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Accessing the thermal transport properties of glasses is a major issue for the
design of production strategies of glass industry, as well as for the plethora of
applications and devices where glasses are employed. From the computational
standpoint, the chemical and morphological complexity of glasses calls for
atomistic simulations where the interatomic potentials are able to capture
the variety of local environments, composition, and (dis)order that typically
characterize glassy phases. Machine-learning potentials (MLPs) are emerging as
a valid alternative to computationally expensive ab initio simulations, inevitably
run on very small samples which cannot account for disorder at different scales,
as well as to empirical force fields, fast but often reliable only in a narrow portion
of the thermodynamic and composition phase diagrams. In this article, wemake
the point on the use of MLPs to compute the thermal conductivity of glasses,
through a review of recent theoretical and computational tools and a series
of numerical applications on vitreous silica and vitreous silicon, both pure and
intercalated with lithium.

KEYWORDS

thermal transport, machine learning, glasses, thermal properties, Green Kubo method,
molecular dynamics, cepstral analisys

1 Introduction

The pursuit of improving the thermal conductivity properties of amorphous solids
is central to contemporary materials science and engineering (Mauro, 2014). Glasses,
characterized by their lack of crystalline order, possess unique attributes that make
them invaluable across a wide range of applications. One of the prominent features
of this class of materials is a inherently low thermal conductivity, a result of their
disordered structure.This property is useful in various fields, such as aerospace engineering
(Kotz et al., 2017; Hu et al., 2020), electronics (Pasquarello et al., 1998), and pharmaceutical
industries (Niu et al., 2018). In contrast, specific industrial applications demand a nuanced
balance in the thermal properties of glasses. For example, nuclear reactors and nuclear
weapon decommissioning generate radioactive waste (Ewing, 2015) that must be safely
stored for exceptionally long time. This waste can be solidified through vitrification,
preventing accidental radionuclide release thanks to the amorphous structure of glasses,
which provides radiation protection and outstanding chemical durability, thus enabling
thousands of years of safe storage (Ojovan et al., 2019). Here, effective heat management
is crucial, as high thermal conductivity enhances vitrification efficiency, influencing melt
rate and glass homogeneity (Sugawara et al., 2014; Kim et al., 2015). Moreover, in long-
term storage, elevated heat conductivity rapidly dissipates decay-generated heat, avoiding
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issues like high-temperature-assisted crystallization, porosity,
and cracks (Matzke and Vernaz, 1993). During the last decades,
a huge effort has been put forward to access the structural
and thermodynamical properties of the glasses employed for
nuclear waste vitrification, mainly (boro)silicates, from both the
experimental (Matzke and Vernaz, 1993; Sugawara et al., 2014;
Kim et al., 2015; Kim and Morita, 2017) and the computational
sides (Pedesseau et al., 2015; Sørensen et al., 2019; Sørensen et al.,
2021; Pedone et al., 2022; Sørensen et al., 2022; Bertani et al., 2023;
Pallini et al., 2023). Nevertheless, a microscopic description of
thermal conduction in thesematerials beyond the celebrated Cahill-
Pohlmodel (Cahill and Pohl, 1988), as a function of temperature and
composition, is still missing. The lack of computational studies on
thermal conduction is shared by another important application,
namely, solid-state batteries, where several designs leverage
amorphous solid electrolytes (Manthiram et al., 2017; Zhao et al.,
2020; Fujita et al., 2023; Janek and Zeier, 2023; Landry et al., 2023).
Here, the glassy phase is also characterized by a diffusive species
(like Li+ or Na+ ions) which poses further challenges for the
microscopic simulation of heat transport, since lattice methods
cannot be formally applied due to the lack of well defined positions
of mechanical equilibrium.

Machine-learning (ML) is an increasingly popular tool in
materials modeling due to its ability to train on extensive datasets
precise models able to match a wide array of target properties.
One route is to leverage datasets of mechanical and functional
glass properties to discover new materials (Mauro et al., 2016;
Onbaşlı et al., 2020), or to predict end-properties such as solubilities
(Brauer et al., 2007), dissolution rates (Anoop Krishnan et al., 2018),
or transition temperatures (Cassar et al., 2018), to name a few
(Liu et al., 2021). By taking a microscopic approach, one can build
surrogate models of ab initio interatomic potentials able to drive
simulations to sample all kinds of properties of amorphousmaterials
that can be accessed by atomistic simulations (Allen and Feldman,
1989; Sosso et al., 2012; Deringer and Csányi, 2017; Paruzzo et al.,
2018; Sosso et al., 2018; Sivaraman et al., 2020; Deringer et al.,
2021; Islam et al., 2021; Brorsson et al., 2022; Guo et al., 2022;
Langer et al., 2023; Liu et al., 2023; Xie et al., 2023).

In this article, we provide an overview of the microscopic
theory of heat transport in glasses. Our focus is on methods that
effectively utilize ML potentials (MLPs) for computing thermal
conductivity. We explore two primary approaches: lattice dynamics,
suitable for solids at temperatures significantly below their melting
point, enabling the incorporation of quantum-mechanical effects
in heat transport; and equilibrium molecular dynamics (EMD)
simulations, a versatile tool for sampling material properties, which
however is limited in its ability to account for the aforementioned
quantum effects. While the basic theoretical grounds on the use
of MLPs for thermal transport are well known (Sosso et al., 2012),
the effects of the finite size of samples, the applicability of lattice
methods, and spurious effects due to particle diffusion have not been
extensively tested, even on simple systems. The methods, described
in Section 2, are showcased via MLPs trained on an empirical
force-field for vitreous silica in Section 3.1. Section 3.2 discusses
the existing challenges and limitations of MLPs in lattice-dynamics
calculations, due to unphysically large scattering rates exhibited
by low-frequency normal modes. Finally, the need for large-scale

simulations is investigated in Section 3.3 on vitreous LixSi1−x at
different Li concentrations and system sizes.

2 Materials and methods

2.1 Thermal transport in glasses

Heat transport is characterized by the value of the thermal
conductivity, κ, whose linear-response value is given by the Green-
Kubo (GK) formula, whose classical expression reads (Green, 1952;
Kubo, 1957; Kubo et al., 1957; Baroni et al., 2020)

κ = 1
3ΩkBT

2∫
∞

0
⟨Jq (t) ⋅ Jq (0)⟩dt, (1)

where Ω is the system’s volume, kB the Boltzmann constant, T the
temperature, and Jq the heat flux. The factor 1/3 comes from the
assumption of isotropy. The temperature-dependent behavior of κ
in glasses exhibits three distinctive, universally recognized patterns
(Beltukov et al., 2013). At extremely low temperatures, specifically
when T ≲ 2K, the predominant scattering mechanism involves
quantum tunneling between various local minima within the glass
energy landscape, resulting in κ ∼ T2 (Phillips, 1987; Buchenau et al.,
1992; Lubchenko andWolynes, 2003). As the temperature reaches a
few tens of kelvins, thermal conductivity increases and eventually
reaches a plateau value. Despite the absence of a firmly established
theoretical consensus in the literature, this phenomenon appears to
be linked to the transition from a regime dominated by quantum
processes to one where propagating waves are scattered by random
disorder (Buchenau et al., 1992; Lubchenko and Wolynes, 2003;
Schirmacher, 2006; Beltukov et al., 2013). Beyond the plateau, the
behavior of the thermal conductivity is governed by the anharmonic
decay of normal modes (Isaeva et al., 2019; Simoncelli et al., 2019),
and κ starts increasing again until it saturates to its high-temperature
value. We focus here on the latter range of temperatures, which
is relevant for applications and can be investigated by means of
atomistic simulations.

There are different techniques for computing κ. Equilibrium
methods require the calculation of the heat flux appearing in Eq. 1
(Baroni et al., 2020), or the energy density (Drigo et al., 2023).
Equivalently, one can compute the energy flux along with other
relevant mass fluxes, as discussed below. A versatile approach
for obtaining these fluxes is through EMD simulations, which
allow to sample the energy flux at all orders within anharmonic
perturbation theory. A downside of EMD simulations is that it is
currently impossible to sample the energy flux including nuclear
quantum effects (Habershon et al., 2013), despite extensive efforts
are being made in this direction [see, e.g., (Sutherland et al., 2021;
Siciliano et al., 2023; Wang et al., 2023) and citations therein]. In
solids, an alternative approach lies in exploiting lattice dynamics,
at the cost of neglecting high-order anharmonic interactions.
At temperatures well below the melting point, atomic nuclei
undergo small oscillations around well-defined equilibrium
positions. This behavior allows us to represent the dynamics
with harmonic normal modes, which, in crystals, are described
as phonon quasiparticles. In the harmonic approximation, the
normal modes feature infinite lifetimes, resulting in infinite
thermal conductivity, regardless of the presence of (harmonic)
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perturbations, such as disorder (Fiorentino et al., 2023a). However,
when anharmonic interactions are appropriately accounted for, e.g.,
through perturbation theory (Isaeva et al., 2019; Simoncelli et al.,
2019), they induce temperature-dependent frequency shifts
and broadenings, impacting phonon lifetimes and ultimately
determining the thermal conductivity of materials.

Using lattice dynamics to express the heat flux in Eq. 1 in terms
of phonon creation and annihilation operators, one can compute
the GK formula for κ in the quasi-harmonic Green-Kubo (QHGK)
approximation (Isaeva et al., 2019; Fiorentino and Baroni, 2023) as

κ = 1
3Ω
∑
μν
Cμν|vμν|

2 γμ + γν

(ωμ −ων)
2 + (γμ + γν)

2 , (2)

where ωμ and γμ are the angular frequency and anharmonic
linewidth of the μth normal mode, respectively; vμν is a generalized
velocity matrix, and

Cμν =
ℏ2ωνωμ

T

n(ων) − n(ωμ)

ℏ(ωμ −ων)
(3)

is a generalized two-mode isochoric heat capacity, n(ω) =
[eℏω/(kBT) − 1]−1 being the Bose-Einstein (BE) occupation function.

The QHGK approach employs two interconnected
approximations (Caldarelli et al., 2022; Fiorentino and Baroni,
2023). The first is the dressed bubble approximation, where
four-point correlation functions among phonon creation and
annihilation operators are factorized into products of two-point
correlation functions, neglecting vertex corrections (Fiorentino
and Baroni, 2023). This implies that normal modes decay
independently, each interacting with a common heat bath. The
second approximation, termed Markovian, disregards memory
effects in the heat bath-normal mode interaction (Fiorentino and
Baroni, 2023). The combination of these approximations leads to
four-point correlation functions being expressed using single-body
greater Green’s functions, denoted by g>μ (t) = −i(nμ + 1)e

−iωμt−γμ|t|.
The quasi-harmonic hypothesis requires γ2μ/ω

2
μ ≪ 1, implying that

only nearly-degenerate modes with |ωμ −ων| ≲ γμ + γν significantly
contribute to heat conductivity. The QHGK approximation works
on crystals and glasses alike, reducing to the result of the Boltzmann
Transport Equation in the former case, and—at the expense of
neglecting anharmonic effects—to the Allen-Feldman (AF) model
of harmonic disordered solids in the latter (Isaeva et al., 2019;
Barbalinardo et al., 2020; Fiorentino and Baroni, 2023). Neglecting
anharmonic effects is no trivial matter—it remarkably transforms
the finite bulk thermal conductivity of a glass into an infinite
quantity, thereby emphasizing the AF calculations’ qualitative
accuracy driven solely by size effects (Fiorentino et al., 2023a;
Fiorentino et al., 2023b).

If compared with crystals, glasses present an additional
complexity in numerical computations due to their inherent
aperiodic nature (Fiorentino et al., 2023b). The customary
application of periodic boundary conditions (PBC) to finite
simulation cells, from which quantities in Eq. 2 are derived,
requires cautious consideration of size effects. While the physical
symmetry of crystals allows for calculations on a fine mesh in
reciprocal space, in glasses the same approach is not feasible without
introducing spurious contributions to the thermal conductivity
(Fiorentino et al., 2023b). Nonetheless, size extrapolation remains

possible by leveraging the asymptotic Debye expression of the
thermal conductivity of propagons—the low-frequency normal
modes in glasses characterized by wave-like properties, including
well-defined dispersion with small broadening (Allen et al., 1999;
Fiorentino et al., 2023b).

Using lattice dynamics requires to be able to compute second
and third-order interatomic force constants, i.e., the second and
third partial derivatives of the potential energy with respect to
nuclear coordinates at equilibrium (Barbalinardo et al., 2020).
This can be achieved through finite differences (Narasimhan
and Vanderbilt, 1991; Tang et al., 2010) or perturbation theory
(Paulatto et al., 2013), with the former method being more
common. For large systems (i.e., containing tens of thousands of
atoms) calculating interatomic force constants is computationally
feasible using empirical force fields, but becomes impractical
when pursued ab initio due to the N2

atoms scaling of second and
N3
atoms scaling of third-order force constants. In principle, MLPs

offer a partial remedy, significantly expediting interatomic force
computations. Regrettably, practical implementation is often
spoiled by pronounced numerical noise in interatomic force
constants, impeding the computation of anharmonic linewidths
through Fermi’s golden rule (Barbalinardo et al., 2020), as it will
be showcased below by a toy example involving vitreous silica.
Inaccurate anharmonic linewidths severely hinder the computation
of heat conductivities, thereby rendering the entire lattice dynamical
workflow unfeasible. This concern is particularly relevant at
low frequencies (Bruns et al., 2022), even for MLPs with good
performances within the medium to high-frequency range. A
potential strategy to mitigate this issue entails substituting finite-
difference third-order derivatives with analytical ones, exploiting
the differentiabilty of MLP descriptors through, e.g., automatic
differentiation (Langer et al., 2023).

Therefore, while the challenge of deriving interatomic force
constants from MLPs is under scrutiny, their accuracy in
reproducing ab initio results can be leveraged in MD simulations
through the GK equation, Eq. 1.

2.2 Thermal conductivity from molecular
dynamics simulations

The GK formula requires an expression for the heat flux.
Equivalently, one can combine the energy flux with all the
independent mass fluxes of the chemical species in the material
(Bertossa et al., 2019; Baroni et al., 2020). The latter option is often
preferable, since all the needed fluxes are readily available fromEMD
simulations, while the heat flux also necessitates computing partial
enthalpies (De Groot and Mazur, 1962) through post-processing
(Debenedetti, 1988).

The energy flux is the first spatial moment of the time derivative
of the energy density (Baroni et al., 2020):

JE (t) = ∫r ̇e (r, t)d3r

= ∫r
N

∑
ℓ=1
[
∂e (r, t)
∂Rℓ
⋅ Ṙℓ +

∂e (r, t)
∂Pℓ
⋅ fℓ]d

3r, (4)

where Rℓ and Pℓ are the position and linear momentum of the
ℓth atom, respectively, and fℓ is force acting on it. There is no

Frontiers in Materials 03 frontiersin.org

https://doi.org/10.3389/fmats.2024.1369034
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Pegolo and Grasselli 10.3389/fmats.2024.1369034

a priori correct way to define the energy density of a condensed
matter system. However, this ambiguity does not pose an issue, as
this quantity is not directly measurable in experiments. Moreover,
quantities dependent on it, such as thermal conductivity, remain
unaffected by the precise expression of local densities. This concept
is referred to as the gauge invariance of transport coefficients
(Baroni et al., 2020; Grasselli and Baroni, 2021).

The explicit expression of the energy flux depends on the
Hamiltonian of the system, which, for a classical system of N
particles, takes the general form:

H =
N

∑
ℓ=1

P2ℓ
2Mℓ
+V (R1,…,RN) , (5)

where V denotes the potential energy. Given the gauge-invariance
principle, any local breakdown of the energy density into atomic
contributions is suitable for computing the energy flux (Baroni et al.,
2020; Grasselli and Baroni, 2021). A valid choice is thus

e (r, t) =
N

∑
ℓ=1
ϵℓ (t)δ(r−Rℓ (t)) , (6)

where each atomic energy, ϵℓ, is concentrated on the respective atom
and can be expressed as:

ϵℓ =
P2ℓ
2Mℓ
+Vℓ, (7)

with the first term representing atomic kinetic energy and the
second indicating the portion of potential energy assigned to the
ℓth atom, such that V = ∑ℓVℓ. These atomic energies are phase-
space variables dependent on time through atomic positions and
momenta. Consequently, the energy flux in Eq. 4 becomes

JE (t) =
N

∑
ℓ=1
[ϵℓṘℓ −

N

∑
ℓ′=1

∂Vℓ′

∂Rℓ
⋅ Ṙℓ (Rℓ −Rℓ′)] . (8)

This equation is well-defined in PBC, as it solely depends
on interatomic distances calculated using the minimum-image
convention. As such, the formula proves suitable forMD simulations
involving bulk systems.

The concepts discussed thus far are applicable to both empirical
force fields (FFs) and MLPs, regardless of the number of chemical
species in the system (Bertossa et al., 2019). In the case of the latter,
it is possible to generate MD simulations of ab initio quality to
sample the relevant fluxes, including the energy flux of Eq. 8, thus
leading to the computation of κ. This approach becomes especially
significant for glasses, where, as previously mentioned, challenges
arise in lattice-dynamical calculations involving MLPs. While for
semi-empirical FFs assigning the atomic energies in Eq. 7 might
seem reasonable and simple, especially in the case of pairwise
potentials, it is less so in the case of MLPs. MLPs typically rely
on a decomposition of the global target quantity into local, atom-
centered contributions. This approach offers several advantages,
such as computational scalability and the possibility of retrospective
interpretation of patterns of local contributions, provided that local
predictions are sufficiently “rigid”, i.e., that their value is robust
under perturbations of the training set and/or model parameters
(Chong et al., 2023).

3 Results

In this Section we first develop, for demonstration purposes,
a dataset for the paradigmatic amorphous solid vitreous silica (v-
SiO2) based on a referece semi-empirical FF.We train differentMLPs
on this dataset, and analyze their ability in reproducing thermal
conductivity calculations. We then discuss the current limitations
of lattice dynamics in thermal conductivity calculations with MLPs,
and how these are absent in EMD simulations. We finally apply
GKMD to an amorphous alloy useful in the context of solid-state
electrolytes.

3.1 Toy model of vitreous silica

The reference potential is a Tersoff FF developed in Munetoh et
al. (2007) as a short-range potential able to describe the amorphous
phase of silica with relatively good accuracy. We choose a short-
range reference potential in order to keep the model simple;
moreover, the MLP to be trained is rigorously short-range, even
if strategies to incorporate bona fide long-range interactions exist
and are being developed (Grisafi and Ceriotti, 2019; Veit et al.,
2020; Xie et al., 2020; Ko et al., 2021; Zhang et al., 2022; Huguenin-
Dumittan et al., 2023). The dataset is generated starting from
100 independently quenched glassy samples, equilibrated at 10
different temperatures ranging from 300 to 7,000 K. From each
of the 100 simulations, 500 uncorrelated configurations are drawn
once every 10 ps. The dataset thus comprises 50,000 glassy
and molten configurations. Further details can be found in the
Supplementary Material.

We trained a committee of four deep neural network DeePMD
potentials (DPs) (Wang et al., 2018; Lu et al., 2021; Zeng et al.,
2023) smooth edition (Zhang et al., 2018) and a neuroevolution
potential (NEP) (Fan et al., 2021) to reproduce energies, forces
and virials of the dataset. All the MLPs have a cutoff of 3 Å,
and are trained for more than 400 epochs to ensure the proper
minimization of the loss function. The optimization of the loss
function for the DPs is performed through the Adam stochastic
gradient descent (Kingma and Ba, 2017), while for the NEP via
a genetic algorithm (Fan et al., 2021). Each model within the DP
committee differs from the others based on the initial random seed
used in the minimization. The NEP features instead a different
architecture and slightly different descriptors with respect to DPs
(Fan et al., 2021).

We assess the performance of these models on a validation set,
which consists of an additional 2,500 configurations produced using
the same methodology as the training set. Figure 1 presents parity
plots comparing the reference and predicted potential energies,
forces, and virials for the four DP models in the committee. All
the DPs exhibit comparable accuracy. The root mean square errors
(RMSEs) and relative error with respect of the standard deviation of
the test set (in parentheses), are 2.86± 0.09meV/atom for the energy
(1%), 237.04± 0.14meV/A for the force (8%), and 6.96± 0.04meV
for the virial (5%). In Figure 1 the performance of a selected
member of the DP committee is shown (red) for simplicity. The
NEP features RMSEs and relative errors of 0.9meV/atom for the
energy (<1%), of 311meV/A for the force (11%), and of 13meV
for the virial (8%).

Frontiers in Materials 04 frontiersin.org

https://doi.org/10.3389/fmats.2024.1369034
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Pegolo and Grasselli 10.3389/fmats.2024.1369034

FIGURE 1
Parity plots of the committee of MLPs trained on the vitreous silica Tersoff dataset.

3.2 Lattice dynamics vs. molecular
dynamics

Subsequently, we test the models’ performance in replicating
the reference thermal conductivity. We compute the thermal
conductivity of vitreous silica as determined by Eq. 1. To do so,
we sample the energy flux and the atomic mass fluxes through
EMD simulations on a system with 648 atoms. Given that the
Tersoff FF is a many-body potential, particular care needs to
be taken when computing the energy flux (Fan et al., 2015). A
correct implementation of the Tersoff energy flux can be found
in GPUMD (Fan et al., 2022). As reference, we carried out a 1 ns-
long EMD simulation at 300 K using GPUMD, collecting the
energy and mass fluxes every 5 fs. Further computational details
can be found in the Supplementary Material. We use the same
trajectory to sample these quantities using the committee of DPs
and the NEP, utilizing the DeePMD and NEP implementations in
LAMMPS (Plimpton et al., 2021; Tisi et al., 2021; Fan et al., 2022).
Using the same trajectory to test the models allows us to isolate
the effects of gauge invariance, eliminating subtle differences that
may arise when employing independent EMD runs to sample
different trajectories. The thermal conductivity is finally obtained
through cepstral analysis of the fluxes’ time series (Ercole et al., 2017;
Bertossa et al., 2019), as implemented in SPORTRAN (Ercole et al.,
2022). The total energy decomposition into local contributions
is in general different for different models, since the latter
is a task arbitrarily performed by the ML algorithm. Thus,
also the fluxes differ among the pool of models. Nevertheless,
what must remain consistent is the physical observable, namely,
the thermal conductivity, as commanded by gauge invariance
(Grasselli and Baroni, 2021).

In Figure 2, we show the distributions (normalized histograms)
of the deviation of the atomic energies per species with respect to
their average value, sampled along the trajectory, as computed by
the available MLPs. The DPs feature similar distributions of such
quantity, so only one member of the committee is shown, while the
NEP results are quite different. Nonetheless, even within the DP
committee, the average values of the atomic energies are significantly
different. In particular, the set ofmean energies for the Tersoff FF, the
DPs, and the NEP is reported in Table 1.

We stress again that such a difference is expected, as the atomic
energies are not target quantities in the learning scheme, and only

FIGURE 2
Distribution of the atomic energies of Si (A) and O (B) for the
committee of MLPs. Simulations are carried out at T =300K and
ambient pressure.

TABLE 1 Average atomic energies for the different models. The last
column is the stoichiometry-weighted sum of average energies. It
coincides for all the models, as it should, it being a physical observable.
The discrepancy among this quantity’s reported values is well below the
threshold of chemical accuracy (∼40meV).

Model VSi (eV) VO (eV) VSi +2VO (eV)

Tersoff −9.857 −4.929 −19.715

DP1 −5.413 −7.155 −19.723

DP2 −3.211 −8.256 −19.724

DP3 −4.606 −7.555 −19.715

DP4 −3.383 −8.170 −19.723

NEP −7.833 −5.941 −19.716

the total energy is physically observable. The difference in atomic
energies predicted by the different models is translated into a
difference in energy fluxes, as shown in Figure 3A. Crucially, the
thermal conductivity, as represented by the zero-frequency value of
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FIGURE 3
Gauge invariance of the thermal conductivity. Simulations are carried
out at 300K and ambient pressure. (A) the reference (Tersoff) energy
flux and the DP committee ones are different, in general. (B) cepstral
analysis of the fluxes’ time series. The thermal conductivity, given by
the zero-frequency value of the curve, is the same for different
models, as commanded by gauge invariance.

the fluxes’ power spectral density (Ercole et al., 2017; Bertossa et al.,
2019), remains unchanged, as reported in Figure 3B.

We now assess the models’ performance in reproducing
quantities relevant for lattice-dynamical calculations. We compute
the second and third-order interatomic force constants with
LAMMPS and obtain normal-mode frequencies and linewidths using
κALDo (Barbalinardo et al., 2020). We use these quantities to
compute the QHGK thermal conductivity with the Tersoff FF, a
DP, and the NEP. Figure 4 showcases the results, including the
vibrational density of states (VDOS), normal-mode linewidths,
γ, and QHGK thermal conductivity. While the VDOS outcomes
in Figure 4A exhibit agreement, the same cannot be said for
anharmonic normal-mode linewidths (Figure 4B), which appear
to be accurately captured only by the NEP. In contrast, the DP
results considerably overestimate the linewidths, even surpassing
the quasi-harmonic regime, denoted by the dashed black line.
These disparities have direct implications for the computed QHGK
thermal conductivities, as evident in Figure 4C. Specifically, while
the NEP and Tersoff results align with each other, the DP results do
not share this agreement.

It is essential to recognize that the apparently satisfactory
performance of the NEP leads to potentially misleading outcomes.
Upon closer examination of Figure 4B, a notable issue emerges:
at low frequencies (in this instance, the first available finite
frequency) there are disproportionately large linewidths. This stark
contrast with the expected decrease in linewidths as frequencies
decrease, as dictated by the hydrodynamics of solids (Griffin, 1968;
Fiorentino et al., 2023b), precludes the hydrodynamic extrapolation
the NEP results to obtain a size-converged value for bulk thermal
conductivity (Fiorentino et al., 2023a; Fiorentino et al., 2023b). As

FIGURE 4
Results based on lattice dynamics of vitreous silica computed with the
Tersoff FF, the DP, and the NEP. (A) vibrational density of states
computed with the three models. (B) normal-mode linewidths.
(C) QHGK thermal conductivity. EQ stands for the classical
equipartition, while BE for the Bose-Einstein occupation.

a further proof that MLPs still present some issues with lattice
dynamics, we compute the anharmonic linewidths of a more
complex NEP for vitreous silicon (v-Si) developed in Wang et al.
(2023) and based on the dataset of Bartók et al. (2018). As shown in
Figure 5, increasing the size of the sample exacerbates the issue of the
low-frequency peak in the linewidths, which hinders the possibility
of carrying out size-converged thermal conductivity calculations
(Fiorentino et al., 2023a; Fiorentino et al., 2023b).This issue persists
even when manually imposing acoustic sum rules due to global
translational invariance and symmetry under Cartesian-direction
permutation.

Due to these limitations, lattice-dynamical calculations prove
to be of limited utility when employing MLPs. Consequently, the
alternative approach is to resort to GKMD simulations, albeit at
the cost of neglecting the quantum BE occupation. It is worth
noting that in specific instances, like vitreous silica, this omission
remains notable even at room temperature (Lv and Henry, 2016;
Zhu and Shao, 2022). Conversely, for other simple glasses like
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FIGURE 5
Anharmonic linewidths of a NEP model for v-Si at 300K, for samples of
different sizes.

vitreous silicon, this concern does not apply (Fiorentino et al.,
2023b; Wang et al., 2023).

3.3 Thermal conductivity of Li-intercalated
silicon

To exemplify the GKMD methodology within the context of
MLPs, we conduct a thermal conductivity assessment of a PBE-
accurate model describing amorphous LiSi, as developed by Fu et al.
(2023). This MLP was employed to investigate the properties of
silicon, encompassing both crystalline and amorphous phases, as an
anode material for Li-based electrolytes (Fu et al., 2023). Thermal
transport plays a pivotal role in the design of electrolytes, especially
for solid-state systems (Feng et al., 2018). Indeed, an exceedingly
low thermal conductivity can lead to excessive heat generation,
especially during rapid charging processes, thereby posing the risk of
critical incidents such as material melting or explosions. Moreover,
the management of thermal dissipation is crucial to optimizing
energy conservation and utilization, requiring a delicate equilibrium
between minimizing heat dissipation and maximizing electric flux
throughout the charging cycle (Feng et al., 2018). In addition, in
situations involving materials where ionic diffusion is not only
expected but also a desired attribute, such as solid-state electrolytes,
one is forced to use methods that do not rely on the presence of
well-defined atomic equilibrium positions (Pegolo et al., 2022).

We conduct EMD simulations on LixSi1−x with varying
concentration of intercalated lithium, denoted as x, under room
temperature conditions (T = 300K, p = 0bar). Amorphous samples
are prepared through a melt-quench-anneal procedure as outlined
in Fu et al. (2023). The samples so obtained are used as initial
configurations for EMD simulations that sample the relevant fluxes
in canonical runs (Bussi et al., 2007) carried out for 3 ns at 300 K.
The simulations are performed with GPUMD using a NEP trained on
the dataset of Fu et al. (2023). Further details can be found in the
Supplementary Material.

Results for the thermal conductivity as a function of Li
concentration are presented in Figure 6. Size effects are important
for low Li concentrations, where the system is close to pure vitreous
silicon. v-Si is known for being severely affected by size effects
(Fiorentino et al., 2023b) due to its high local order (Bartók et al.,

FIGURE 6
Thermal conductivity of v-LixSi1−x as a function Li concentration at
room-temperature conditions for different system sizes.

2018). Thus, samples with 3,000 atoms are not converged in size,
while 70,000 atoms appear to be enough, when compared to
calculations on systems with 150,000 atoms.

At higher Li concentrations, even 3,000 atoms are sufficient
to achieve convergence. The behavior of κ(x) features a minimum
at x ≈ 0.5, followed by an increase for larger values of x. Pure v-
Si features κ = 1.24± 0.03Wm−1K−1. This value can be compared
with calculations (Wang et al., 2023) done on structure of similar
size that use a NEP trained on a dataset relying on PW91 DFT
calculations (Bartók et al., 2018), rather than PBE. The results are
compatible at high quenching rate, while we report a value which
is ≈30% lower than the one of Wang et al. (2023) at the lowest
quenching rate. Experimental data on the thermal conductivity of v-
Si severely depend on the experimental sample size, due to the high
relevance of propagons in this material. At 300 K, they can range
from less than 1Wm−1K−1 (Zink et al., 2006) to around 4Wm−1K−1

(Liu et al., 2009; Yang et al., 2010). While measurements exist for
(poly)crystalline Li-Si alloys (Swift, 2011), we are not aware of any
experimental data on the thermal conductivity of Li-intercalated
amorphous silicon.

The qualitative behavior of the thermal conductivity as a
function of Li concentration aligns with calculations on crystalline
alloys (Garg et al., 2011), where the distinctive U-shape of κ(x) is
interpreted in terms of phonon scattering due to isotopic mass
disorder (Tamura, 1983) at the perturbative level. Conversely,
in glasses the thermal conductivity reduction with increasing
concentration of different-species atoms is mostly due to the
increased localization of low- andmid-frequency vibrationalmodes,
together with the broadening of the respective linewidths, which
hinders their ability to transport heat (Lundgren et al., 2021).

4 Conclusion

In this work, we have reviewed the theory of thermal transport in
amorphous solids, focusing on the role of MLPs as a tool to expedite
and, in some cases, allow for thermal-transport characterization of
glasses from atomistic simulations. We have build an example of
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MLP for vitreous silica able to reproduce the potential energy surface
of a Tersoff FF, and used it to highlight some challenges still present
when dealing with lattice dynamics, leaving Green-Kubo molecular
dynamics as a valuable alternative to carry out calculations with
MLPs. We then applied such methodologies to the Li-concentration
dependence of the thermal conductivity of lithium-intercalated
amorphous silicon, finding that κ features a minimum at half
concentration, coherent with analogous calculations made on other
amorphous alloys and interpreted in terms of the localization of
propagating modes due to chemical disorder.
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