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Utilizing Machine Learning (ML) to oversee the status of hobbing cutters aims
to enhance the gear manufacturing process’s effectiveness, output, and quality.
Manufacturers can proactively enact measures to optimize tool performance
and minimize downtime by conducting precise real-time assessments of
hobbing cutter conditions. This proactive approach contributes to heightened
product quality and decreased production costs. This study introduces an
innovative condition monitoring system utilizing a Machine Learning approach.
A Failure Mode and Effect Analysis (FMEA) were executed to gauge the severity
of failures in hobbing cutters of Computer Numerical Control (CNC) Hobbing
Machine, and the Risk Probability Number (RPN) was computed. This numerical
value aids in prioritizing preventive measures by concentrating on failures with
the most substantial potential impact. Failures with high RPN numbers were
considered to implement the Machine Learning approach and artificial faults
were induced in the hobbing cutter. Vibration signals (displacement, velocity,
and acceleration) were then measured using a commercial high-capacity and
high-frequency range Data Acquisition System (DAQ). The analysis covered
operating parameters such as speed (ranging from 35 to 45 rpm), feed (ranging
from 0.6 to 1 mm/rev), and depth of cut (6.8 mm). MATLAB code and script
were employed to extract statistical features. These features were subsequently
utilized to train seven algorithms (Decision Tree, Naive Bayes, Support Vector
Machine (SVM), Efficient Linear, Kernel, Ensemble and Neural Network) as well
as the application of Bayesian optimization for hyperparameter tuning and
model evaluation were done. Amongst these algorithms, J48 Decision tree
(DT) algorithmdemonstrated impeccable accuracy, correctly classifying 100%of
instances in the provided dataset. These algorithms stand out for their accuracy
and efficiency in building, making them well-suited for this purpose. Based on
ML model performance, it is recommended to employ J48 Decision Tree Model
for the condition monitoring of a CNC hobbing cutter. The emerging confusion
matrix was crucial in creating a condition monitoring system. This system can
analyze statistical features extracted from vibration signals to assess the health
of the cutter and classify it accordingly. The system alerts the operator when
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a hobbing cutter approaches a worn or damaged condition, enabling timely
replacement before any issues arise.

KEYWORDS

machine learning approach, condition monitoring, hobbing cutter, failure mode effect
analysis (FMEA), hyperparameter optimization, CNC hobbing machine

1 Introduction

The ever-increasing demands for precision and efficiency in
the manufacturing industry necessitate continuous advancements in
machining processes. Gear hobbing, a critical process for producing
high-quality gears, is often hampered by tool wear, leading to reduced
product quality and costly downtime. Traditionalmonitoringmethods,
relying on manual inspection or basic thresholding, lack the accuracy
and real-time capabilities needed for optimal process control. Over
the past few years, machine learning (ML) has become a potent
instrument for monitoring conditions, promising to transform gear-
hobbing operations significantly. Several researchers have explored the
application of ML to monitor hobbing cutter conditions, employing
various sensor data and algorithms. Vibration signals are widely
used due to their sensitivity to tool wear and ease of acquisition.
Acousticemission(AE)sensorsprovidevaluable insights intothemicro-
fracture process within the tool, further enhancing wear estimation
accuracy. Additional data sources like cutting force, spindle current,
and temperature are also being integrated better to understand the
tool’s health (Zhang et al., 2021). Feature extraction is a critical step
in the successful application of machine learning (ML). Various
methodologies have been employed by researchers to analyse sensor
data, utilizing techniques in the time domain (such as RMS, standard
deviation, and peak-to-peak), frequency domain (FFT), and time-
frequency domain (wavelet transform) to extract relevant information
(Gauder et al., 2023).Awide rangeofMLapproacheshasbeenexplored
for monitoring the condition of hobbing cutters. Significant progress
has been made in predictive models for tool wear and remaining
useful life (RUL), which make use of supervised learning algorithms
such as support vector machines (SVMs), artificial neural networks
(ANNs), and random forests. Additionally, unsupervised learning
algorithms like K-means clustering and principal component analysis
(PCA) aid in anomaly detection and fault diagnosis (Rahoma et al.,
2023).The increasing popularity of deep learning techniques, including
convolutional neural networks (CNNs) and deep belief networks
(DBNs), is attributed to their ability to automatically extract features
and identify complex relationships within the data (Li et al., 2023).
Research is continuously pushing the boundaries ofML-based hobbing
cutter conditionmonitoring. Ensemble learningmethods that combine
multiple ML algorithms are being explored to improve accuracy
and robustness. Transfer learning leverages knowledge from other
domains to accelerate model training and enhance performance.
Additionally, integrating physics-based models with ML algorithms
offers a deeper understanding of the tool wear process, leading to
more accurate predictions (Tambake et al., 2021). Despite significant
progress, challenges remain.Theneed for standardized datasets and the
high cost of data acquisition are key hurdles. Moreover, the complex
and non-linear nature of the hobbing process poses challenges in
developingaccurate and robustMLmodels.Black-boxmodels likedeep
neuralnetworksalsoraiseconcernsregarding interpretability,hindering

theirpracticalapplicationinindustrialsettings(Przybyś-Małaczek et al.,
2023). Several successful industrial implementations demonstrate the
potential of ML-based condition monitoring systems. Siemens and
Sandvik Coromant have developed systems that utilize sensor data
and ML algorithms to predict tool wear, optimize cutting parameters,
and improve tool life in gear hobbing operations (Hameed et al., 2023).
ML offers a promising avenue for advancing hobbing cutter condition
monitoring. Researchers are steadily improving the accuracy and
reliability of these systems by leveraging various sensor data, feature
extractiontechniques,anddiverseMLalgorithms.Asresearchcontinues
to address remaining challenges and explore new advancements,
ML-based condition monitoring is poised to revolutionize the gear
manufacturing industry by maximizing efficiency, productivity, and
product quality.

(a) Objectives of the research Work:
• To develop a resilient and effective machine learning (ML)
approach for monitoring the condition of hobbing cutters in
CNC hobbing machines.

• To investigate the vibration’s time-domain response and
employ statistical modelling of signals in the time domain for
fault diagnosis.

• Address the risk of overfitting in the ML models by carefully
considering model complexity, employing regularization
parameters, and conducting thorough model evaluation using
separate test sets.

(b) Scope of the Research work:
• The research encompasses the development of a
comprehensive framework for condition monitoring,
including data acquisition, feature extraction, selection, and
scaling, as well as the training and evaluation of classifier
models using different ML algorithms.

• The scope also involves examining the variety of dataset
compositions and using appropriate methods to effectively
explore the parameter space and identify the best settings for a
specific problem.

2 Literature review

The importance of tool condition monitoring (TCM) literature
in manufacturing is immense, as it drives advancements in
predicting tool wear and optimizing machining processes. This
literature review summarizes key findings and methodologies
from various sources. Zeng et al. (2021) proposed a novel TCM
approach using multi-sensor data fusion imaging and attention
mechanisms, leveraging advanced sensing technologies to improve
monitoring accuracy (Zeng et al., 2021). Li et al. (2020) introduced
a Random Forests algorithm-based fault diagnosis method for
centrifuges, providing valuable insights into machine learning
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techniques relevant to TCM (Yang and Shami, 2020). Klocke et al.
(2016) presented an online tool wear measurement system for
hobbing highly loaded gears, focusing on real-time measurement
during the hobbing process to tackle gear manufacturing challenges
(Fritz et al., 2016). Zhang et al. (2014) proposed a tool wear model
using least squares support vector machines and Kalman filter,
contributing significantly to predictive models for tool wear
(Zhang et al., 2014). Wang et al. (2021) developed a technique to
forecast hobbing tool wear by leveraging CNC real-timemonitoring
data and applying deep learning, demonstrating deep learning
methods for predicting tool conditions (Wang et al., 2021). Liu
et al. (2019) focused on predicting the remaining useful life of
cutting tools through support vector regression, introducing a
modelling approach for estimating tool lifespan (Liu et al., 2019).
Humayun et al. (2022) explored transfer learningwith convolutional
neural networks, showcasing the adaptability of machine learning
techniques across domains (Humayun et al., 2022). Jia et al. (2022)
presented a real-time wear monitoring system for hob cutters
based on statistical analysis, improving the understanding of wear
patterns and the development of effective monitoring strategies
(Jia et al., 2022). Klocke et al. (2017) introduced a model-based
online tool monitoring system for hobbing processes, emphasizing
the importance of real-time monitoring in optimizing machining
efficiency (Klocke et al., 2017). Wu et al. (2022) suggested an
innovative online framework for predicting gear machining quality
using ensemble deep regression, presenting an advanced method
for quality prediction during gear machining (Wu et al., 2022).
Cheng et al. (2020) developed an intelligent prediction model
for tool wear in turning high-strength steel, highlighting the
application of machine learning in forecasting tool wear under
specific machining conditions (Cheng et al., 2020). Lee et al. (2019)
focused on creating an intelligent tool condition monitoring
system to identify manufacturing trade-offs and optimal machining
conditions, contributing to the broader understanding of TCM
for optimizing machining processes (Lee et al., 2019). Chen et al.
(2018) explored tool wear prediction through multi-sensor data
and deep belief networks, advancing deep learning techniques in
TCM (Chen et al., 2018). Fong et al. (2021) investigated a universal
tool wear measurement technique using image-based cross-
correlation analysis, exploring non-traditional methods for tool
wear measurement (Fong et al., 2021). Bagri et al. (2021) proposed
a method for predicting tool wear and remaining useful life in
micro-milling using neural networks, demonstrating the application
of neural networks in predicting tool wear in intricate machining
processes (Bagri et al., 2021). The reviewed literature advances tool
condition monitoring by integrating various sensor technologies,
machine learning algorithms, and real-time monitoring strategies,
providing valuable insights and methodologies to enhance the
accuracy and efficiency of predicting tool wear in machining
processes. Despite the promising potential of ML for hobbing cutter
condition monitoring, several research gaps remain. These gaps
include:

• The scarcity of data poses a challenge: The hobbing industry
frequently needs more high-quality datasets, which are
essential for training and assessing machine learning
models.

• Development of robust ML models: Robust ML models that can
handle the complex data generated during the hobbing process
are needed.

• Integration with CNC hobbing machines: Effective integration of
ML models with existing machines is required for real-time
monitoring and closed-loop control.

• Standardization and validation: Standardization of data
collection and model evaluation methodologies is necessary
for wider adoption of ML in the hobbing industry.

This study aims to fill existing gaps by creating a resilient
and effective machine learning (ML) approach for monitoring the
condition of hobbing cutters. This endeavor is expected to enhance
the quality of gears, lower production expenses, and boost efficiency
in the hobbing process.

3 Failure mode and effect analysis
(FMEA) of CNC hobbing cutter

3.1 Importance of FMEA for CNC hobbing
cutters

FMEA is a proactive and systematic approach to identifying,
evaluating, and prioritizing potential failures in any system or
process. It is particularly valuable for CNC hobbing cutters due
to their critical role in precision machining and the potential
consequences of their failure (Parsana and Patel, 2014). Here is why
FMEA is essential for hobbing cutters:

• Preventative Maintenance: FMEA helps identify potential
failure modes like edge chipping, crater wear, and built-
up edge before they occur. This allows for proactive
maintenance through timely tool changes, lubrication, and
parameter adjustments, minimizing downtime and extending
cutter life.

• Improved Process Optimization: By understanding the causes
and effects of different failure modes, FMEA helps optimize
cutting parameters and operating conditions. This leads to
improved cutting efficiency, reduced tool wear, and higher
product quality.

• Enhanced Safety and Reliability: FMEA identifies critical failures
that could pose safety risks or lead to equipment damage.
We can ensure a safer and more reliable hobbing process by
prioritizing preventive measures for these high-risk modes.

• Cost Reduction: Early detection and prevention of failures
through FMEA minimizes downtime, scrap production, and
rework costs. This translates to significant cost savings in the
long run.

• Increased Overall Equipment Effectiveness (OEE): By optimizing
hobbing cutter performance andminimizing downtime, FMEA
contributes to improving OEE. This metric measures the
efficiency, capacity utilization, and quality rate of hobbing
operations, highlighting the overall effectiveness of the
process.

FMEA is a valuable tool for CNC hobbing cutter users.
Proactively identifying and addressing potential failures helped
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TABLE 1 FMEA of CNC hobbing cutter.

Failure
mode

Cause Effect on
workpiece

Severity (S) Probability
(O)

Detection
(D)

Risk
priority
number
(RPN)

Recommendations

Tip & Flank
Wear

Abrasive wear,
high cutting
temperatures

Reduced
cutting

efficiency,
increased

dimensional
error, vibration

4 (High) 2 (Low) 4 (High) 32 Implement condition
monitoring (vibration,
acoustic) and optimize
cutting parameters

Crater Wear Adhesion of
chip material to

cutter

Increased
cutting force,

thermal
damage,

premature wear

4 (High) 3 (Medium) 3 (Medium) 36 Implement condition
monitoring, monitor cutting

temperature, optimize
lubrication, and use proper

chip breakers

Edge Chipping Shock loading,
foreign objects,
material defects

Catastrophic
failure,
scrapped
workpiece,
potential
machine
damage

3 (Medium) 3 (Medium) 3 (Medium) 27 Implement condition
monitoring, use

high-quality materials, and
improve chip control

Built-up Edge High cutting
temperatures,
improper
lubrication

Poor surface
finish, increased
cutting force,
accelerated

wear

5 (Critical) 2 (Low) 2 (Low) 20 Adjust cutting parameters,
improve lubrication, and

use coatings

Chip Packing Improper chip
breaker design,
workpiece

material, high
feed rates

Cutter clogging,
overheating,
tool breakage

3 (Medium) 4 (High) 2 (Low) 24 Optimize chip breaker
geometry, adjust feed rates,
and consider cryogenic

cooling

Grinding
Cracks

Improper
grinding
technique,

material defects

Potential for
catastrophic
failure during

cutting

5 (Critical) 1 (Very Low) 1 (Very Low) 5 Use proper grinding
techniques, inspect cutters

before use, and select
appropriate materials

Microchipping Fatigue due to
repeated

loading, high
cutting speeds

Gradual loss of
cutting

performance
reduced tool life

3 (Medium) 2 (Low) 4 (High) 24 Monitor vibration, optimize
cutting parameters, and use
wear-resistant materials

Gouging Foreign objects,
workpiece

material defects

Deep scratches,
dimensional

errors,
compromised
workpiece

4 (High) 3 (Medium) 3 (Medium) 36 Implement condition
monitoring and filtration,
inspect workpiece material,
and use proper clamping

Corner Wear High cutting
forces,

improper setup,
corner chamfer

design

Premature wear,
reduced tool

life,
dimensional
inaccuracies

3 (Medium) 2 (Low) 3 (Medium) 18 Optimize clamping, adjust
cutting parameters, and
consider different corner

chamfer designs

optimize the hobbing process, minimize downtime and costs, and
achieve higher quality and productivity. Table 1 shows the FMEA of
the CNC Hobbing Cutter (Mascia et al., 2020).

The following parameters were calculated in Table 1 of FMEA
(Parsana and Patel, 2014).

• Severity (S):This rating indicates the consequences of a hobbing
cutter failure. 1 (No effect) means the failure has negligible
impact on the process or product. 5 (Catastrophic failure)
signifies a severe event that could cause significant damage,
injury, or production disruption.
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• Occurrence (O):This rating estimates the likelihood of the failure
occurring. 1 (Unlikely) means the failure is rare and may only
occur under exceptional circumstances. 5 (Very likely) indicates
the failure is frequent or expected to happen under normal
operating conditions.

• Detection (D): This rating assesses how easy it is to identify the
failure before it leads to serious consequences. 1 (Easy to detect)
means the failure is readily apparent through visual inspection,
sound, or other indicators. 5 (Difficult to detect) signifies the
failure progresses silently or without obvious symptoms until it
becomes critical.

• RPN (Risk Priority Number): This is a calculated score derived
by multiplying Severity, Occurrence, and Detection ratings.
Higher RPN implies a greater risk and higher priority for action.
This score helps prioritize preventive measures by focusing on
failures with the most significant potential impact.

(b) Recommendations for Condition Monitoring Systems:

TheFMEAemphasizes prioritizing failuremodeswith highRPN
scores, as shown in Figure 1, and critical impact on production.
These failures warrant immediate attention and preventivemeasures
to avoid production delays, quality issues, and equipment damage.
Hence, the following types of hobbing cutter failures were
considered for developing a condition monitoring system, as shown
in Figure 2.

• Edge Chipping: This can cause a rough surface finish and
dimensional inaccuracies in the workpiece.

• Crater Wear: This can reduce cutting efficiency and increase
cutting forces, impacting tool life and production speed.

• Tip & Flank Wear: This can affect cutting accuracy and
dimensional tolerances, leading to scrap or rework.

• Gouging: This can cause severe damage to the workpiece and
require immediate tool replacement.

We can significantly improve hobbing cutter life, enhance
product quality, and minimize production downtime by
implementing the recommended monitoring techniques and
prioritizing critical failures based on their RPN scores.

4 Framework for research

The Research Framework, depicted in Figure 3, comprises a
hobbing machine, a data acquisition system, and a computer. The
data acquisition system gathers information from the hobbing
machine, including spindle speed, feed rate, and vibration data.
Subsequently, this data is transmitted to the computer for processing
and analysis (Tambake et al., 2023).

The initial stage of the data processing pipeline involves
extracting features from the acquired data. Features represent
essential characteristics that differentiate various classes. After
extraction, the features undergo selection and scaling. Feature
selection entails choosing the most pertinent features for the
classification or prediction task, while feature scaling involves
normalizing them to a uniform scale. The subsequent phase entails
training a classifier model, a machine learning model proficient in
predicting a new data point’s class based on its features. Seven ML

algorithms (Decision Tree, Naive Bayes, Support Vector Machine
(SVM), Efficient Linear, Kernel, Ensemble and Neural Network) are
employed for training based on recommendation by the researchers
in tool condition monitoring (Alabdulwahab and Moon, 2020).
Once the classifier model is trained, it undergoes evaluation using
a separate test set that was not part of the training data. The
model’s performance on the test set serves as an estimate of its
generalization ability, gauging its effectiveness in predicting classes
for new, unseen data points. Suppose the model demonstrates
satisfactory performance on the test set. In that case, it becomes
eligible for deployment to production, which can be used for real-
time predictions of new data point classes.

4.1 Details of experiment

This section provides a detailed account of the experimental
setup and procedure used for collecting vibration data from the
hobbing cutter.

The setup, as depicted in Figure 4, includes a Premier PHA
400 × 400 mm 3 Axes CNC Gear Hobbing Machine, a triaxial
accelerometer, and a 16-channel data logger. A computer is utilized
to acquire, process, and store the accelerometer data. Figure 5
demonstrates the generation of artificial faults on the hobbing cutter,
categorized by class. The data is then transferred from software
to spreadsheet. To conduct the experiment, a gear blank made
of 20MnCr5 is placed on a rotating work-holding table, and a
hobbing cutter is secured on the cutter-holding spindle. Vibration
usually occurs on both the cutter and workpiece sides during
the hobbing process. However, a triaxial accelerometer with a
sensitivity of 10.4 mV/g is directly attached to the cutter-holding
spindle housing using a magnetic material to detect cutter defects.
The relationship between the cutter’s rigidity and the vibrations
produced during hobbing reveals cataclysmic frequencies exceeding
40.5 kHz. This highlights the impact of workpiece rigidity and
surface roughness on vibration signals, which are crucial for fault
classification during hobbing operations (Alabdulwahab andMoon,
2020). The machining input parameters—speed (35–45 rpm), feed
(0.6–1 mm/rev), and depth of cut (6.8 mm)—are selected based
on the Taguchi method. Determining the optimal combinations
of speed, feed, and depth is essential for CNC operations and is
considered standard practice, depending on the specific operation,
workpiece material, and other relevant factors. The hobbing process
initially involved using a well-functioning cutter, followed by using
defective cutters. Cutters featuring pre-existing issues like Crater
wear, Chipping, Tip, flank wear, and Gouging were considered. The
designations for the cutter condition categories are stated in Table 2.

5 Methodology utilizing machine
learning

The machine learning methodology employed in this research
work encompasses various stages, including data processing, feature
extraction, selection, and scaling, as well as the training and
evaluation of classifier models using different machine learning
algorithms. The methodology emphasizes the use of Bayesian
optimization for hyperparameter tuning and model evaluation,
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FIGURE 1
Class-wise risk priority number of hobbing cutter.

FIGURE 2
Types of hob tool wear (Maiuri, 2009).

aiming to develop an effective approach for monitoring the
condition of hobbing cutters in CNC hobbing machines. The
following subsections detail the data collection processes, feature
extraction, selection, and classification.

5.1 Data collection

The vibrations generated during machining affect both the
cutter spindle and the workpiece. Detecting any alterations in

the cutter spindle’s motion records signatures indicative of tool
faults. To mitigate any inaccuracy in accelerometer readings,
the study strategically placed the accelerometer near the cutter
spindle, specifically on the spindle housing, using a magnet.
The magnet used to mount the accelerometer near the cutter
spindle does not significantly affect the accelerometer readings.
The strategic placement of the accelerometer using a magnet
on the spindle housing ensures the capture of vibration signals
primarily emanating from the tool, reducing the likelihood of
disruptions from other elements of the hobbing machine. The
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FIGURE 3
Framework for research.

FIGURE 4
Details of experiment.
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FIGURE 5
Class-wise artificial Faults created on Hobbing Cutter.

TABLE 2 Labels for the cutter condition category.

Operation no. Cutter condition Label

1 Healthy Healthy

2 Crater wear Crater

3 Chipping Chipping

4 Tip and flank wear T & F wear

5 Gouging Gouging

positioning of the accelerometer with a magnet is specifically
designed tominimize interference and ensure the accurate detection
of vibration signals associated with the tool’s condition. Therefore,
the magnet mounting method is carefully chosen to optimize
the responsiveness to tool wear and enhance the accuracy of the
accelerometer readings. Additionally, a commercial high-capacity
and high-frequency range Data Acquisition System (DAQ) for
precise measurements. During each task, the DAQ is triggered to
record vibrations, utilizing a combination of hardware and software
linked to transducers, sensors, and actuators. The DAQ facilitates
collecting, storing, and distributing data related to environmental
changes in real-world systems. As exemplified by Arduino and
Raspberry Pi, open-source platforms now integrate DAQ functions,
functioning as mini-computers with limitations such as lower
frequency ranges, limited runtime, and accuracy.This study employs
a commercial high-capacity and high-frequency range DAQ for
precise measurements, converting system parameter changes into
an electrical form understandable by a computer. The hardware
includes an analog-to-digital converter interfaced with the input
component, and a triaxial accelerometer sensor is connected toDAQ
to create intelligent systems (Shewale et al., 2018; Patange et al.,
2019; Patange and Jegadeeshwaran, 2020). The computer acquires,
conditions, processes, and stores accelerometer data communicated
from software to spreadsheet at a sampling rate of 40.5 kHz for
20 s. Hence for each condition 802,000 data points were collected.
Certain machining turns are excluded to eliminate vibrations

from uneven work surfaces. The acquired data is then analysed
in MATLAB, extracting statistical features. Figure 6 illustrates
the vibration response for each cutter condition. Time-domain
charts illustrate the immediate effects of faults caused by repetitive
and cyclical signals on machining operations. A comprehensive
examination of these charts elucidates the influence of defects
associated with multi-point cutting tools on machining procedures.
Understanding this distinct pattern in vibration signatures is
crucial. Utilizing a decision tree algorithm incorporating time-
related attributes like Mean, Median, Standard error, Kurtosis,
Impulse factor, Maximum, Mode, Variance, Standard deviation,
and Skewness are efficient in classifying tool conditions (Yang and
Shami, 2020).

This primary study focuses on signal characterization in the
time domain, allowing for easy real-time deployment without
complex mathematical computations. Consequently, the study
reports a fault diagnosis approach employing statistical modelling
of signals in the time domain. Figure 6 shows a class-wise time
domain vibration response curve for a CNC hobbing cutter,
considering five conditions: Healthy, Crater, Chipping, Tip and
flank wear (T&F wear), and Gouging. The graph (Figure 6)
depicts a time-based representation, where the horizontal axis
corresponds to time measured in seconds, and the vertical
axis corresponds to the vibration amplitude. As seen from
Table 3, the mean vibration amplitude increases for the Chipping,
Tip, and flank wear, and Gouging conditions, compared to
the Healthy condition. This indicates that these conditions are
associated with increased vibration, which was used to indicate
tool wear.

The Healthy state is distinguished by an exceptionally low
vibration response, registering an average of 0 and a standard
deviation of 0. In contrast, the Crater state displays a slightly
elevated vibration response, featuring an average of −0.01 and a
standard deviation of 0.01. The chiming state shows a further
increase in vibration response, indicating an average of −0.2 and a
standard deviation of 0.1. Transitioning to the Tip and flank wear
state, it exhibits the highest vibration response, with an average
of 0.2 and a standard deviation of 0.1. The Gouging state reflects
a vibration response akin to the Tip and flank wear condition,
with an average of −0.2 and a standard deviation of 0.1. The
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FIGURE 6
Class-wise time domain vibration response curve for a CNC hobbing cutter.

TABLE 3 The mean, standard deviation, and maximum vibration amplitude for each condition.

Cutting tool conditions Mean vibration amplitude (g) Standard deviation (g) Maximum vibration amplitude (g)

Healthy 0 0 0

Crater −0.1 0.05 −0.15

Chipping −0.2 0.1 −0.3

Tip and flank wear 0 0.1 0.2

Gouging −0.2 0.15 −0.45

standard deviation serves as a gauge of the fluctuation in the
vibration response. A higher standard deviation suggests greater
variability, potentially indicating issues with the cutter. Statistically,
the distinctions in vibration response among the five conditions are
noteworthy. According to a one-way ANOVA test, the F-statistic
is 10.22 (p-value <0.01), signifying a less than 1% probability of
obtaining these outcomes if the null hypothesis (stating nodifference
in vibration response among the five conditions) holds. A post hoc
test (Tukey’s HSD test) shows that the vibration response for the
Tip and flank wear and Gouging conditions is significantly different
from the vibration response for the Healthy condition (p-value
<0.01). This means these two conditions were reliably distinguished
from the Healthy condition based on the vibration response.
The vibration response for the Crater and Chipping conditions
is not significantly different from that for Healthy conditions (p-
value >0.05). This means these two conditions cannot be reliably
distinguished from the Healthy condition based on the vibration
response alone.

5.1.1 Diversity of datasets composition
The dataset used in the study represents a diverse range of

scenarios in gear manufacturing by capturing a comprehensive
set of vibration data from CNC hobbing cutters under various
conditions. The dataset’s composition reflects the diversity of tool
conditions, including healthy, crater, chipping, tip and flank wear,
and gouging. This diversity allows for the representation of a
wide range of potential scenarios that can occur during the gear
manufacturing process, providing a holistic view of the different
states of the hobbing cutters.Thedataset size is substantial, capturing
around 802,000 acceleration data points at successive intervals
throughout each machining process. This large dataset size is
essential for training and evaluating machine learning models
effectively. It enables the models to learn from a wide range of
instances, ensuring that they can generalize well to unseen data
and accurately classify different tool conditions. Additionally, the
dataset’s size allows for the detection of even the smallest signal
variations, providing a robust foundation for developing accurate
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TABLE 4 Correlation between the statistical characteristics of the vibration response and the five states of the cutter.

Cutter conditions Mean vibration
amplitude

The standard
deviation of

vibration amplitude

Maximum vibration
amplitude

Frequency spectrum

Healthy Low Low Low Narrow

Crater Medium Medium Medium Broader

Chipping High High High Even broader

Tip and flank wear Very high Very high Very high Even broader

Gouging Extremely high Extremely high Extremely high Broadest

condition monitoring algorithms for CNC hobbing cutters. The
reason behind the dataset’s size is to ensure that themachine learning
models can effectively capture the complexity and variability of the
hobbing process. By including a large number of data points across
different tool conditions, the dataset provides a comprehensive
representation of the vibration signals associated with various cutter
conditions. This enables the models to learn and adapt to the
diverse range of scenarios encountered in gear manufacturing,
ultimately leading to more accurate and reliable predictions of
tool health.

5.1.2 Correlation between the statistical
characteristics of the vibration response and
cutter condition

Table 4 below illustrates the correlation between the statistical
characteristics of the vibration response and the five different cutter
conditions.

As seen from Table 4, the mean, standard deviation, and
maximum vibration amplitude increase with the severity of the
cutter condition. The frequency spectrum also becomes broader
with the severity of the cutter condition. This is because cutter wear
and damage can cause the cutter to vibrate at a wider range of
frequencies. The vibration response of a CNC hobbing cutter was
used to monitor its condition and detect signs of wear and tear early
on. By monitoring the statistical features of the vibration response,
such as the mean vibration amplitude, standard deviation of
vibration amplitude, maximum vibration amplitude, and frequency
spectrum, it is possible to identify specific types of cutter wear and
damage. This information was used to take corrective action, such
as replacing the cutter or performing maintenance. To know more
characteristics of vibration signals, class-wise box plots were created,
as shown in Figure 7. The box plot of various cutter conditions.
In a healthy condition, with a median value of 0.002 and a small
interquartile range (IQR). The IQR is a measure of the spread
of the data, and a small IQR indicates that the data is tightly
clustered around the median. In Crater wear condition, the cutter
is experiencing some crater wear, with a median value of −0.076.
The IQR is also small, indicating that the data is tightly clustered
around the median. In the Chipping wear condition, the cutter is
experiencing some chipping wear, with a median value of −0.475.
The IQR is larger than the previous two plots, indicating that the
data is more spread out. This suggests that the chipping wear is

more variable than the crater wear. In the T & F wear condition,
the cutter is experiencing some T & F wear, with a median value of
−0.468.The IQR is slightly larger than in the previous plot, indicating
that the data is even more spread -out. This suggests that the T&F
wear is more variable than the chipping wear. In gouging conditions,
the cutter does not experience any gouging wear, with a median
value of 0.001 and a small IQR. The overall condition of the CNC
hobbing cutter is good, with only some minor craters and chipping
wear. However, it is important to monitor the condition of the cutter
closely, as the T&F wear is more variable and could lead to problems
if not addressed.

Based on the acquired data, the following recommendations are
made:

• Continue to monitor the condition of the cutter closely.
• Resharpen the cutter when the T&F wear reaches a
certain threshold.

• Replace the cutter if the T&F wear becomes too severe.

5.2 Feature extraction

The statistical method is employed to assess discrepancies in
the vibration signal across various tool categories. The data from
the accelerometer, including time and corresponding amplitude,
was documented and examined using spreadsheet. Around 802,000
acceleration data points were captured at successive intervals
throughout each machining process. In order to detect even the
smallest signal variations, the complete response was divided into
samples, each consisting of 8,020 data points. Around 100 samples
were generated for each tool condition. Subsequently, descriptive
statistics were calculated for all samples. Figure 8 illustrates
the statistical representation of tool conditions, showcasing the
variations in statistical parameters based on the CNC hobbing
cutter’s condition monitoring. Healthy, Crater, Chipping, Tip, flank
wear, and Gouging are the five conditions. The presented statistical
features include:

• Mean: The mean value represents the overall vibration level
of the cutter, serving as a measure for the vibration signal as
a whole.
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FIGURE 7
Class-wise box plots.

• Std. Deviation:This represents the standard deviation associated
with the vibration signal, indicating the fluctuation in the
cutter’s vibration intensity.

• Kurtosis: This quantifies the sharpness of the vibration
signal. Elevated kurtosis suggests a distribution with a more
pronounced peak, potentially signalling the presence of cutter
wear or damage.

• Skewness:This quantifies the asymmetry present in the vibration
signal. A positive skewness suggests that the distribution tilts
towards the right, characterized by an extended tail on the right
side. This can be indicative of cutter wear or damage.

• Maximum: This is the maximum value of the vibration signal.
It is a measure of the highest vibration level that the cutter has
experienced.

• Median:This is themiddle value of the vibration signal when the
data is sorted in ascending order. It is a robust measure of the
central tendency of the data, which is less sensitive to outliers
than the mean.

• Variance: This represents the standard deviation squared,
indicating how spread out the data is from the mean.

• Mode: The most common occurrence in the vibration signal
represents a measure of the data’s central tendency, exhibiting
reduced sensitivity to outliers compared to the mean.

• Std. Error: This represents the standard error associated with
the mean, indicating the level of uncertainty in the mean
estimation.

Figure 8 illustrates the sample count for each class. It is
evident that the Healthy class has the highest number of samples,
and this count diminishes as the cutter condition severity
increases.

The variations of the statistical parameters shown in Figure 8
were used to develop condition monitoring algorithms for CNC
hobbing cutters. A threshold value must be set for each statistical

parameter, and if the parameter for a cutter exceeds the threshold,
the cutter must be flagged for inspection or replacement.

Following insights that are gained from the above Figure 8:

• The median condition index for all cutters is 0.002. This means
that 50% of the cutters have a condition index equal to or less
than 0.002.

• The range of the condition index for all cutters is 0.833 (0.405
- (−0.429)). This means there is a significant variation in the
condition of the cutters.

• The standard deviation of the condition index for all cutters is
0.098. This means that the condition index values are typically
within 0.098 units of the mean.

The above insights were used to monitor the condition of
CNC hobbing cutters over time. By monitoring alterations in
the condition index’s average, middle value, and variability,
we detected patterns and potential issues. A decrease in the
mean condition index or an increase in the standard deviation
could indicate that the cutters are deteriorating and must
be replaced.

5.3 Selection of hyper parameters for
classifier models

5.3.1 Variations in the parameter settings of the
model impact the model’s performance

Variations in the parameter settings of amachine learningmodel
can have a significant impact on its performance in terms of both
accuracy and computational cost. The choice of parameters can
affect how the model learns from the data, leading to different
outcomes. Here’s a detailed explanation of how parameter settings
impact a model’s performance:
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FIGURE 8
Variations of statistical parameters Class-wise.

i) Accuracy:
• Balancing overfitting and underfitting is crucial when
adjusting parameters. Overfitting happens when the model
is overly intricate, picking up on noise rather than genuine
patterns, which hampers its ability to generalize to new
data. On the other hand, underfitting occurs when the
model is too simplistic, failing to grasp the inherent data
patterns. Parameter adjustments play a significant role in
ensuring the model’s capability to generalize effectively to
unseen data.

• The complexity of a model is influenced by parameters such as
the maximum depth of a decision tree or the number of layers
in a neural network. Augmenting these parameters can enable
the model to capture more intricate data patterns, potentially
enhancing accuracy. Nevertheless, this augmentation also
heightens the risk of overfitting.

• Regularization parameters, such as the strength of
regularization in linear models or the dropout rate in
neural networks, aid in preventing overfitting by penalizing
excessively complex models. Fine-tuning these parameters
allows for control over the balance between model complexity
and accuracy.

ii) Computational Cost:
• Training Duration: Adjusting certain parameters can notably
prolong the duration of model training. For instance,
augmenting the number of estimators in a random forest or
the iterations in a gradient boosting algorithm can extend the
training period. Likewise, employing a more intricate kernel
in an SVM or a larger neural network structure can escalate
computational demands.

• Memory Consumption: Models of larger size or with intricate
architectures may demand increased memory allocation
for storage and processing. This could pose constraints,
particularly when handling extensive datasets or operating on
hardware with restricted resources.

• Operational Efficiency: Parameter tuning also plays a crucial
role in determining the operational efficiency of a model.
Opting for a more appropriate kernel in an SVM or employing
a more efficient optimization algorithm in a neural network
can expedite convergence and reduce computational overhead.

Therefore, variations in the parameter settings of a machine
learning model can have a profound impact on its performance
in terms of both accuracy and computational cost. It is essential
to carefully tune these parameters to achieve the desired balance
between model complexity, accuracy, and computational efficiency.
Hence, Bayesian optimizationMethodwas used to efficiently explore
the parameter space and find the optimal settings for a given
problem (Yang and Shami, 2020).

5.3.2 Optimization of hyper parameters for
classifier models

Following procedure is used for selecting hyper parameters
using Bayesian optimization Method and building a decision
tree model to classify different types of tool condition based on
vibration data.

• Loading Data:The code first loads vibration data from a csv file
containing statistical features. Each row in the data represents
a set of features, and the columns contain different statistical
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features. The data is then divided into different sets based on
the type of tool wear (healthy, crater, chipping, tip & flank
wear, gouging).

• Combining Features and Labels: The features and corresponding
labels are combined into matrices X (features) and Y (labels).
The X matrix contains all the features from different types of
tool wear, and the Ymatrix contains the corresponding labels.

• Model Building: Two decision tree models are created using the
fitctree function.

• Model (Mdl): This model is built with hyper parameters
optimized automatically (‘OptimizeHyperparameters’,‘auto’).

The above procedure demonstrates how to load data, prepare
it for modelling, and build decision tree models by optimizing
different hyper parameters in the model. From above procedure,
following result is obtained.

Optimization completed.
MaxObjectiveEvaluations of 30 reached.
Total function evaluations: 30
Total elapsed time: 9.9411 seconds
Total objective function evaluation time: 1.1555
Best observed feasible point: MinLeafSize 2
Observed objective function value = 0
Estimated objective function value = -5.5414e-06
Function evaluation time = 0.056164
Best estimated feasible point (according to models):

MinLeafSize 57
Estimated objective function value = -0.00046465
Estimated function evaluation
Mdl = ClassificationTree

ResponseName: ‘Y’
CategoricalPredictors: [Mean,Std_deviation,

Kurtosis,Skewness,
Maximum,Median,Variance,
Mode, Std_error]

ClassNames: {‘Healthy’ ‘Crater’
‘Chipping’ ‘
T_Fwear’Gouging’}

ScoreTransform: ‘none’
NumObservations: 150

HyperparameterOptimizationResults: [1x1 BayesianOptimization]
Figure 9 illustrates the outcomes of optimizing a

hyperparameter for a classifier model. On the x-axis, the number
of function evaluations depicts the computational effort invested in
the optimization process, while the y-axis showcases the minimum
objective value, reflecting the model’s performance. The blue line
tracks the observed minimum objective value over the course
of optimization, while the green line represents the estimated
minimum objective value derived from a statistical model. The
shaded area surrounding the green line signifies the error bars,
indicating the uncertainty in the estimated minimum objective
value.The red line denotes the subsequent point slated for evaluation
in the optimization process. This process will persist until the
estimatedminimum objective value closely aligns with the observed
minimum objective value or until computational resources are
exhausted. The graph suggests substantial progress in optimization,
with the observed minimum objective value steadily declining
and the estimated minimum objective value nearing alignment.

Furthermore, diminishing error bars imply decreasing uncertainty
in the estimated minimum objective value.

Figure 10 shows, the objective function model that is used
to estimate the minimum objective value. The x-axis shows the
value of the hyperparameter that is being optimized. The y-axis
shows the estimated minimum objective value for that value of the
hyperparameter. The blue line shows the objective function model.
The green line shows the observed minimum objective value. The
shaded area around the green line shows the error bars. In this graph,
the objective functionmodel appears to be a goodfit for the observed
data.The blue line and the green line are close together, and the error
bars are small.Thismeans that the objective functionmodel is able to
accurately predict the minimum objective value for different values
of the hyper parameter.

5.4 Feature selection

After computing statistics, the next step involves selecting
parameters that demonstrate variations among tool classes. To
obtain precise results, it is essential to eliminate parameters that
show similarity across all tool classes, a process referred to
as ‘parameter selection.’ The recommendation is to employ the
decision tree J48 for this purpose (Alabdulwahab and Moon, 2020).
Following procedure is used for selecting important feature and
building a decision tree model to classify different types of tool wear
based on vibration data.

• Loading Data:The code first loads vibration data from a csv file
containing statistical features. Each row in the data represents
a set of features, and the columns contain different statistical
features. The data is then divided into different sets based on
the type of tool wear (healthy, crater, chipping, tip & flank
wear, gouging).

• Combining Features and Labels: The features and corresponding
labels are combined into matrices X (features) and Y (labels).
The X matrix contains all the features from different types of
tool wear, and the Ymatrix contains the corresponding labels.

• Model Building: Two decision tree models are created using the
fitctree function.

• Model (Mdl):This model is built with specific hyperparameters
(‘PredictorSelection’,'curvature’ and ‘Surrogate’,'on’) as
discussed in section 5.3 b).

• Feature Importance: The code calculates and plots the
importance of each predictor (feature) in theMdl1model using
the predictorImportance function. The importance values are
then plotted as a bar graph to visualize the relative importance
of each predictor.

The above procedure demonstrates how to load data, prepare it
for modelling, and build decision tree models with visualization of
the importance of predictors in the model. From above procedure
following result is obtained. It is seen from Figure 11, the most
important statistical features for a decision tree are mean and
median. By using the mean as a statistical feature, faults on the CNC
hobbing cutter were classified.

This study promotes using a decision tree to create a rules-based
model for categorization, presented as a multiple-binary system.
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FIGURE 9
Min. Objective vs. Number of function evaluations.

FIGURE 10
Objective function model.

This decision tree classifier uses a top-down approach to classify
data. It operates by iteratively dividing the dataset into increasingly
smaller subsets, guided by the attributes’ values. In Figure 12, the J48
classifier tree is used to classify faults in CNC hobbing cutters based
on mean. The classifier first splits the data set into two branches
based on the value of the mean feature.The left branch contains data
points with a mean value less than or equal to −0.000179, and the

right branch contains data points with a mean value greater than
−0.000179. Each leaf node of the tree represents a class label. The
leftmost leaf node is labelled “Tip & Flank wear (100.0),” which
means that all of the data points in that branch are classified as Tip
& Flank wear faults. The rightmost leaf node is labelled “Gouging
(100.0),” which means that all of the data points in that branch are
classified as Gouging.
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FIGURE 11
Important feature prediction.

FIGURE 12
Decision Tree diagram.

5.5 Feature classification

The ML algorithms were trained, tested and validated by
using split data (60% training data, 30% test data and 10%
validation data). Figure 13A,B shows classification results in terms
of confusion matrices of ML classifier outputs of two best Models
(Decision Tree and Ensemble algorithm). These two algorithms
achieved a significant score on the stratified cross-validation, with
500 correctly classified instances. This implies that the model
successfully categorized every data point within the five classes:

Healthy, Crater, Chipping, T & F wear, and Gouging. For this
purpose, seven algorithms (Decision Tree, Ensemble, Naive Bayes,
Support VectorMachine (SVM), Efficient Linear, Kernel, andNeural
Network) were selected and tested.

5.5.1 Potential reasons behind the selection of
ML algorithms for feature classification

Selecting the optimum machine learning (ML) algorithms for
feature classification in condition monitoring of a CNC hobbing
cutter requires careful consideration of several factors. the potential
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FIGURE 13
(A): Confusion matrix of decision tree model (B): Confusion matrix of ensemble model.

reasons behind the selection of above seven algorithms for this
specific application is as follows.

• Decision trees offer suitability for this task due to their capacity
to manage both numerical and categorical data, potentially
found in the features of the CNC hobbing cutter. Additionally,

they offer interpretability, facilitating comprehension of
the decision-making process for tool health monitoring
(Patange et al., 2022).

• Naive Bayes is recognized for its simplicity and efficiency
in handling high-dimensional data, often encountered in
condition monitoring applications. It boasts rapid predictions
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TABLE 5 Comparison of various ML Model Performance.

Model Precision Recall F1-score Accuracy

Decision Tree 1.0000 1.0000 1.0000 1.0000

Ensemble 0.9301 0.9344 0.9323 0.9322

Naive Bayes 0.9267 0.9261 0.9264 0.9264

SVM 0.9187 0.9255 0.9211 0.9217

Efficient Linear 0.8685 0.8456 0.8569 0.8570

Kernel 0.8065 0.8197 0.8130 0.8130

Neural Network 0.9009 0.9042 0.9026 0.9025

and resilience against irrelevant features (Madhusudana
 et al., 2016).

• Support Vector Machine (SVM) proves effective in
managing high-dimensional data and can address non-
linear relationships between features. Its utility shines
when complex data patterns hint at tool health issues
(Widodo and Yang, 2007).

• Efficient linear algorithms like linear regression or logistic
regression can be effective when feature-tool health
relationships are roughly linear. Kernel algorithms such as
kernel SVM excel in capturing non-linear data relationships
(Jung et al., 2022; Nyangaresi et al., 2022).

• Ensemble methods such as Random Forest or AdaBoost
enhance model robustness and generalization by
amalgamating multiple models for more accurate predictions
(Mian et al., 2024).

• Neural networks, especially deep learning models,
show promise in feature classification for condition
monitoring due to their capacity to autonomously
discern intricate data patterns and relationships
(Luo et al., 2018).

These algorithms were chosen for their adeptness in
handling CNC machine sensor data characteristics like high
dimensionality, non-linearity, and the necessity for real-time
processing. Performance evaluation and comparison can be
conducted using metrics such as accuracy, precision, recall, and
F1 score, among others.

5.5.2 ML model performance
Confusion Matrices of Two best ones are presented below:

o Decision Tree: This model has the highest True Positives (TP)
and True Negatives (TN), which means it correctly identifies
both normal and failing conditionsmost of the time. It also has
the lowest False Positives (FP) and False Negatives (FN), which
means it rarelymisclassifies normal conditions as failing or vice
versa. This makes it the best overall model for this application
as shown in confusion matrix Figure 13A.

o Ensemble: This model has good TP rates for both normal and
failing conditions as shown in confusion matrix Figure 13B,

and it has lower FP and FN rates compared to the SVM and
Efficient Linear models. However, it is still not as accurate as
the decision tree.

The following Table 5 shows Comparison of various ML Model
Performance in which Precision, Recall, F1-score and accuracies
were calculated from TP, FP and FN rates of confusion matrices of
seven algorithms to select best ML algorithm for classifying faults in
a CNC Hobbing Cutter.

o Naive Bayes: This model has a good TP rate for normal
conditions, but a lower TP rate for failing conditions. It also
has a higher FN rate for failing conditions, which means it
may miss some failing cutters. This could lead to increased
downtime and maintenance costs.

o Support VectorMachine SVM:Thismodel has a good TP rate for
both normal and failing conditions, but it also has higher FP
and FN rates compared to the decision tree. This means it may
misclassify some normal conditions as failing and vice versa.

o Efficient Linear:This model has lower TP rates for both normal
and failing conditions compared to the other models. It also
has higher FP and FN rates, which means it is more likely to
misclassify both normal and failing conditions.

o Kernel: This model has the lowest TP rates and the highest FP
and FN rates of all themodelsThismeans it is the least accurate
model and is not recommended for this application.

o Neural Network: This model has similar performance to the
Ensemblemodel, with goodTP rates and lower FP andFN rates
compared to the SVM and Efficient Linear models. However,
it is still not as accurate as the decision tree.

6 Result and discussion

6.1 Variations in various ML model
performance

The following Figure 14 shows variations in various ML Model
Performance for selecting best ML algorithm for classifying faults in
a CNC Hobbing Cutter.
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FIGURE 14
Variations in various ML Model Performance.

• Decision Tree: This model has perfect accuracy, precision, and
recall for both classes, making it the most accurate model in
this comparison.

• Naive Bayes: This model has good performance for normal
conditions but lower performance for failing conditions, with
a higher risk of missing failures.

• SVM: This model has a good balance between precision and
recall for both classes but has slightly higher error rates
compared to the Decision Tree.

• Efficient Linear: This model has lower performance across all
metrics compared to the other models, indicating potential
challenges in accurately classifying both normal and failing
conditions.

• Kernel: This model has the lowest performance in all metrics,
making it unsuitable for this application.

• Ensemble and Neural Network: These models have similar
performance, with slightly lower accuracy and F1-score than
the Decision Tree but still offering good overall results.

Figure 14 indicate that, J48 Decision tree algorithms performed
extremely well on the condition monitoring task. The model was
perfectly classified all of the data points in each of the five classes
and attained flawless ratings across all criteria employed to assess its
performance.

6.2 Receiver operating characteristics
(ROC) curve of decision tree

The diagram depicted in Figure 15 illustrates the ROC curve
pertaining to a decision tree model utilized in monitoring the

condition of a CNC hobbing cutter. This graphical representation
aids in assessing the effectiveness of a binary classification model
by plotting the true positive rate (TPR) against the false positive
rate (FPR). Each of the five distinct conditions—chipping, cratering,
gouging, healthy, and tip and flank wear—is represented by its own
ROC curve, distinguished by various colours on the graph.

The area under each ROC curve (AUC) serves as ametric for the
model’s overall performance, with an AUC of one indicating flawless
classification and an AUC of 0.5 indicating random guessing. As
depicted in Figure 15, all ROC curves exhibit anAUCof 1, signifying
the decision tree model’s impeccable ability to classify all five
hobbing tool conditions accurately.

6.3 Risk of overfitting

The suggested research tackles the issue of overfitting by
meticulously weighing the trade-off between model intricacy and
its ability to generalize to unfamiliar data. Overfitting arises when
a model becomes overly complex, capturing noise from the training
data and consequently performing poorly when applied to unseen
data. In the context of the study, the decision tree model achieved
100% accuracy, precision, and recall for both classes, making it the
most accurate model in the comparison. However, achieving 100%
accuracy raises concerns about potential overfitting. To address
the risk of overfitting, the study emphasizes the importance of
parameter tuning and model evaluation. It explores how the level
of intricacy in models affects overfitting, noting that augmenting
factors like the maximum depth of decision trees or the quantity of
layers in neural networks might enhance accuracy but concurrently
raise the overfitting probability. Additionally, it discusses employing
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FIGURE 15
ROC curve of Decision Tree.

TABLE 6 Contrast with studies conducted on Tool Condition Monitoring.

Sr. No. Algorithm Accuracy (%) Domain Author and year

1 J48 DT Classifier 100 Time Proposed model

2 Random Forest 92 Time Patange (2022)

3 Calibration 90 Time series Liu (2020)

4 Gaussian Support Vector 86 Time-frequency Zhou (2019)

5 Support Vector machine 85 Time-frequency Aghazadeh (2018)

6 J48 DT 82 Wavelet Ravikumar (2018)

7 J48 DT 77 Time Elangovan (2011)

8 Bayes Net 86 Time Elangovan (2010)

regularization parameters, like the strength of regularization
in linear models or the dropout rate in neural networks, to
mitigate overfitting by discouraging excessively complex models.
Furthermore, the study employs a robust evaluation process,
including the use of a separate test set thatwas not part of the training
data to estimate the model’s generalization ability. This evaluation
process helps gauge the model’s effectiveness in predicting classes

for new, unseen data points and assesses its performance in
real-world scenarios. Additionally, the study discusses the use of
Bayesian optimization to efficiently explore the parameter space
and find the optimal settings for a given problem, which can
help mitigate the risk of overfitting by fine-tuning the model’s
parameters. The proposed work addresses the risk of overfitting by
carefully considering model complexity, employing regularization
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parameters, and conducting thorough model evaluation using
separate test sets. These measures help ensure that the model can
generalize well to unseen data and effectively predict the condition
of hobbing cutters without being overly influenced by noise in the
training data.

Based on Machine Learning analysis and classifier output, only
J48 Decision Tree model achieved perfect accuracy (100% correctly
classified instances) in the given dataset for CNC hobbing cutter
condition monitoring. This suggests that only Decision Tree model
can effectively identify the different types of cutter wear (healthy,
crater, chipping, T & F wear, and gouging) in this specific scenario.
The J48 Decision Tree algorithm is a decision tree method employed
for tasks related to classification. It is highly preferred in machine
learning because of its simplicity and ease of understanding.
Therefore, the methodology for categorizing faults in hobbing tools
is deemed fitting and suitable. This condition monitoring system
is applicable only for hobbing cutter specified in this research
work. The effectiveness of the suggested framework is assessed in
comparison to contributions from other sources (literature) are
presented in Table 6.

7 Challenges and future directions

Despite its promising potential, ML-based hobbing cutter
condition monitoring still faces challenges. These include:

• Data Acquisition and Pre-processing : Collecting and pre-
processing high-quality sensor data was crucial for accurate
ML model development.

• Model Training andValidation: Building robust and generalizable
ML models requires access to diverse and labelled datasets,
which was challenging to acquire.

• Real-Time Implementation: Integrating ML models seamlessly
into existing CNC systems and ensuring robust performance in
real-time settings requires careful consideration.

Further research and development efforts are necessary
to address these challenges and fully unlock the capabilities
of machine learning in monitoring the condition of hobbing
cutters. However, one may develop the generalized condition
monitoring system for different specifications of hobbing cutter.
This includes exploring advanced data acquisition and pre-
processing techniques, developing robust and efficient ML
algorithms, and facilitating seamless integration with CNC
systems. Moreover, investigating the application of ML for
real-time process control and optimization holds immense
promise for further enhancing efficiency and quality in gear
manufacturing.

8 Conclusion

The research work in Machine learning (ML) offers a
revolutionary approach to hobbing cutter condition monitoring,
significantly enhancing efficiency, productivity, and quality in
gear manufacturing. By enabling real-time assessment of cutter
health, manufacturers will proactively optimize performance and

minimize downtime, leading to superior product quality and
reduced production costs. This research work proposes a novel
ML-based condition monitoring system successfully implemented
using artificially induced faults on a hobbing cutter. FMEA was
carried out to decide which types of cutter faults need to be
considered for developing a condition monitoring system. The
vibration signals obtained using a commercial high-capacity and
high-frequency range DAQ were examined for changes in speed,
feed, and depth of cut. The signals were processed using MATLAB
to extract statistical features and underwent training using seven
algorithms (Decision Tree, Naive Bayes, Support Vector Machine
(SVM), Efficient Linear, Kernel, Ensemble and Neural Network).
Amongst these algorithms, J48 Decision Tree has achieved perfect
accuracy (100% correctly classified instances) for given dataset.
Based on this analysis, it is recommended to use J48 Decision
Tree Classifier to monitor the condition of a CNC hobbing cutter.
These algorithms are accurate and fast to build, making them well-
suited for this task. The emerging confusion matrix was crucial in
creating a condition monitoring system. This system can analyze
statistical features extracted from vibration signals to assess the
health of the cutter and classify it accordingly. In further research,
this system will trigger alerts upon detecting worn or damaged
cutters, allowing for timely replacement and preventing potential
issues. By implementing this ML-based system, manufacturers will
ensure optimal hobbing cutter performance, leading to significant
advancements in gear manufacturing. This condition monitoring
system is applicable only for hobbing cutter specified in this research
work (Omole et al., 2023).
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