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The morphological characteristics of coarse aggregate play a crucial role
in the mechanical properties, durability, and construction performance of
asphalt mixtures and pavements in highway engineering. This study aims to
quantitatively analyze themorphological characteristics of coarse aggregate and
establish comprehensive evaluation indicators for its quality and performance.
Two-dimensional cross-sectional images of coarse aggregates are obtained
using the self-developed laser scanning equipment, and edge features
are extracted using the Canny operator and edge tracing algorithm. Six
morphological characteristic indicators are selected, and factor analysis is
employed to propose comprehensive shape and edge feature for coarse
aggregates. The results show that the proposed evaluation indicators effectively
capture the shape and edge feature of coarse aggregates, with the exception
of roughness, which is deemed unsuitable for evaluation. Factor analysis of
six indicator values in 2,700 two-dimensional images led to the proposal of
Shape Factor (SF) and Edge Feature Factor (EFF) as significant factors affecting
aggregate shape and edge characteristics, respectively. Following optimization,
SF ranged from 0.041 to 1.793, while EFF ranged from 0.368 to 1.745. The
spearman’s rank correlation coefficient revealed strong correlations between
the evaluation of coarse aggregate shape and edge features using the line laser-
based comprehensive evaluation index. Specifically, correlation coefficients of
0.864 and 0.805 exceeded those of commonly used methods such as AIMS
and X-ray CT, indicating the rationality and accuracy of the self-developed laser
scanning device in evaluating aggregate morphology. This research provides
strong support for the construction of highway engineering and optimization of
coarse aggregate production and supply.

KEYWORDS

asphalt pavement, coarse aggregate morphology, quantitative analysis, comprehensive
evaluation, factor analysis

1 Introduction

The role of coarse aggregate in highway engineering is very important. It is one of the
main components of asphalt mixtures, providing bearing capacity and stabilityto the road
surface (Hassan et al., 2021). The morphological characteristics of coarse aggregate have
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significant effects on the mechanical properties, durability,
and construction performance of asphalt mixtures and asphalt
pavements (Busang and Maina, 2022). In recent years, scholars
at home and abroad have conducted extensive research on the
morphological characteristics of coarse aggregates,mainly including
the following aspects: 1) classification and evaluation criteria of
coarse aggregate morphology; 2) the influence of morphology
on the performance of concrete and asphalt pavements; 3)
testing methods and techniques for morphology; 4) methods for
improving morphology. Cui et al. (2018) identified the effect of
single morphological variable on the adhesion of aggregate and
the mechanical properties of asphalt mixture, and used Aggregate
Image Measurement Systems (AIMS) to accurately quantify the
morphological characteristics of aggregates. Wang et al. (2013)
assess the commonly used imaging techniques for analyzing
the morphological characteristics of aggregates, taking into
account various factors such as equipment cost, repeatability,
reliability, accuracy, and the measured morphological parameters.
Candra et al. (2020) identifies the optimal use of 2-centimeter
diameter coarse aggregates in porous asphalt pavements to balance
porosity with stability, ensuring desired asphalt characteristics and
Optimum Asphalt Level. Guo et al. (2021) found that in warm-mix
asphalt containing recycled materials, reclaimed asphalt pavement
(RAP) content primarily affects high-temperature stability, while
aggregate shape and asphalt surface free energy also influence
performance and moisture resistance. Gao et al. (2020) studied how
the three-dimensional angularity of coarse aggregates, measured
by X-ray computed tomography, impacts the skid resistance,
high-temperature stability, and compaction of asphalt mixtures,
assessing texture depth, pendulum ratings, dynamic stability,
rutting depth, and specimen height variations during compaction.
Castillo et al. (2018) utilizes a refined microstructure generator
to computationally create random aggregate particles for asphalt
mixtures, capturing material heterogeneity and uncertainty in
mechanical response. Virtual specimens with lower angularity
and higher form indices exhibited reduced damage and modulus.
Yu et al. (2023) prepared the coarse aggregates with diverse wearing
times and compacted the corresponding asphalt mixture samples
to evaluate the impact of coarse aggregate morphology on the
mechanical performance of the asphalt mixture and evaluated
the morphology characteristics of coarse aggregate under diverse
wearing times by an image measurement system. Li et al. (2021)
examines the movement of coarse aggregates in asphalt mixtures
during gyratory compaction, finding that their displacement and
rotation are closely linked to mixture densification, with aggregate
mobility increSFng at higher asphalt content or temperature
and varying compaction stages. Pouranian and Haddock (2021)
develops a framework for defining the aggregate structure of asphalt
mixtures, proposing an analytical model for binary mixtures that
considers size ratio and air volume. Validated through 3D discrete
element simulations, the model defines three aggregate structures
and can be applied to multi-sized blends, aiding in the design of
asphalt mixtures for improved performance. Kusumawardani and
Wong (2021) assessed the effect of aggregate shape (cube, cylinder,
sphere) on porous asphalt mixture (PAM) performance using
shape factor and sphericity index parameters, finding that spherical
aggregates require less compaction effort and aggregate sphericity
generally decreases PAM mechanistic properties. Liu et al. (2020)

Using the discrete element method, a virtual simulation of static
compaction tested the motion of irregular polyhedral coarse
aggregates in asphalt mixture, revealing that aggregate movement
is tied to external loading orientation, compaction level affects
aggregate displacement, and the micromechanical model clarifies
asphalt mixture compaction mechanisms. Rajan and Singh (2020)
examines the impact of 2S, 3S, and 4S crushing stages on aggregate
morphology parameters like angularity, texture, flatness, elongation,
sphericity, and form2D using digital measurement systems. The
results show that aggregate shape is affected by the crushing stage,
mechanism, and aggregate size, aiding in aggregate source selection
and crusher monitoring for quality production. Khairandish et al.
(2021) investigated the impact of aggregate gradation and shape
on bituminous mixtures’ performance using traditional and 3D
scanning methods, revealing that BC II and DBM II gradations
outperform BC I and DBM I, and aggregate composition, texture,
and morphology strongly influence mixture mechanical response.
Li et al. (2019) introduces a simulationmethod for asphalt mixtures,
considering aggregate shape and size using plane geometry factor
(PGF) and the section aspect ratio (SAR) parameters. Validation
through uniaxial tests confirms the effectiveness of these parameters
in describing 3D aggregate characteristics. Wang et al. (2021)
examined how crushing affects the shape and mineral composition
of aggregates, finding that higher speeds in a vertical shaft impactor
(VSI) increase cracks and that mineralogy influences particle shape
and collision behavior, leading to recommendations for optimal
crushing of granite aggregates. Ostrowski et al. (2018) found that the
morphology of coarse aggregate grains, described through digital
image analysis, significantly impacts the strength, stiffness, and
rheological properties of self-compacting high-performance fibre-
reinforced concrete (SCHPFRC), proposing a formationmechanism
based on aggregate shape. Monte Carlo simulation (MCS) assesses
strength variations in heterogeneous materials, linking macro
properties to mesoscale irregularities. Li et al. (2023) used this with
a real aggregate library and discrete element method to explore how
aggregate shape impacts unbound granular material deformation.
The above research shows that the morphological characteristics of
aggregates have a significant impact on the performance of asphalt
mixtures. The AIMS can accurately quantify the morphological
characteristics of aggregates. The advantage of this method lies
in its repeatability, reliability, and accuracy, but the equipment
cost may be high. The influence of aggregate morphology on the
performance of asphalt mixtures is an important research area. The
shape, size, angle, surface free energy, and other morphological
characteristics of aggregates have a significant impact on the
high-temperature stability, skid resistance, compaction, damage,
modulus, and other properties of asphalt mixtures. Overall, these
studies provide important theoretical bSFs for understanding and
optimizing the performance of asphalt mixtures. However, despite
the extensive research, there are still gaps in the understanding of
the morphological characteristics of coarse aggregates. For instance,
there is a lack of comprehensive evaluation indicators that can
accurately measure and analyze the morphological characteristics
of coarse aggregates. This research endeavors to bridge extant gaps
in knowledge through a meticulous exploration of the evaluation
indicators pertaining to the morphological characteristics of coarse
aggregates. The principal objective is to establish a comprehensive
shape parameter and a thorough edge feature parameter for
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coarse aggregates utilizing the factor analysis method. The validity
of the proposed comprehensive evaluation indicators will be
scrutinized for rationality through empirical validation. By precise
measurement and analysis of the morphological characteristics
of coarse aggregates, the paper contributes to the evaluation of
their quality and performance, thereby furnishing substantial
support for the domain of highway engineering. Simultaneously,
it offers a framework to adapt and optimize the production
and supply of coarse aggregates in accordance with real-world
conditions, aligning with the specific requirements of highway
engineering.

2 Methodology

In this study, the Canny edge detection operator, edge tracking
algorithm, and factor analysis method were employed. The Canny
edge detection operator serves as a crucial tool in image processing
for the precise identification of image edges. It accomplishes this
by calculating changes in image grayscale to locate contours or
textural variations of objects. This operator effectively suppresses
noise, allowing for accurate edge localization while ensuring that
each edge is detected only once. The edge tracking algorithm,
on the other hand, is a technique utilized in image processing
to connect discrete edge points and form continuous contours.
By tracing along the image edges, this algorithm links the edge
points, facilitating accurate object boundary delineation, noise
suppression, and extraction of key features. The factor analysis
is a multivariate statistical technique aimed at extracting a small
number of latent common factors from a large set of interrelated
variables. These common factors capture the essential information
shared among the variables, enabling data simplification and
dimensionality reduction.

This article mainly conducts research on the evaluation
indicators of the morphological characteristics of coarse aggregates.
Firstly, multiple cross-sectional images of coarse aggregates
are obtained through laser scanning. The edge features of
coarse aggregates are obtained by using the Canny edge
detection operator and edge tracing algorithm. The adopted
line laser scanning equipment is the “Digital Test System
for Aggregate Morphology” independently developed by the
research group, and its software and hardware structure is shown
in Figure 1.

When the device is running, first connect the device to
the computer and open the control software to obtain the
initial image. Then place the aggregate to be scanned on the
device pallet and click the start button on the software to
scan and obtain cross-sectional images of the aggregate. Multiple
cross-sectional images can be obtained by setting different laser
scanning depths.

Secondly, the research on the morphological characteristic
indicators of coarse aggregates is established, and multiple two-
dimensional image evaluation indicators are selected. The factor
analysis method is used to separately propose the comprehensive
shape parameter and the comprehensive edge feature parameter of
coarse aggregates. Finally, the proposed comprehensive evaluation
indicators are validated for rationality. The technical scheme is
shown in Figure 2.

FIGURE 1
Digital test system for aggregate morphology. (A) Hardware structure.
(B) Software.

3 Results and discussion

3.1 Two-dimensional image processing
results of coarse aggregates

The quality of edge detection results will directly affect the
edge recognition work of coarse aggregate two-dimensional images,
especially the success or failure of edge feature description and
extraction (Yang et al., 2022). Therefore, the evaluation of the edge
feature of aggregates needs to put higher requirements on edge
detection. In order to propose reasonable evaluation indicators
for the shape and edge feature of aggregates, the Canny edge
algorithm is used to obtain the best effect of aggregate image and
realize the extraction of aggregate two-dimensional images (Peng
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FIGURE 2
Technical scheme.

FIGURE 3
Edge extraction process of a single aggregate section.

and Yang, 2023). The self-developed laser scanning equipment is
used to scan the measured aggregate to obtain two-dimensional
images of different horizontal sections of the aggregate. Figure 3
show the boundary processing process of an aggregate two-
dimensional image.

From Figure 3, it can be seen that using the Canny operator
and boundary tracing can better reflect the changes in edge feature
of the aggregate two-dimensional image. This method not only
has strong noise resistance, but also has high positioning accuracy.
It can quickly identify the gradient perimeter of the image edge

and the area enclosed by the image boundary, providing support
for further proposing accurate and reasonable aggregate shape and
edge feature evaluation indicators based on edge detect (Taheri-
Shakib and Al-Mayah, 2023). Additionally, it is important to note
that the segmented images in Figure 2 represent different horizontal
sections of the aggregate, but they may not exhibit significant visual
differences due to the consistency of the aggregate’s characteristics
and smaller scan depth interval.This consistency could be attributed
to the type of aggregate, its homogeneity, or the scanning resolution
used.
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FIGURE 4
Recognition results of different polygons.

3.2 Establishment of morphological
characteristics indicators for coarse
aggregates

3.2.1 Comparison and selection of shape and
angularity parameters of coarse aggregates

With the continuous development of digital image processing
technology, there are many types of aggregate shape evaluation
indicators. According to literature research, evaluation indicators are
mainly divided into methods based on three-dimensional images
and methods based on two-dimensional images (Dong and Catbas,
2021). This article selects axial coefficient, convexity, roughness,
angularity, roundness and rectangularity indicators for research.
The calculation methods of the above six indicators are carried out
according to reference (Xie et al., 2017; Li et al., 2015).

In order to verify the rationality of the proposed indicators,
different sizes of regular polygonswere selected for the six indicators,
with aggregate size of 9.5 mm, 13.2 mm, and 16 mm respectively.
Using MATLAB software, output each two-dimensional polygon
image, as shown in Figure 4. The indicator values of each two-
dimensional shape were calculated, and the calculation results of
each polygon are shown in Figure 5.

The data from Figures 5D, E indicate that as the number of
sides of the regular polygon increases, both the angularity and
roundness parameters decrease. This observation suggests that
aggregates with more sides tend to have smoother edges and less
angularity, which can potentially affect their interlocking ability and
overall performance in asphalt mixtures. The decrease in angularity
and roundness may be attributed to the increased regularity and
symmetry associated with higher-sided polygons, leading to a more
uniform and less jagged shape. Figures 5A, F demonstrate a linear
relationship between the axial coefficient and both the rectangularity
and the number of sides of the regular polygon, starting from the
regular pentagon. This indicates that as the shape becomes more
rectangular or as the number of sides increases, the axial coefficient
follows a predictable pattern. This finding could be significant
in predicting and optimizing the packing efficiency and stability
of aggregates within asphalt mixtures, as the axial coefficient is
closely related to these properties. However, it is important to
note that not all indicators follow a clear trend with increasing
polygon sides. Figures 5B, C show that convexity and roughness
exhibit irregular patterns as the number of sides increases. This
suggests that these indicators may be less sensitive to changes in

shape or may be influenced by other factors not captured by the
regular polygon representation alone. Overall, with the exception of
roughness, the other five indicators appear to capture the changes
in two-dimensional regular polygons to some extent. However, the
sensitivity of these indicators to shape variations differs, highlighting
the need for a comprehensive evaluation framework that considers
multiple morphological characteristics simultaneously.

Different coarse aggregates with different particle sizes and rock
types were selected for analysis. Limestone, basalt, and diabase
from different quarries were selected, with three grades of particle
sizes for each rock type, namely, 9.5–13.2 mm, 13.2–16 mm, and
16–19 mm.The coarse aggregates were screened, washed, and dried
to eliminate the influence of mud content on the extraction of
indicators. Ten two-dimensional images of horizontal sections were
selected for each coarse aggregate using the self-developed laser
scanning equipment, and the edge features of the coarse aggregate
were traced using the Canny operator to identify and calculate six
indicator values using a self-written Python program. The average
value of each of the ten different indicator values was calculated
and statistically analyzed using factor analysis (Finch, 2020). The
collection of aggregate indicator data is shown in Figure 6.

3.2.2 Factor analysis of coarse aggregate
morphology

This experiment can identify the main indicators that affect the
shape and edge feature of coarse aggregates by conducting specific
data analysis on six indicators. Several of these indicators will be
selected to describe the correlation of aggregates, and specific factors
will be described through specific indicators. The factor analysis
method of the experiment mainly consists of the following steps, as
shown in Figure 7.

3.2.2.1 Data preparation
In order to obtain better comprehensive indicators for evaluating

the shape and edge feature of aggregates, a large amount of analysis
is required in this experiment. To eliminate the influence of the laser
line on the selection of the aggregate horizontal section placement
surface, two different aggregate placement directions were selected
to reduce the impact of the aggregate placement position. In this
experiment, samples of different rock types and particle sizes were
randomly selected, and 300 particles were selected for each particle
size under each rock type, totaling 2,700 particles and 27,000 two-
dimensional images of aggregates for analysis. The index values
of partial values different coarse aggregate particles are shown in
Table 1.

According to the tested sample data of the aggregate material,
calculate the average, maximum, minimum, and coefficient of
variation of 2,700 particles of the aggregate, as shown in Table 2.

To calculate the probability value of a sample, it is necessary
to determine the number of groups. According to the calculation
formula of the number of groups k and the sample size n, which is k
= 0.87 (n-1)0.4, the value of k in this study is 16 with a sample size of
n = 2,700. Based on the value of k and the maximum and minimum
values of various aggregate shape indicators, the step length d of the
group can be calculated using formula (1):

d =
max (x) − min (x)

k
(1)
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FIGURE 5
Calculation results of different polygon indicators. (A) Axial coefficient, (B) Convexity, (C) Roughness, (D) Angularity, (E) Roundness, (F) Rectangularity.

Analyze the normal distribution pattern of the extracted sample,
draw a probability density distribution graph, and detect the normal
distribution of each index based on the calculated sample skewness
SK and sample kurtosis KU. Skewness measures the asymmetry of

a data distribution, while kurtosis measures the steepness of a data
distribution. For a normal distribution, skewness is approximately
0, and kurtosis is approximately 3. If the skewness and kurtosis of
sample data are close to these values, it can be considered that the
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FIGURE 6
Data collection of aggregate indicators.

FIGURE 7
Factor analysis steps.

data is close to a normal distribution. Based on the principle of
standard deviation, this article considers data points that exceed the
mean plus or minus 2 or 3 standard deviations as outliers, and then
replaces these outliers with the median, mean, or other appropriate
values. If X1, X2… , Xn is a sample that describes the characteristics
of the population, then its kth central moment is shown in formula
2, sample skewness is shown in formula 3, and sample kurtosis is
shown in formula 4.

Bk =
1
n

n

∑
i=1
(Xi −X)

k,k = 1,2,⋯ (2)

SK = B3/B
3/2
2 (3)

KU = B4/B2
2 − 3 (4)

When SK > 0, it is positively skewed; when SK < 0, it is negatively
skewed, which can reflect the symmetry information of the overall
density curve of the coarse aggregate morphology and various test
indicators. When KU > 0, the peak is high; when KU < 0, the peak

is low, which can reflect the steepness of the various test indicators
at the peak of the coarse aggregate morphology (Weng et al., 2022).

At a significance level of a = 0.01 and p = 0.95 for the test
indicators, based on a sample size of 2,700, the critical value table
for skewness and kurtosis tests is shown in Table 3.

Based on the judgment of the graphical characteristics of
the probability density cumulative curve described above, the
normality of various aggregate morphology test indicators was
determined using the calculation formula.MATLABwas used to test
axial coefficient, convexity, roughness, angularity, roundness, and
rectangularity, and the six indicators were arranged in ascending
order. Based on the step size and k value, the probability density
distribution of the six indicators was plotted as shown in Figure 8.

From Figure 8, it can be seen that according to the skewness
test, the axial coefficient and rectangularity conform to normal
distribution (skewness = 0), while convexity, roughness, and
angularity exhibit left-skewed distribution, and roundness exhibits
right-skewed distribution. According to the kurtosis test, the axial
coefficient conforms to normal distribution, and the angularity
exhibits a thin tail (kurtosis value < 3), while roundness, roughness,
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TABLE 1 Indicators test values of different coarse aggregate.

Indicator X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Axial coefficient 1.164 1.274 1.311 1.577 1.384 1.210 1.238 1.063 1.577 1.293

Convexity 0.678 0.618 0.595 0.549 0.678 0.657 0.644 0.616 0.531 0.636

Roughness 0.913 0.891 0.892 0.870 0.859 0.860 0.851 0.877 0.880 0.859

Angularity 1.031 1.017 1.000 1.045 1.024 1.023 1.016 1.011 1.008 1.040

Roundness 1.176 1.143 1.369 1.347 1.183 1.106 1.077 1.071 1.464 1.301

Rectangularity 1.223 1.322 1.363 1.732 1.600 1.231 1.404 1.187 1.909 1.587

Indicator X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

Axial coefficient 1.613 0.981 0.972 1.027 1.329 1.302 1.045 1.393 1.238 1.311

Convexity 0.394 0.552 0.671 0.585 0.521 0.458 0.645 0.588 0.634 0.545

Roughness 0.901 0.841 0.869 0.856 0.838 0.860 0.919 0.864 0.876 0.901

Angularity 0.980 0.995 1.030 1.009 1.019 1.001 1.022 1.020 1.018 1.095

Roundness 1.390 1.226 1.092 1.252 1.425 1.403 1.218 1.383 1.238 1.403

Rectangularity 1.107 1.193 1.198 1.232 1.460 1.328 1.243 1.804 1.218 1.383

Xi is the aggregate number.

TABLE 2 Aggregate particle sample statistics.

Axial coefficient Convexity Roughness Angularity Roundness Rectangularity

Average value 1.392 0.636 0.967 0.903 1.111 1.315

Maximum value 2.234 0.858 0.988 0.962 1.234 1.729

Minimum value 0.854 0.229 0.838 0.794 0.886 0.867

Coefficient of variation 1.7% 3.2% 3.5% 1.5% 4.8% 2.4%

TABLE 3 Critical values for skewness test and kurtosis test.

Sample size p = 0.95

Skewness Kurtosis

2,700 0.17 2.76

convexity, and rectangularity exhibit a thick tail (kurtosis value >
3). The sample data for all six indicators were adjusted based on
skewness and kurtosis to ensure that all indicators conform to a
completely normal distribution, and the data were re-adjusted and
assigned values accordingly.

After assigning values to the data, it was analyzed and found
that different indicators have certain differences. To eliminate the
differences in the size of the values of different indicators, the data
was standardized, so that the data falls within the range of [0,1].
This ensures that the differences in the values of different indicators

can be ignored, and forward normalization was also performed.
This method is called Min-max normalization, and the calculation
method for the conversion function is as follows (Arora et al., 2021).
The formula for calculating the positive directional indicator is
shown as formula 5.

yi1 =
xi1 − min1≤i≤4{xj}

max1≤i≤n{xj} − min1≤j≤n{xj}
(5)

The formula for calculating the negative directional indicator is
shown as formula 6.

yi2 =
max1≤i≤n{xj} − xi2

max1≤i≤n{xj} − min1≤j≤n{xj}
(6)

Which, the max and the min refer to the maximum
and minimum values of each indicator tested for coarse
aggregate.

According to the above method, all obtained coarse aggregate
indicator data were standardized and normalized. The positive and
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FIGURE 8
Probability density distribution of different indicators. (A) Axial coefficient, (B) Convexity, (C) Roughness, (D) Angularity, (E) Roundness, (F)
Rectangularity.

negative directions of the indicators are shown in Table 4, so that
the range of all indicators is within the [0,1] interval. The closer
the value is to 1, the better the shape or angular characteristics of

the aggregate. This is done to eliminate the different effects of each
indicator in the comprehensive analysis. The results are shown in
Table 5.
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TABLE 4 Positive and negative directions of evaluation indicators.

Name Indicators

rectangularity negative

axial coefficient negative

convexity Positive

Roughness —

angularity negative

roundness negative

3.2.2.2 Data analysis
In order to investigate the influence of different coarse aggregate

particle sizes and rock types on the indicators, the comprehensive
score model coefficients for different indicators were calculated
using limestone, basalt, and diabase from different quarries. The
comprehensive score coefficients for different indicators were
calculated using particle sizes of 9.5–13.2 mm, 13.2–16 mm, and
16–19 mm.The results of the two calculations are shown in Figure 9.

From Figure 9, it can be seen that the score coefficients
of different aggregate particle size indicators remain basically
unchanged. The rectangularity and axial coefficient increase with
the increase of aggregate particle size, and the comprehensive score
coefficient continues to increase. The convexity and angularity
parameters decrease with the increase of particle size, and the
comprehensive score coefficient of the indicators continuously
decreases. This may be due to the influence of the change in
aggregate particle size on each indicator. The larger the particle size
of the aggregate, the greater the degree of influence of shape than
that of edge feature. The comprehensive score model coefficients of
different indicators are different, and there is no obvious trend in
the comprehensive score model coefficients of different aggregate
lithologies. It can be concluded that lithology has little effect on the
morphology indicators of aggregates.

3.2.2.3 Analysis of results
Kaiser-Meyer-Olkin (KMO) and Bartlett’s test were used to

examine the correlation between the indicator data and the coarse
aggregate indicator variables (Sang et al., 2023). The Kaiser-Meyer-
Olkin (KMO) test is a sampling adequacy test whose statistic
compares the simple correlation coefficients among variables with
their partial correlation coefficients. The KMO value ranges from 0
to 1, and a value closer to 1 indicates stronger correlations among
variables, making the original variables more suitable for factor
analysis. Conversely, if the KMO value is close to 0, the correlations
among variables are weak, making factor analysis unsuitable. On the
other hand, Bartlett’s test is a method for testing null hypotheses
based on the correlationmatrix of variables. If the correlationmatrix
is not an identity matrix (i.e., all elements on the diagonal of the
correlation matrix are not 1, or the elements off the diagonal are
not 0), then the statistic for Bartlett’s test will be relatively large,
and the corresponding accompanying probability value will be less
than the significance level. In this case, it is believed that there is a
correlation among the original variables, making them suitable for

factor analysis. This article uses a scree plot for factor extraction.
The scree plot is a graphical tool used to display the size of the
eigenvalues for each factor. In a scree plot, it is typically observed
that the eigenvalues exhibit a distinct elbow point. Factors before
the elbow point have larger eigenvalues, while those after the elbow
point decrease rapidly. It is a common practice to select the factors
before the elbow point as the extracted factors.The results are shown
in Table 6, with a KMO value of 0.883 > 0.6, indicating that the test
data for the coarse aggregate indicators is suitable for factor analysis.

Due to the lack of consideration of the expected number of
factors during the analysis, the number of factors was determined
by analyzing the data and obtaining the scree plot and variance
explained table. The scree plot is shown in Figure 10, and the
variance explained is shown in Table 7.

The variance explanation rate table is shown in Table 7.
When the eigenvalues are greater than 1, one factor can be

extracted. The eigenvalues of factor 1 and factor 2 are 7.583
and 2.365, respectively, indicating the preliminary extraction of
two factors.

The Variance explanation rate table can also be used to
determine how many factors are appropriate to extract and the
variance explained ratio of each factor. The larger the variance
explanation rate, the more original data information is included.
Since the data has been normalized and all indicator values are in the
[0,1] interval, the variance explanation rate before and after rotation
is the same.Therefore, this study’s data can extract 2 factors, and the
variance explanation rate after rotation of these two factors is 54.86%
and 30.65%, respectively. The cumulative variance explained ratio
after rotation is 85.52%, indicating that extracting two factors can
express 85.52% of the information of the research data with little loss
of information. In summary, the expression of the two factors can
express the morphological characteristics of the coarse aggregate.

3.2.2.4 Results correction
Calculate the loading coefficients of the rotated factors for the

six indicators studied, calculate the communality of the factors, and
process the concentrated factors. The loading coefficients of the
rotated factors are shown in Figure 11.

By judging whether the commonality is greater than 0.4, it
is determined whether the indicator can evaluate the research
content (Shrestha, 2021). As shown in the figure above, the
commonality of axial coefficient, convexity, angularity, roundness
and rectangularity are all greater than 0.4, so they can be used
to evaluate the morphological characteristics of coarse aggregates,
and the commonality of roughness is 0.28, which is less than 0.4,
so roughness cannot evaluate the morphological characteristics
of coarse aggregates. According to the rotated factor loading
coefficients, two factors are obtained. Factor 1 is mainly determined
by convexity, angularity, and roundness, while factor 2 is mainly
determined by axial coefficient, rectangularity, and roundness.
Based on previous research and the actual characteristics of coarse
aggregate morphology, factor 1 mainly evaluates the edge feature of
coarse aggregates, while factor 2mainly evaluates the shape of coarse
aggregates.

3.2.2.5 Factor naming
By conducting data research on a set of rectangularity, axial

coefficient, and roundness, and another set of convexity, roundness,
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TABLE 5 Test results of different coarse aggregate particle indicators.

Name X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Axial coefficient 0.618 0.631 0.545 0.427 0.504 0.672 0.655 0.765 0.412 0.641

convexity 0.577 0.450 0.401 0.298 0.576 0.533 0.507 0.446 0.254 0.489

Roughness 0.316 0.262 0.267 0.179 0.147 0.148 0.115 0.213 0.222 0.144

angularity 0.297 0.253 0.230 0.444 0.277 0.274 0.250 0.233 0.218 0.295

roundness 0.853 0.892 0.619 0.645 0.842 0.938 0.969 0.977 0.505 0.700

rectangularity 0.670 0.613 0.567 0.456 0.506 0.657 0.572 0.716 0.291 0.493

Name X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

Axial coefficient 0.330 0.851 0.856 0.802 0.582 0.771 0.466 0.655 0.553 0.650

convexity 0.320 0.306 0.554 0.300 0.235 0.347 0.507 0.386 0.485 0.290

Roughness 0.297 0.283 0.183 0.131 0.070 0.148 0.367 0.164 0.207 0.301

angularity 0.157 0.172 0.295 0.241 0.252 0.180 0.273 0.262 0.254 0.202

roundness 0.589 0.790 0.949 0.760 0.552 0.579 0.801 0.604 0.776 0.578

rectangularity 0.734 0.681 0.684 0.665 0.538 0.610 0.658 0.352 0.648 0.562

and angularity, the rotation factor load coefficients of the coarse
aggregate factor 1 and factor 2 can be calculated, and the
communality can be obtained. The factor load coefficients after
rotation are shown in Table 8.

3.2.3 Establishment of comprehensive shape and
edge feature for coarse aggregates

By adjusting the results, the factor score relationship can be
obtained as shown in formula 7

f1 = β11x1 + β12x2 +⋯+ β1pxp
f2 = β21x1 + β22x2 +⋯+ β2pxp

⋯⋯

f3 = β31x1 + β32x2 +⋯+ β3pxp

(7)

By using the model expressed by the above factor expression,
two common factors are proposed. Based on the factor loading
coefficients of each indicator mentioned above, the previously
standardized data calculation formula is substituted into the factor
loading coefficients to obtain two factor score expressions for
the shape and edge feature of coarse aggregates. The calculation
expression for the research data is shown as formula 8 and formula
9.

SF = 0.57Z+ 0.91A+ 0.82R (8)

EFF = 0.76C+ 0.84R+ 0.79Ap (9)

Which, Z-Rectangularity; A-Axial coefficient; R-Roundness;
C-Convexity; Ap-Angularity; SF-Shape factor; EFF-Edge
feature factor.

All data is subjected to inverse standardization processing by
SPSS software to obtain the comprehensive expression of coarse
aggregate shape, which are respectively the Aggregate Shape factor
(SF) and the Aggregate Edge feature factor (EFF). The calculation
formulas for inverse standardization processing are shown in
formula 10 and 11:

Comprehensive shape factor of coarse aggregate (SF) as shown
in follow:

SF = 7.25− 0.13Z− 1.43A− 2.54R (10)

Comprehensive edge feature factor of coarse aggregate (EFF) as
shown in follow:

EFF = 12.46+ 2.17C− 3.56R− 7.32Ap (11)

According to the expressions of the comprehensive shape factor
and comprehensive edge feature factor based on coarse aggregate,
the index values of 2,700 aggregates were calculated and ranked.The
maximum and minimum values of SF and EFF were obtained. The
calculation results of some index values are shown in Table 9.

According to the calculation table of 2,700 particles, the range
of SF is [0.007, 1.919], and the range of EFF is [0.104, 1.915].
The larger the value of the comprehensive shape factor, the closer
the coarse aggregate is to a sphere, and the smaller the value, the
closer it is to a needle-shaped aggregate. The larger the value of the
comprehensive edge feature factor, the richer the edge feature of
the coarse aggregate, and the smaller the value, the poorer the edge
feature of the coarse aggregate.

Statistical analysis was performed on the SF and EFF index
values obtained from testing 2,700 coarse aggregates, as shown in
Figure 12 and Figure 13.
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FIGURE 9
Comprehensive scoring coefficient. (A) Comprehensive score coefficient of each indicator for different particle sizes, (B) Comprehensive score
coefficient of each indicator for different lithologies

From Figure 12 and Figure 13, it can be seen that after
standardization and positive transformation of six indicators
data including axial coefficient, convexity, roughness, angularity,
roundness and rectangularity, the SF obtained through factor
analysis can well represent the variation characteristics of shape
and edge feature of coarse aggregate, and conforms to normal
distribution with 2,700 coarse aggregate data. Through calculation,

it can be obtained that μSF = 0.932 and σSF = 0.364, μEFF = 1.375
and σEFF = 0.316. Among them, μSF and μEFF are the mean values
of the indicator values tested by EFF and SF, and σSF and σEFF are
the standard deviations of the indicator values tested by EFF and SF.

According to the Lydall criterion, the index values of the
2,700 coarse aggregate tests should all be concentrated withinThe
probability of falling within this range the range of (μ-3σ, μ+3σ).The
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TABLE 6 KMO and Bartlett test.

KMO value 0.883

Bartlett sphericity test

approximate chi-square 5765.23

degree of freedom 17

significance 0.001

FIGURE 10
Scree plot.

probability of falling within this range exceeds 99%. Points falling
outside of ±3σ should be removed. After optimization, the range of
the comprehensive shape factor of coarse aggregate is [0.041, 1.793],
and the range of the comprehensive edge feature factor of coarse
aggregate is [0.368, 1.745].

To achieve interval division of the shape and edge feature of
coarse aggregates, combinedwithmanual testing data analysis of the
shape and edge feature of coarse aggregates during actual testing, the
index values of the (μ-3σ, μ-σ) interval are defined, the index values
of the (μ-σ, μ+σ) interval are defined, and the (μ+σ, μ+3σ) interval
is defined. The interval division diagram of the SF and EFF index
values can be obtained as shown in Figure 14.

The above diagram distinguishes between different shapes and
edge feature of coarse aggregates. When the SF index range is
[1.305, 1.793], the coarse aggregate is of high roundness, and at this
time, the coarse aggregate is close to being roundness or cubic in
shape. When the index range is [0.638, 1.305], the coarse aggregate
is of medium roundness, and most of the coarse aggregates are
concentrated within this range, and the coarse aggregate is closer to
being roundness or cubic in shape. When the index range is [0.041,
0.638], the coarse aggregate is of low roundness, and at this time,
the coarse aggregate has a significant difference in roundness and is
closer to being needle-like in shape.

For coarse aggregate angularity, when the EFF index range
is [1.127, 1.575], the coarse aggregate is high angularity, and the
surface of the coarse aggregate is rich in angularity and has more T
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FIGURE 11
Factor load coefficient after rotation.

TABLE 8 Shape factor load coefficient after rotation.

Name Factor loading
coefficient

Communality

Shape factor

Rectangularity 0.607 0.585

Axial coefficient 0.785 0.706

Roundness 0.657 0.515

Edge feature factor

Convexity −0.763 0.634

Roundness 0.814 0.753

Angularity 0.703 0.593

fracture surfaces. When the index range is [0.835, 1.127], the coarse
aggregate is medium angularity, and most of the coarse aggregate is
concentrated within this range, with a moderate level of angularity
on the surface. When the index range is [0.368, 0.835], the coarse
aggregate is low angularity, and the surface of the coarse aggregate is
relatively smooth and closer to that of a pebble.

3.3 Results verification

Three types of coarse aggregates were selected, with a particle
size range of 9.5–13.2 mm. Among them, limestone samples
were collected from Zhejiang-Wenzhou, Guangdong-Foshan, and

Shaanxi-Ankang. Basalt samples were collected from Zhejiang-
Ningbo and Guangdong-Shandou. Diabase samples were collected
from Guangdong-Huizhou and Zhejiang-Jiaxing. Using AIMS, X-
ray-CT and the self-developed laser scanning equipment tomeasure
the roundness parameters and angularity parameters of seven
different lithological aggregates.The average values of each indicator
were determined and are shown in Table 10.

In order to further evaluate three methods for evaluating
the characteristics of coarse aggregate morphology and verify the
rationality of the proposed evaluation index for coarse aggregate
morphology characteristics, this article uses AIMS and X-ray-CT
equipment to test the indicators of coarse aggregatemorphology and
compares themwith the comprehensive evaluationmethod based on
line laser for the same coarse aggregate. Based on the above results,
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TABLE 9 Partial values of SF and EFF Indicator.

Id Axial coefficient Convexity Roughness Angularity Roundness Rectangularity SF EFF

1 1.164 0.707 0.998 0.919 1.048 1.090 1.537 1.529

2 1.223 0.618 0.935 0.870 0.978 1.131 1.359 1.532

3 1.198 0.567 0.892 0.815 1.116 1.110 0.823 1.058

4 1.769 0.642 1.068 1.046 1.347 1.732 0.444 0.887

5 1.553 0.792 1.054 1.024 1.183 1.607 1.141 1.745

6 1.358 0.768 1.055 1.023 1.106 1.231 1.823 1.915

7 1.238 0.671 0.932 0.906 0.962 1.251 1.523 1.704

8 1.021 0.616 0.921 0.865 0.916 1.016 1.804 1.734

9 1.442 0.505 0.881 0.821 1.193 1.556 0.033 0.696

10 1.450 0.744 1.054 1.042 1.301 1.587 0.997 1.227

11 1.813 0.461 1.106 0.983 1.393 1.107 0.827 1.005

12 1.101 0.645 1.032 0.995 1.226 1.193 1.852 1.627

13 0.972 0.699 0.951 0.918 0.974 1.068 1.919 1.717

14 0.986 0.585 0.898 0.863 1.071 1.054 1.461 1.291

15 1.215 0.496 0.838 0.831 1.161 1.189 0.643 0.688

16 1.461 0.535 1.055 1.001 1.403 1.328 0.975 0.927

17 1.173 0.754 1.128 1.022 1.218 1.243 1.753 1.607

18 1.563 0.687 1.064 1.026 1.383 1.804 0.517 1.077

19 1.238 0.661 0.958 0.908 1.104 1.085 1.341 1.395

20 1.258 0.545 0.946 0.937 1.208 1.184 0.786 0.275

FIGURE 12
Probability density distribution diagram of SF. FIGURE 13

Probability density distribution diagram of EFF.
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FIGURE 14
Evaluation of Coarse aggregate angularity and roundness. (A) SF index, (B) EFF index.

TABLE 10 Average value of coarse aggregate indicators for different equipment.

Type Coarse aggregate shape Coarse aggregate edge feature

AIMS X-ray-CT Laser rays AIMS X-ray-CT Laser rays

Roundness
1

Roundness2 SF Angularity1
(gradient
angularity)

Angularity2
(3D

angularity)

EFF

Limestone -
Wenzhou,
Zhejiang

0.691 0.677 1.371 2538.58 0.124 1.062

Limestone -
Foshan,

Guangdong

0.704 0.702 1.438 2721.62 0.129 1.135

Limestone -
Ankang,
Shaanxi

0.712 0.717 1.507 2874.17 0.135 1.154

Basalt - Ningbo,
Zhejiang

0.715 0.728 1.576 2884.52 0.143 1.243

Basalt -
Shandou,
Guangdong

0.732 0.723 1.608 3021.08 0.138 1.227

Diabase -
Huizhou,
Guangdong

0.721 0.754 1.643 3102.47 0.151 1.292

Diabase -
Jiaxing,
Zhejiang

0.732 0.735 1.672 2993.35 0.145 1.254

7 types of coarse aggregates with different rock types and origins
were tested, and the ranking of 7 coarse aggregate shape and edge
characteristics was conducted. The coarse aggregate comprehensive
shape and edge feature indicators with different sizes were taken as
the horizontal axis, and the indicator values tested by AIMS and X-
ray-CT were taken as the Y-axis. A straight line was fitted, and the
R2 value was calculated. The fitting curves for the coarse aggregate
shape and edge feature tested by different methods are shown in
Figure 15.

This article conducts variance analysis tests on various
indicators, determines the differences between the results of
methods in various tests on the shape and angularity of coarse
aggregates, and conducts quantitative analysis to show the
reliability and rationality of the comprehensive index of coarse
aggregate morphology.The calculation formula for Spearman’s rank
correlation coefficient q is as follows (Temizhan et al., 2022). If the
correlation coefficient q obtained through themeasurementmethod
is close to 1, it indicates that the indicator is more reasonable for
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FIGURE 15
Correlation between the morphology evaluation index of coarse aggregates and other indicators. (A) Correlation analysis between SF and Roundness,
(B) Correlation analysis between EFF and GA, 3DA.

evaluating the characteristics of coarse aggregate morphology. The
relationship between the analysis results is shown in formula 12.

q =

n

∑
i=1
(xi − x)(yi − y)

√
n

∑
i=1
(xi − x)

2(yi − y)
2

(12)

In formula 12, where n is the sample size, x and y represent
the rankings of visual and image analysis results, respectively. The
value of the Spearman rank correlation coefficient ranges from −1
to 1. A Spearman rank correlation coefficient of zero indicates no
correlation between X and Y (where x and y are the rankings of
X and Y, respectively), while a coefficient close to 1 indicates a
monotonic correlation betweenX andY, even if they are not linearly
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FIGURE 16
Results of Spearman rank correlation coefficient analysis.

related.The results of various testingmethods for the Spearman rank
correlation coefficient analysis are shown in Figure 16.

The Spearman rank correlation coefficient shows that when
using the comprehensive evaluation index based on line laser, the
evaluation of the shape and edge feature of coarse aggregates has a
high correlation coefficient, reaching 0.864 and 0.805, respectively.
These correlation coefficients are higher than the morphological
indexes of AIMS and X-ray-CT commonly used, indicating that
the comprehensive index of coarse aggregates has rationality and
accuracy in evaluation.

4 Conclusion

(1) After employing a self-developed laser scanning device
for batch scanning of aggregates, multiple two-dimensional
images of aggregates’ cross-sections were obtained. The
implementation of the Canny operator along with the
boundary tracking algorithm demonstrated robust noise
resistance and high positional accuracy, resulting in an
accurate representation of edge feature variations in the
acquired images.
(2)To validate the proposed six aggregate morphology
indicators, different sizes of regular polygons were utilized
to simulate various shapes of aggregates. Results indicated
that aggregates with more edges exhibited smoother edges
and lower angularity, suggesting reduced interlocking ability
in asphalt mixtures. Moreover, a stronger linear relationship
was observed between edge number and axial coefficient with
increasing edges. These findings are pivotal for predicting and
optimizing the packing efficiency and stability of aggregates
in asphalt mixtures, with the exception of roughness, all
indicators effectively captured changes in two-dimensional
regular polygons to some extent.

(3) Factor analysis of six indicator values in 2,700 two-dimensional
images led to the proposal of Shape Factor (SF) and Edge
Feature Factor (EFF) as significant factors affecting aggregate

shape and edge characteristics, respectively. Following
optimization, SF ranged from 0.041 to 1.793, while EFF ranged
from 0.368 to 1.745. Within SF ranges of 1.305–1.793, 0.638
to 1.305, and 0.041 to 0.638, aggregates demonstrated high,
medium, and low roundness, respectively. Similarly, EFF
ranges of 1.127–1.575, 0.835 to 1.127, and 0.368 to 0.835
corresponded to high, medium, and low angularity of coarse
aggregates, respectively.

(4) By conducting variance analysis tests on multiple indicators,
this study examined differences in outcomes from various
methods assessing the shape and angularity of aggregates.
A comprehensive index of coarse aggregate morphology
was quantitatively analyzed to establish its reliability and
rationality. Notably, Spearman’s rank correlation coefficient
revealed strong correlations between the evaluation of coarse
aggregate shape and edge features using the line laser-based
comprehensive evaluation index. Specifically, correlation
coefficients of 0.864 and 0.805 exceeded those of commonly
used methods such as AIMS and X-ray CT, indicating the
rationality and accuracy of the self-developed laser scanning
device in evaluating aggregate morphology.
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