these systems.

Complex network theory is becoming increasingly popular
because of its vast applicability; nevertheless, several questions
remain open. For instance, questions such as how to measure the
distance between two graphs and, consequently, how to measure
the likelihood of the network model parameters with respect to
the observed empirical network are important in the context of
networks. In other words, it is important to know how much
information is gainedwhenwe try to describe the empirical network
structure derived from data with a prescribed model. When the
task is to find the best set of model parameters to reproduce some
empirical networks, according to the model, maximization of the
log-likelihood is very well-suited (Cimini et al., 2019). Maximum-
likelihoodmethods on graphs aim to compare the ability of different
models to describe empirical networks, that is, to optimize model
parameters to fit soft constraints, which are quantities of interest.
Hence, an ensemble of graphs is partially defined by the graph
model, and maximizing the (log-) likelihood completes such a
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definition, which results in fixing the constraints to be equal,
on average, to what is measured on the empirical networks. The
model selection problem and inference of parameters are thus
solved by constraining a subset of local or global features of
the network structure on the proposed model to be, on average,
equal to the empirical network, e.g., degree correlations, degree
distribution, and clustering coefficients. A canonical ensemble of
networks is thus defined, according to which the same probability
is assigned to networks that satisfy the same set of constraints.
Nevertheless, the caveat is in the imposition of some global or local
features that do not necessarily capture the intrinsically multi-scale
structure of heterogeneous networks as a whole (Cimini et al., 2019;
Nicolini et al., 2020).

The work of Domenico and Biamonte (2016) recently proposed
von Neumann entropy for networks to condense the description of
themulti-scale network structure in a single quantity.They extended
the information-theoretic framework of quantum mechanics to
define the entropy of complex networks by focusing on how the
information diffuses over the network topology. A density matrix,
which typically encodesmixed states in quantumphysics (Feynman,
1998), is used to encode the network structure. The definition of
a density matrix for networks enables the extension of the von
Neumann entropy to complex networks computed as the Shannon
entropy of its eigenvalues.

1.1.1 Spectral entropy and diffusion in networks
When studying information spreading (Domenico and

Biamonte, 2016) and the identification of core structures in
heterogeneous systems (Villegas et al., 2022), diffusion processes
are essential. The graph Laplacian governs diffusion in networks
(Masuda et al., 2017), and its eigenvalue spectrum encodes many
relevant topological properties of the graph (Anderson and Morley,
1985; Estrada, 2011). Let us consider an undirected and unweighted
simple networkG(V,E),where |V| = N and |E| = L are the number of
nodes and links, respectively. The network combinatorial Laplacian
is defined as L̂ = D̂− Â, where D̂ and Â are the diagonal matrix of
the node degrees and the adjacency matrix, respectively. Given an
initial state of the network encoding the amount of information
in one or more nodes, s(0), the state at time τ is given by s(τ) =
e−τL̂s(0), where K̂ = e−τL̂ is the network propagator. The ensemble of
accessible diffusive states at time τ is defined through the network
propagator by the density matrix (Domenico and Biamonte, 2016;
Nicolini et al., 2018; Ghavasieh et al., 2020):

ρ̂ = e
−τL̂

Z
, (1)

where ρ̂(τ) can be interpreted as the canonical density operator
in statistical physics. Each element ρij represents the normalized
amount of information transferred in a diffusion process between
nodes i and j at time τ, where ρij takes into account all possible
topological pathways between the two nodes and assigns smaller
weights to longer ones (Feynman, 1998; Villegas et al., 2022). The
partition function Z = Tr[K̂] = ∑Ni=1e

−τλi(L̂) is a function of the
eigenvalues, λi, of the Laplacian and is proportional to the average
return probability of a randomwalker to be back in its initial location
at time τ. The object ρ̂ is a positive semi-definite and Hermitian
matrix whose trace sums to unity, allowing its eigenvalues to be

interpreted as probabilities. Therefore, the von Neumann entropy is
defined as follows:

S (ρ̂ (τ)) = −
N

∑
i=1

μi (τ) logμi (τ) , (2)

where {μi(τ)}
N
i is the set of ρ̂(τ) eigenvalues that are related to

the set of Laplacian matrix eigenvalues through μi(τ) = e
−τλi/Z.

The entropy S(ρ̂(τ)) is a function of the normalized time τ and
is bounded between [logC, logN], where C is the number of
connected components and N is the number of nodes. The entropy
S, as a function of τ, reflects the entropic phase transition of
information propagation over the network (Villegas et al., 2022),
as illustrated in Figure 1. Specifically, for a connected network, for
τ→ 0, S(τ) = logN, it reflects the segregated heterogeneous phase
where information diffuses from the single nodes to their local
neighborhood; meanwhile, for τ→∞, S(τ) = 0, the diffusion is
governed by the smallest non-zero eigenvalue of the Laplacian,
associated with the so-called Fiedler eigenvector, reflecting the
homogeneous phase where information has propagated all over
the network. Thus, intuitively, we can use the parameter τ in the
von Neumann entropy (Eq. 2) to resolve the network topological
structures at different structural scales, leveraging on the time
evolution. We briefly mention that the analogy to second-order
phase transitions is robust, and the specific heat can be defined
and used to access the intrinsic temporal diffusion scales of the
network. We refer to Villegas et al. (2023) for a more extensive
explanation.Within the proposed framework, Domenico and
Biamonte (2016) demonstrated the use of spectral entropy to define
a distance between networks, the von Neumann relative entropy:

S (ρ̂ ∣ σ̂) = Tr [ρ̂ (log ρ̂− log σ̂)] , (3)

where ρ̂ and σ̂ are network density matrices. This quantity describes
the Kullback–Leibler divergence between two graphs, and its
minimization is equivalent to maximizing the log-likelihood of
the density matrix σ̂ describing the density matrix ρ̂. Nevertheless,
to compute this quantity, both networks need to be of the same size,
which is the case for networks of the canonical ensemble, but it is
not suitable for our case, as is discussed in Section 2.3.

2 Materials and methods

2.1 Data and ground truth networks

Data used in this work are from Rieck et al. (2022), and we
refer to the original article for details on the experimental apparatus
and experimental methods used to grow the BFO and produce
the cAFM data used in this work. Here, we summarize the main
points. The BFO thin films of 55− nm thickness are deposited by
pulsed laser deposition (PLD) on TiO2-terminated (100) SrTiO3
(STO) single-crystal substrates. cAFMmeasurements are performed
using the conductive tip of an AFM as the top electrode. For
these measurements, the sample has no bottom electrode, and thus,
conductivity is lateral from wall to wall. The conduction map is
shown in Figure 2A and exhibits a dense and well-interconnected
DW network of higher conductivity compared to the domains.

The method proposed in this work is data-driven; thus, it
requires a supply of a dataset of ground truth DW networks as
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FIGURE 1
(A) Von Neumann entropy, S, as a function of the diffusion time, τ, for two exemplary networks with analogous topological features to those depicted
in panel (B): in blue a stochastic block model network exhibiting tripartite modular structure, and in purple a Erdös-Rényi random network with the
same number of nodes of the blue one. Graphs depicted in (B) have only illustration purpose. For small τ ∼ 0, both networks exhibit the maximum
spectral entropy value logN, where N is the number of nodes, reflecting the segregated phase. For τ→∞, the spectral entropy converges to logC,
where C is the number of connected components, thus reflecting the integrated phase. For intermediate values of τ, the Erdös-Rényi network shows a
single critical scale at which the network transitions from the segregated to the integrated phase, depicting the lack of any sign of scale-invariance in
the topological structure. On the contrary, the blue network exhibits two critical resolution scales in the entropic transition. At smaller τ, information
initially diffuses within the modules, afterwards a second slower diffusion between the modules completes the transition to the integrated phase.
Between the two resolution scales, a plateau resolves the mesoscale properties of the network. The plateau height is associated with the modularity of
the network, while its position on the horizontal axis is related to the edge density of the network. The insets show the density matrix, ρ, at different
diffusion times, τ, as the entropic transition takes place along the blue curve. The tripartite modular structure of the network is shown by the
emergence of the three blocks in the density matrix. Adapted from Nicolini et al. (2020) and Villegas et al. (2022).

FIGURE 2
(A) Conduction map of 55−nm-thick BFO thin film from Rieck et al. (2022). A dense DW network of higher conductivity compared to the domains is
revealed from the cAFM measurements. Conduction is from wall to wall. Sample size is 5×5 μm. Brighter regions correspond to 9−pA currents. (B)
Four exemplary crops of physical linear size 1.25 μm and 128-pixel-linear size corresponding to the yellow dashed squares in (A). Panel (C) shows an
example of manual graph annotation of the crop corresponding to the top-left corner of (A). Only the largest connected component is depicted.
Nodes (yellow dots) are located at DW intersections. Edges (red continuous lines) connect two nodes and coincide with DWs or a part of them. DWs
that continue out of the crop are not included in the annotation. More annotated crops are displayed in Supplementary Figure S1A.

a reference. For this purpose, the sample is cropped in 25 square
patches of physical linear size 1.25 μm and 128× 128 pixel size, as
shown in Figures 2A, B. Grid-like segmentation results in 16 crops,
and the 9 other crops are taken by displacing the grid-like cropping

of half the linear size of the crops both on the ŷ and x̂ axes. Each
crop is manually annotated with a specifically designed Python-
written tool with a simple graphical user interface (GUI). Nodes
are defined and manually placed in locations where DWs intersect.
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Edges are created by connecting two nodes such that each edge
coincides with a DW or a part of it. Only DW structures that
are fully contained in each single crop are included in the dataset,
and DWs whose start/end/intersection is not visible in the crop
are not annotated. In conclusion, from the 25 crops, we obtain a
dataset of 25 DW graph-encoded networks. Importantly, after the
manual annotation, the largest connected component is selected
to be included in the DW network dataset. Importantly, the rules
chosen for the identification of nodes and edges in the manual
annotation of the experimental samples are in accordance with
the automatic network extraction method applied to the synthetic
samples that we discuss in Section 2.2.2, as is visually illustrated in
Supplementary Figure S1.

2.2 Model

2.2.1 Voronoi tessellation
Tessellation is a class of mathematical models that divides

space into non-overlapping cells (domains) that has proven to
be a useful framework for models with realistic grain shapes in
bulk ceramics and ferroelectric thin films in order to investigate
the microstructures of materials and the structure–property
relationships (Anand, 2012; Šedivý et al., 2016). This type of
idealized mathematical description comes at the cost of the physical
description of the underlying processes driving the formation
and growth of the material. Nevertheless, in contrast to physics-
based models, the geometrical approaches are less computationally
demanding. To approximate the formation of a configuration of
domains and walls of a given sample of the ferroelastic–ferroelectric
BFO film, we need to account for both the growth and competition
of distinct domains and DWs during the formation process as the
material seeks to find the most stable and energetically favorable
configuration under given conditions, e.g., the epitaxial strain
imposed by the substrate cut, the density of domain walls due
to the substrate thickness, and temperature (Catalan et al., 2012).
These two key features are both available in the Voronoi scheme,
where randomly displaced centroidal seeds compete with other
seeds to grow and form a homogeneous region of influence. This is
akin to a region of homogeneous electric polarization stochastically
formed during the ferroelastic–ferroelectric film formation process.
As a consequence, separating boundaries between homogeneous
(polarization) regions appear both in theVoronoi-proxy process and
in the physical formation process of BFO thin films, indicating the
Voronoi tessellation as a natural modeling solution for mimicking
the emergence of the interconnected DW network structure. The
formation of a given structure of domains andDWs both in the BFO
sample and in the Voronoi sample is the result of an optimization
process trying to minimize either the free energy (Kittel, 1946;
Landau and Lifshitz, 1992), in the case of the BFO, or a distance
function, in the case of the Voronoi process. Nevertheless, in this
work, we do not seek any further analogy than those discussed,
but rather, we use the Voronoi process as an inductive bias over
the generation of topological structures in our samples, with some
control parameters acting as effective parameters gathering the
overall condition under which the physical sample was grown.

We use the Voronoi tessellation to create pixel-based instances
of BFO synthetic samples from which the network, in the form of

graph, is subsequently extracted. Thus, the Voronoi tessellation can
be regarded as the inductive bias imposed on our graph generation
process. Given a set P = {P̄i}

n
i=1 of seed points on a domain D ∈ ℝ2,

the Voronoi diagram divides the plane into convex Voronoi regions
V(P) = {Vi}

n
i=1 such that

Vi = { ̄x ∈D| ‖ ̄x− P̄i‖ ≤ ‖ ̄x− P̄j‖,∀j ≠ i} . (4)

A Voronoi tessellation is considered centroidal when the center of
mass, C̄i, of the Voronoi domains is such that C̄i = P̄i ∀i. Given
an arbitrary set of seed points, there is no guarantee that the
resulting Voronoi tessellation will be centroidal. Nevertheless, given
a pristine set of points, it is possible to iteratively converge toward
a centroidal tessellation. We use the relaxing scheme proposed
by Lloyd (1982). The process starts with computing the Voronoi
diagram of an initial uniform distribution of n points P̄i displaced
over the plane. The centroids are also computed. Then, the seed
points P̄i of each region are moved to the corresponding centroids
C̄i, and Voronoi regions are generated again. The algorithm stops
when the maximum distance between the seed points and centroids
is less than an arbitrary value.The Voronoi tessellation is a distance-
based method, which means that, based on the distance metric
that is used to compute the tessellation, several types of patterns
can be realized (Chen et al., 2019). As an example, if a L1-metric
(Manhattan distance) is used, the Voronoi domains will converge
toward a pattern of squares rotated at 45° (Efros and Leung, 1999),
while the generatedVoronoi regionwill be close to a regular hexagon
if a L2-metric distance is used. In this work, the Chebyshev distance
with an axial scale is used:

dβ ( ̄x(i), ̄x(j)) =max(β|x(i)0 − x
(j)
0 |,

1
β
|x(i)1 − x

(j)
1 |) , (5)

where ̄x(i) = (x(i)0 ,x
(i)
1 ) and β is the scale factor. Rectangle-

shaped Voronoi regions are generated with this metric
(Chen et al., 2019).

To produce complex shapes resembling the structure of the
BFO sample in Figure 2, each seed point is associated with either
a vertically or horizontally axial-scaled Chebyshev distance with
the probability p. The Voronoi obtained is an improper Voronoi
tessellation as the domains are not convex. Moreover, as can
be observed in Figure 3, the introduction of both vertically and
horizontally scaled domains potentially leads to domains clashing
into each other and thus creating fractured domains. In conclusion,
the resulting tessellation is dependent on three parameters: the
number of seed points n, the Chebyshev distance axial scale β, and
the probability, p, of a domain along either the vertical or horizontal
direction. Intuitively, the number of seed points governs the density
of the domains and DWs, the axial scale influences the elongation of
the domains and theDWs, and the probability p governs the fraction
of horizontal and vertical domains together with the fraction of
fractured domains and complex shapes. In the next sections, we will
not refer to the number of points, n, but rather to the linear density of
points, d≔ n/l, where l = 128 is the linear pixel size of our samples.

2.2.2 Automatic conversion from a pixel-based to
graph-based data sample

We are not interested in the domains produced by the
tessellation method, which are analogous to the polarization
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FIGURE 3
(A) BFO sample and its scale. (B) Tessellation result after 20 iterations generated with the parameters illustrated in Table 1. The seeds are indicated by
black dots. The sample is of 128-pixel-linear size corresponding to 1.25 μm in physical units (see the bar at the bottom). (C) Zoomed-in view of the
synthetic Voronoi sample visually illustrating the emergence of fractured domains due to the introduction of the two types of axially scaled domains,
both before and after the domain border detection, as described in section 2.2.2. Note that images in panels (B, C) are rotated by 90° to the right.

domains in the BFO, but in the boundaries that naturally arise
between the Voronoi regions that in our scheme are analogous to
the DWs in the BFO. Our focus is on the network properties of
the DWs in the BFO thin film, and we ultimately aim at synthetic
data in a graph-based representation. To extract the DW network
structures from the tessellation sample, we developed an automatic
tool. A detailed description of the automatic network extraction tool
can be found in Section 1 of the Supplementary Material. Here, we
give a schematic description of the steps involved.

1 Synthetic Voronoi samples of pixel size 128× 128 are generated
from n seed points uniformly distributed on the 2D plane, each
associated with an axial scaling of β in either the vertical or
horizontal direction with probability p.

2 Walls between distinct Voronoi domains are detected with the
Sobel filter (Kanopoulos et al., 1988).The output image is then
binarized: all non-zero values are set to one, and the remaining
pixels are left zero.

3 Automated network extraction is undertaken through the
following steps:

a Nodes for the graph representation are detected through
the junction detection algorithm (He et al., 2015).

b Edges for the graph representation are detected with the
module from the NEFI tool (Dirnberger et al., 2015).

c Nodes that are closer to each other than ϵ ≤ √2 are
merged.

The procedure results in both pixel-based and the
respective graph-based samples of the synthetic DW network,
as shown in Figure 4. See Supplementary Figure S1B for
more examples of automatically extracted networks from the
Voronoi samples.

2.3 Fitting the network structure

A distance measure between networks follows the definition of
the network density matrix and the spectral entropy (Domenico
and Biamonte, 2016). Specifically, Domenico and Biamonte (2016)
defined the Kullback–Leibler divergence (also called relative
entropy) between networks and showed that it is proportional to
the negative log-likelihood function. A maximum log-likelihood
approach can then be used to estimate the model parameters that
maximize the likelihood of reproducing the empirical samples,
as previously discussed in Section 1.1.1. The procedure results in
constraining the generated networks to have, on average, the same
Laplacian spectrum as the empirical networks. Within the pipeline
proposed in this work, the number of nodes in the network, N,
cannot be held fixed; thus, any analogy to the canonical ensemble
should be considered with caution (see Section 1.1). Furthermore,
the relative entropy between two networks defined in this ensemble
necessitates the same number of nodes to be calculated, unlike in
our pipeline, where the number of nodes fluctuates. Nevertheless,
while using the Voronoi tessellation to produce the pixel-based
data is analogous to imposing an inductive bias on our generation
model, the use of the eigenvalue spectrum of the diffusion
propagator to fit the model can be interpreted as constraining the
diffusion modes available in the generated networks to those of the
empirical networks. Moreover, the Laplacian spectrum, on which
the propagator spectrum depends, encloses several topological
properties of graphs that are closely related to the conductive
properties of networks (Ho et al., 1975; Klein and Randić, 1993;
Ellens et al., 2011).

For what concerns this work, we directly use the spectral entropy
curves to proxy the distance between the generated graphs and their
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FIGURE 4
Illustration of the introduced pipeline to generate a synthetic DW network sample. We begin by generating a tessellation sample from n seed points
randomly displaced over the sample of size 128× 128 pixels. The boundaries between different tessellation domains are detected by means of the
Sobel filter and the binarization step. Then, automated network extraction is undertaken over the binary image. This method results in synthetic DW
networks on a pixel-level basis, along with their corresponding graph-based representations. The Voronoi sample, the binary image, and its
automatically annotated counterpart depicted in this figure are generated with parameters in Table 1.

desired counterpart. We estimate the optimal parameters for the
tessellation-based generative model by minimization of the sum of
squared error (SSE) between the empirical and synthetic spectral
entropy curves in Eq. 6. The search for the optimal parameters is
carried out by a standard gradient-free genetic algorithm (Mitchell,
1998) implemented by the PyGAD library (Gad, 2021) as no
gradient can be easily identified in our method. During each
generation, 96 ensembles, each defined by a set of parameters for the
Voronoi generation, are sampled, generating 25 network instances
per ensemble. The average spectral entropy measured over the 25
samples is used to estimate the fitness value per ensemble, according
to Eq. 6. The selection of parents for the mating pool of size 24
is carried out by rank selection. Elitism is not used; thus, at each
generation, step offsprings originate exclusively from the selected
parents. An offspring mutation probability of 0.1 is set for all genes,
giving each gene of each offspring a 10% likelihood to undergo a
random mutation.

The fitness function maximized by the genetic algorithm is
defined as

f =∑
τ
(< S (τ) > − < S(τ) >dataset)

−2, (6)

where <S(τ) >dataset and <S(τ) > are the average spectral entropy
measured for the ground truth networks set and the set of generated
networks, respectively. Convergence of the genetic optimization
method is illustrated in Figures 5A,B.

The 10 best ensemble parameters per generation collected across
the 15 independent optimization processes are plotted in Figure 5C.
We observe the symmetric disposition of points with respect to
the axis p = 0.5, thus identifying two attractors in the ensemble
parameter space. The color code indicates comparable fitness values
for points on either one of the two sides of the symmetry axis.
Thus, solutions with either p ≥ 0.5 or p ≤ 0.5 are equally acceptable,
illustrating the rotational invariance of our method. To select
the optimal parameters, we cluster the 10 best fitness values
per generation collected across the 15 independent optimization
processes with Gaussian mixture models (see Figure 5D). We
include only ensemble parameters where p ≤ 0.5 by reason of the
rotational invariant property of our method. We then calculate the
average of those ensemble parameters whose corresponding fitness

is included in one standard deviation from the peak of the Gaussian
with μ = 1.61. This spot of density among high-fitness solutions
appears to be a good location to sample good models as the optimal
choice of parameters is the one that selects a region in the parameter
space that maps to a Gaussian mode centered at a sufficiently high
fitness value, to ensure an almost-optimal solution, and is sufficiently
“wide” to ensure the reproducibility of the method. As shown in
Figure 5D, during the first few iterations (<10), the algorithm is
likely to discover N-best solutions that are suboptimal in the search
space. As the optimization process progresses, among the N-best
solutions, the majority is still suboptimal, gathered by the brown,
light-purple, red, and green Gaussians and roughly corresponding
to the red, yellow, and green dots in the parameter space illustrated
in panel C. Nevertheless, at generation ≳ 10, a structure in the fitness
space emerges pointing to a region in the parameter space with
reliable and almost-optimal solutions. Such solutions are depicted
as blue dots in the panel C and are gathered by the orange histogram
in the panel D. Furthermore, as a genetic algorithm looks for
minima in the parameter space, it is not necessary to keep track
of all the explored solutions since the final goal is to detect a
near-optimal solution in the top list. The choice of N = 10 is a
heuristic choice as a trade-off between the computational burden
and sufficient statistics. Contrary to gradient-based minimization
algorithms, genetic algorithms do not assume smooth properties
of the fitness landscape. On the other hand, it is assumed that the
parameter space is broadly sampled over the optimization process.
We can see from the parameter scatter plot in Figure 5C that this is
indeed the case.The optimal parameter values are shown in Table 1.
The parameters listed in Table 1 are used to generate networks in the
following section.

3 Results

Figure 6A shows the spectral entropy curve measured over the
25 ground truth networks (blue curve) and the spectral entropy
measured for the synthetic networks generated with the optimized
parameters (red curve). A significant alignment between the curves
is observed for almost all values of the normalized time τ, thus,
over all scales, indicating the overall similarity of the structural
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FIGURE 5
Optimization of parameters. Each network ensemble is defined by a fixed set of parameters, {d, p, β}, and the ensemble fitness value is calculated by
sampling 25 networks. Panels (A) and (B) depict the average fitness value of the 10 best ensembles per generation and the maximum fitness value per
generation, respectively. Each curve is averaged over 15 independent optimization processes. The shaded areas represent the standard deviation. In
(C), each point represents one of the 10 best ensembles per generation collected across the 15 independent optimization processes, thus leading to a
total of 10×50× 15 = 7500 points. Colors represent the estimated ensemble fitness (red = low and blue/purple = high). We observe a symmetric
displacement of points with respect to the horizontal probability parameter, p, and two symmetric attractors in the parameter space: p* ≃ 2 and
p = 1−p*. Both attractors lead to comparable fitness values demonstrating invariance under rotation in our method. (D) Ten best fitness values per
generation collected across the 15 independent optimization processes, shown on the left, and the distribution of the same values illustrated by the
histogram, shown on the right. Fitness values are clustered with the Gaussian mixture model. For each Gaussian, the mean parameter, μ, is written on
the right, while the standard deviation is illustrated by the colored vertical bar and the shaded areas spanning the optimization history. It should be
noted that the y-axis is shared between the two plots and that only fitness values corresponding to parameter solutions where p ≤ 0.5 are included. To
obtain the ensemble parameters shown in Table 1, we average those ensemble parameters that are included in one standard deviation from the
Gaussian with μ = 1.61.

TABLE 1 Obtained ensemble parameter values. The first column shows
the average value and the standard deviation measured over the 411
solutions, whose p ≤0.5, collected over all generations and all
independent optimization processes, and whose fitness value is in one
standard deviation from the fifth peak (red) in Figure 5D. The second
column shows the allowed domain of parameters for genetic
optimization.

Value Allowed domain

Voronoi site density, d 0.32 ± 0.03 [0.1, 1]

Horizontal probability, p 0.20 ± 0.04 [0, 1]

Chebyshev scaling, β 2.95 ± 0.03 [1, 3]

connectivity between the network ensembles of the synthetic
and ground truth networks. The matched upper bound indicates
almost the same average number of nodes between the ensembles
of the ground truth networks and the synthetic networks (see
also Figure 7A). The alignment observed between the two curves
can be interpreted as reflecting the information diffusion across
both network structures—empirical and synthetic—through nearly

identical normalized transient states. At τ ∼ 102, the two curves show
the most deviation.

Figure 6B demonstrates a significant alignment between the
Laplacian eigenvalue distribution obtained from the ground truth
networks and that from the synthetic networks. Nevertheless, we
observe that the red curve exhibits a more sudden drop, while
the blue curve reveals a smoother decline on the right side of
the x-axis. This discrepancy, together with the red curve’s more
pronounced peak before the drop at λ ∼ 6, can be attributed to our
method’s reduced ability to capture the degree distribution for k ≥ 4
(also depicted in Figure 7C). Figure 6C shows synthetic networks
exhibiting visual similarity to the BFO sample shown in Figure 2.
More samples are displayed in Supplementary Figure S1.

In panels A and B of Figure 7, the distributions of nodes and
edges of both the BFO networks and our model are illustrated. We
fitted the Gaussian model to the distributions. The mean, μ, and
standard deviation, σ, of each Gaussian are indicated on the top
axis. We observed a good match between the Gaussian parameters
of the manually annotated dataset (25 samples) and the synthetic
dataset generated (100 samples) for both the distributions of nodes
and edges. In addition, the spread of the distributions is comparable.
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FIGURE 6
(A) Average spectral entropy for both the dataset of 25 annotated networks (blue) and 100 instances of the generated networks (red). The shaded areas
indicate the standard deviation. (B) Distribution of Laplacian eigenvalues estimated from the network dataset (blue) and 100 synthetic networks (red).
(C) Twelve synthetic exemplary DW networks illustrating a remarkable resemblance to the BFO sample shown in Figure 2.

FIGURE 7
Panels (A) and (B) show the node and edge distributions, respectively, for both the ensemble of ground truth networks (blue) and the ensemble of
synthetic networks (red). The Gaussian model (continuous line) is fitted to both the distribution of nodes and edges on both the dataset of 25
annotated samples and the generated DW networks (100 samples). The mean parameter, μ, of each Gaussian is indicated by dashed vertical lines, and
the corresponding value is illustrated on the top axis together with the standard deviation, σ. Panel (C) shows the probability density function of node
degrees, k, for both the ground truth set and the ensemble of generated networks. In (D), the average clustering coefficient C(k) is plotted as a function
of the degree, k, for both sets of networks. Shaded area represents the standard deviation.
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Figure 7C depicts the degree distribution, P(k), for both the
manually annotated dataset and themodel; as previouslymentioned,
we observe good matching for smaller degrees and poor matching
for larger values of k. In Figure 7D, the clustering coefficient C(k) is
plotted as a function of the degree k.

4 Discussion

We introduced a compact and tractable model for creating
synthetic instances of DW networks in BFO. While BFO sets the
context for this work, we think that our method provides a flexible
framework that is potentially applicable to other microstructures as
well. Our method involves multiple steps and produces two distinct
types of outputs, each with its own relevance: synthetic binary
images of DWnetworks and their graph-based network description.
For evaluation, a limited dataset of 25 manually annotated DW
networks was created, which, to the best of our knowledge, is the
first of its kind. Additionally, our work has led to the development of
two tools. The first tool enables the manual annotation of networks
from images, assisting efficient labeling of nodes and edges. The
second tool tackles the problem of automated network extraction
from images and combines pre-existing techniques from the
literature.

Our modeling leverages on the centroidal Voronoi tessellation,
used tomimic the physical crystal growth on substrates determining
the formation of the DW network, and network spectral entropy,
which provides a descriptor of the network as a whole across
multiple scales, which we used to solve the selection problem
of model parameters. Pixel-based instances of DW structures
are produced with the centroidal Voronoi tessellation with a
combined vertical and horizontal axial-scaled Chebyshev distance.
Only three parameters govern the obtained patterns: the linear
density of Voronoi sites on the image, d; the axial scale of the
Chebyshev distance, β; and the probability of scaling along either
the vertical or horizontal axis, p. Even though the Voronoi process
is unrelated to the physical growth of polarization domains in
the material, the Voronoi regions can be interpreted as analogous
to the polarization domains, and the borders between Voronoi
regions can be interpreted as analogous to the DWs in the
physical sample.

In this work, we are mainly interested in a graph description of
the DW network of the BFO as we aim to reproduce the topological
properties of BFO DW networks and, in future works, complement
it with a dynamical model describing the memristive conductive
properties of the DWs, thus merging the current work with our
previous work on disordered memristive networks with Ohmic
impurities (Cipollini and Schomaker, 2023). Thus, the network
of DWs is subsequently automatically extracted from the pixel-
based sample, and the parameters of the Voronoi generation
process are optimized using a non-gradient genetic algorithm by
means of a novel information-theoretic tool for characterizing
complex networks, the von Neumann entropy, or spectral entropy.
Such a theoretical tool proves to be a good descriptor across all
spatiotemporal scales of a heterogeneous network. The formal
framework introduced by Domenico and Biamonte (2016) is
grounded in statistical physics and leverages on the extension
of the concept of a canonical ensemble to graphs. The canonical

ensemble comprises the set of all networks with a fixed number
of nodes obtained by fixing the expected values of the chosen
constraints. In our case, the Voronoi tessellation method does not
allow for a fixed number of nodes; thus, the ensemble hypotheses
are arbitrarily relaxed in this work, and the spectral entropy is then
used to provide a descriptor encoding the structural properties
of the network as a whole, rather than using a subset of network
properties. The convergence of the algorithm results in progressive
lower distances between the spectral entropy estimated for the
ground truth ensemble and the Voronoi-based synthetic ensemble,
empirically demonstrating that the defined similarity function in
Section 2.3 can be interpreted as a proxy of the more rigorous
relative entropy introduced by Domenico and Biamonte (2016).
The choice of fitting the spectral entropy reflects our focus on the
diffusion of information over the network and can be thought
of as fitting the transient diffusion modes. After fitting, a good
alignment has been observed betweenmultiple network descriptors.
The good matching of the spectral entropy curves reflects the
ability of the Voronoi tessellation to mimic the growth process
of the material as such an alignment would not be a necessary
result of any model. In addition, the eigenvalue and the degree
distributions computed over the two ensembles show a good match.
Nevertheless, a poor alignment is observed for larger eigenvalues
(λ ≥ 6) and degree k > 4. A good fit is also evident from the
average numbers of nodes and edges. However, two limitations
need to be mentioned. The manually annotated dataset is small
and unavoidably subject to possible human error. The image-
based automated network extraction contains heuristics that may
pose biases in the graph construction. Both these conditions can
be mitigated in future research. There exist other computational
models for the generation of pixel-based DW microstructures that
may enhance the similarity to the empirical ones. For instance, the
generalization of Laguerre tessellations, the so-called generalized
balanced power diagrams (GBPDs), produces non-convex cells
and curved faces, which is different from what can be obtained
with the standard Voronoi and Laguerre tessellations. However,
the utilization of GBPDs may result in increased computational
costs. This study provides a new level of analysis of experimental
BFO samples, which may help in understanding the physical
properties of the substrate, evaluating its usability for neuromorphic
computing, and, ultimately, proposing DW deposition
patterns which have the desired properties for neuromorphic
computing.
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