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This paper reviews the discrepancy between predicted and measured energy use 
in non-domestic buildings in a UK context with outlook to global studies. It explains 
differences between energy performance quantification and classifies this energy per-
formance gap as a difference between compliance and performance modeling with 
measured energy use. Literary sources are reviewed in order to signify the magnitude 
between predicted and measured energy use, which is found to deviate by +34% with 
a SD of 55% based on 62 buildings. It proceeds in describing the underlying causes for 
the performance gap, existent in all stages of the building life cycle, and identifies the 
dominant factors to be related to specification uncertainty in modeling, occupant behav-
ior, and poor operational practices having an estimated effect of 20–60, 10–80, and 
15–80% on energy use, respectively. Other factors that have a high impact are related 
to establishing the energy performance target, such as early design decisions, heuristic 
uncertainty in modeling, and occupant behavior. Finally, action measures and feedback 
processes in order to reduce the performance gap are discussed, indicating the need for 
energy in-use legislation, insight into design stage models, accessible energy data, and 
expansion of research efforts toward building performance in-use in relation to predicted 
performance.

Keywords: energy performance gap, energy use in buildings, predictions, measurements, feedback, post-
occupancy evaluation

HiGHLiGHTS

 1. Classifies the performance gap and analyses its magnitude and underlying causes.
 2. The regulatory energy gap is found to deviate by +34% with a SD of 55% based on 62 case study 

buildings.
 3. Specification uncertainty, occupant behavior, and poor practice are dominant underlying causes 

with an estimated effect of 20–60, 10–80, and 15–80% on energy use, respectively.
 4. Action measures to reduce the energy performance gap in contrast to the building life cycle are 

discussed.
 5. There is a need to develop techniques to mitigate the magnitude and underlying causes of the 

performance gap.
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iNTRODUCTiON

According to the International Energy Agency (IEA), energy con-
sumption in buildings represent one-third of the global energy 
consumption and is predicted to grow at an average rate of 1.0% 
per year until 2035 (IEA, 2010). Efforts on making buildings more 
energy efficient will therefore help to reduce carbon emissions 
and address climate change (European Commission, 2011). To 
meet targets set by the government, building regulations require 
new and existing buildings to be energy efficient and/or carbon 
efficient to a certain degree.

The energy Performance Gap
To design and operate more efficient buildings, many clas-
sification schemes have been established, providing a means to 
communicate a building’s relative energy efficiency and carbon 
emissions (Wang et  al., 2012b). These assessment schemes are 
related to the energy consumption of a building and can be 
quantified using different methods, both in the design stage [e.g., 
asset ratings, energy performance certificates (EPC), and part L 
calculations in the UK] and operational stage [e.g., operational 
ratings, display energy certificates (DEC) in the UK] of a building. 
Accredited performance assessment tools, ranging from steady-
state calculations to dynamic simulation methods are utilized to 
predict the energy consumption of a building, to comply with reg-
ulated targets using standardized procedures. Both classification 
schemes (such as the EPC) and standard calculation procedures 
for quantifying the energy use of a building have been reported 
to show significant discrepancies to measured energy use dur-
ing occupation, which risk not achieving regulated targets. This 
phenomenon has been termed previously as “the performance 
gap” (Carbon Trust, 2012; Menezes et  al., 2012; Burman et  al., 
2014; de Wilde, 2014; Cohen and Bordass, 2015). Although a 
margin of error between predicted and measured energy use is 
inevitable due to uncertainties in design and operation, as well as 
limitations of measurements systems, explaining its magnitude 
and underlying causes are necessary to more confidently forecast 
and understand energy use in buildings.

Classification of the Gap
Building energy modeling is an integral part of today’s design pro-
cess; however, research has shown that buildings can use twice the 
amount of their theoretical energy performance (Norford et al., 
1994; Pegg et al., 2007). One of the first major post-occupancy 
evaluation studies was the PROBE studies, which found little con-
nection between values assumed in design estimations and actual 
values found in existing buildings (Bordass et al., 2001). This makes 
it unlikely that the building industry achieves model-based targets 
(UKGBC, 2007). In the UK and most other countries, regulatory 
performance is determined through compliance modeling, which 
is the implementation of thermal modeling to calculate the energy 
performance of a building under standardized operating condi-
tions (occupant density, set-points, operating schedules, etc.), set 
out in national calculation methodologies. Compliance mod-
eling is useful to assess the energy efficiency of buildings under 
standardized conditions to determine if minimum performance 
requirements are met. However, such calculations should not be 

used as baselines for actual performance (Burman et al., 2014). 
Using the outcomes of compliance modeling to evaluate actual 
energy performance creates a significant risk for energy-related 
issues to go unnoticed, as the discrepancy between measured and 
modeled energy may be understood as the result of expected dif-
ferences in operating conditions and exclusion of non-regulated 
loads from compliance modeling. This type of comparison has 
often been used to define the term “the performance gap” (Carbon 
Trust, 2012; Menezes et al., 2012; Cohen and Bordass, 2015). This 
was to some extent, inevitable due to the dominance of compli-
ance modeling in the context of the current regulatory framework 
in the UK and European Union. However, comparing compliance 
modeling with measured energy use may lead to a distorted 
view of the energy performance gap. Theoretically, a gap could 
significantly be reduced if a building is simulated with actual 
operating conditions, in other words, when attention is paid to the 
building context, defined here as performance modeling. The term 
performance modeling in this context includes all energy quanti-
fication methods that aim to accurately predict the performance 
of a building. The difference between compliance modeling and 
performance modeling is further illustrated in Figure 1.

On-going efforts to understand the energy performance gap 
have utilized calibration techniques to fine-tune a building energy 
model to actual operating conditions and energy use, ideally 
over a longer period of time. This method gives insights into the 
operational inefficiencies of a building and can pinpoint underly-
ing reasons for differences between design estimations and actual 
use. Subsequently, a calibrated model could reintroduce design 
assumptions to quantify impacts of any underlying causes and 
their effect on energy performance. As such, a distinction can 
be made between three types of modeling efforts, which can be 
classified in three different ways to interpret the energy perfor-
mance gap. These are the gap between compliance modeling 
and measured energy use, performance modeling and measured 
energy use and calibration and energy use with a longitudinal 
perspective (Burman, 2016):

 1. Regulatory performance gap, comparing predictions from 
compliance modeling to measured energy use.

 2. Static performance gap, comparing predictions from perfor-
mance modeling to measured energy use.

 3. Dynamic performance gap, utilizing calibrated predictions 
from performance modeling with measured energy use tak-
ing a longitudinal perspective to diagnose underlying issues 
and their impact on the performance gap.

importance of Reducing the Gap
There is a need for design stage calculation methodologies to 
address all aspects of building energy consumption for whole-
building simulation, including regulated and unregulated 
uses and predictions of actual operation (Norford et  al., 1994; 
Diamond et al., 2006; Torcellini et al., 2006; Turner and Frankel, 
2008). Building energy simulation models need to closely rep-
resent the actual behavior of the building under study for them 
to be used with any degree of confidence (Coakley et al., 2011). 
These models contain the design goals and should therefore be 
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FiGURe 1 | Representation of compliance modelling and its exclusion of different end-uses in energy calculations of a building.
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the basis for an assessment to determine whether the completed 
product complies with the design goals (Maile et  al., 2012). 
Underperformance in design may soon be met by legal, financial 
implications (Daly et al., 2014), and demands for compensation 
and rectification work (ZCH and NHBC Foundation, 2010).

Investigation of predicted and measured energy use is 
necessary in order to understand the underlying causes of the 
performance gap. Furthermore, feedback helps improving the 
quality of future design stage models by identifying common 
mistaken assumption and by developing best-practice modeling 
approaches (Raftery et al., 2011). This also guides the develop-
ment of simulation tools and identifies areas requiring research 
(Raftery et al., 2011), such as uncertainty and sensitivity analysis, 
parametric modeling, geometry creation, and system modeling. 
Furthermore, it can help policy-makers define performance 
targets more accurately (Government HM, 2010; ZCH, 2010), 
which then assist in mitigating climate change. In operation, 
methodologies that analyze a discrepancy and related issues 
can help in understanding how a specific building is operating, 
highlighting poor-performing and well-performing buildings, 
and identifying areas where action is required. Investigating a 
discrepancy between design and operation can also support in 
identifying retrofit options to reduce energy use. In order to more 
accurately predict energy savings from a set of proposed retrofit 
technologies, the simulation model must represent a building as 
operated (Heo et al., 2012). Building audits and monitored energy 
consumption should become integral to the modeling process.

MAGNiTUDe AND UNDeRLYiNG CAUSeS

Different procedures can be used for calculating the energy 
performance in both the design and operational stage of a build-
ing. Wang et al. (2012b) provide an extensive overview of energy 
performance quantification and assessment methods. These 
methods use mathematical equations to relate physical properties 
of the building, system, and equipment specifications to its exter-
nal environment. They can help prospective occupiers, building 
owners, designers, and engineers in giving an indication of build-
ing energy use, carbon dioxide emissions, and operational costs. 
Furthermore, it allows a better understanding of where and how 
energy is used in a building and which measures have the greatest 
impact on energy use (CIBSE, 2013). In operation, it can identify 
energy-saving potentials and evaluate the energy performance and 
cost-effectiveness of energy-saving measures to be implemented 
(Pan et al., 2007). However, the built environment is complex and 
influenced by a large number of independent and interdependent 

variables, making it difficult to represent real-world building 
energy in-use (Coakley et  al., 2011). Thus, models represent a 
simplification of reality, therefore, it is necessary to quantify to 
what degree they are inaccurate before employing them in design, 
prediction, and decision-making processes (Manfren et al., 2013). 
Comparing measured values to modeled or estimated values does 
therefore not offer a valid comparison and should be avoided 
whenever possible (Fowler et  al., 2010). This perception is by 
ASHRAE (2004) as it states in its Energy Standard 90.1 Appendix 
G – “neither the proposed building performance nor the baseline 
building performance are predictions of actual energy consump-
tion, due to variations such as occupancy, building operation 
and maintenance, weather, and the precision of the calculation 
tool.” Indeed, the modeled or baseline performance here refers 
to compliance modeling, which is not a representation of reality. 
Nevertheless, it is useful to signify the regulatory performance 
gap and to understand how compliance modeling is different to 
measured energy use. Especially since performance modeling is 
rarely used to predict the actual energy use of a building, as such, 
a comparison is unable to ever validate what has been designed.

Magnitude
To date, many studies have focused on understanding the relation-
ship between predicted and measured energy use. Recently, this 
has become more important due to the increasing need to reduce 
energy consumption in buildings and their apparent differences.

Table 1 gives an overview of reported discrepancies between 
predicted and measured energy use found in the literature. An 
indication of the discrepancy is given by a percentage deviation 
from the predicted baseline value for a range of different non-
domestic buildings. The magnitude of the performance gap 
is typically reported using percentages, given as an increase or 
decrease from predicted. Case study buildings are located in dif-
ferent climates and have been predicted through different assess-
ment methods using various simulation software. In this analysis, 
averages from the CarbonBuzz database are used as reported 
by Ruyssevelt (2014), who analyzed 408 buildings for different 
buildings. A more in-depth analysis is given in Robertson and 
Mumovic (2013). CarbonBuzz (2015) is a platform established in 
order to benchmark and track energy use in project from design to 
operation. The type of prediction method used is given in Table 2.

In Figure 2, absolute values for the case studies are visualized, 
and Figure 3 illustrates the percentage differences from measured to 
predicted energy use, segmented by building function. The +100% 
means that measured energy use is twice the amount predicted, 
whereas −100% means that measured energy use is 0 kWh/m2a.
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TABLe 2 | Type of prediction used in the reviewed literature case studies, denoted by a letter.

Type of prediction

A Design stage calculation, excluding unregulated loads

B Design stage calculation, including equipment energy use, standard operation

C Quasi steady-state hourly simulation relying on simple normative models (EN-ISO 13790)

D CIBSE building energy code 1 (1998) using monthly average temperatures and included unregulated loads, no thermal modeling, similar to CIBSE TM22 
bottom-up approach

E CIBSE TM22 bottom-up approach

F National calculation methodology (NCM) in thermal modeling + equipment, external lighting, and lift using TM22

G National calculation methodology (NCM) in thermal modeling + benchmarking for DHW and Auxiliary loads + equipment, external lighting, and lifts using 
TM22

H Monthly balance method (EN-ISO 13790) + equipment energy use

I Design stage calculation partially based on built information, including equipment energy use

TABLe 1 | Magnitude in discrepancy reported in the literature (regulatory performance gap including equipment energy use).

% from predicted  
(no. buildings)b

Gap average Source Location of case  
study building

Prediction method 
(Table 1)

Modeling 
software

Office 47 Austin (2013) London, UK B (NCM) VisualDOE 3.0
11 Bertagnolio et al. (2012) Brussels, Belgium C ISO 13790

−27 to 13 (4) −14% Calderone (2011) Australia – various B (NABERS) IES VE
−2 Daly et al. (2014) Sydney, NSW, Australia B (ASHRAE) ECOTECT

−82 to 74 (9) −10% Diamond et al. (2006) USA – various B (ASHRAE)
−30 Kimpian et al. (2014) Cornwall, UK F DSM/TM22
40 Korjenic and Bednar (2012) Melk, Austria H BuildOpt_VIE

72 and 113 (2) 93% Menezes et al. (2012) London, UK E TM22
−17 Murphy and Castleton (2014) Sheffield, UK B (SBEM) SBEM
160 Norford et al. (1994) NJ, USA B DOE-2.1C

−32 to 148 (15) 30% Piette et al. (1994) USA – various A DOE 2.1
63% (30) Ruyssevelt (2014) UK – various Not stated

31 and 73 (2) 52% Torcellini et al. (2006) USA – various B (ASHRAE) DOE 2.2

25 offices 16% (σ 53)a

Laboratory 1 to 95 (2) 32% Diamond et al. (2006) USA – various B (ASHRAE)

Restaurant −13 to 71 (4) 31% (σ 31) Piette et al. (1994) WA, USA B DOE 2.1

Schools 29–124 (4) 71% Kimpian et al. (2014) UK – various F (3) G (1) DSM/TM22
111–127 (3) 117% Pegg et al. (2007) Southeast, UK D

−3 and −6 (2) −5% Piette et al. (1994) USA – various A DOE 2.1
37% (58) Ruyssevelt (2014) UK Not stated

11 schools 67% (σ 48)a

Multipurpose 13–48 (4) 5% Ahmed and Culp (2006) TX, USA I DOE-2.1E
13–142 (5) 99% Piette et al. (1994) USA – various A DOE 2.1

69 Salehi et al. (2013) BC, Canada B (NECB) IES VE
95–132 (3) 113% Torcellini et al. (2006) USA – various B (ASHRAE) DOE 2.2

8 multipurpose 45% (σ 53)a

University 22 Diamond et al. (2006) NM, USA B (ASHRAE)
8 Knight et al. (2008) UK, Cardiff B (SBEM) SBEM

156% (13) Ruyssevelt (2014) UK Not stated

3 universities 62% (σ 66)

Retail 12% (5) Ruyssevelt (2014) UK Not stated
62 Torcellini et al. (2006) UT, USA B (ASHRAE) DOE 2.1E

2 retail 37% (σ 25)

Supermarket −25 and 5 (2) −10% Piette et al. (1994) USA – various B DOE 2.1

Library −32 and 48 (2) 8% Diamond et al. (2006) USA – various B (ASHRAE)

aThe averages per sector exclude the case studies where the prediction method used is A.
bActual = predicted ± % over/under-predicted, i.e., +160% means that actual energy use is 160% higher than predicted.
The figures in bold indicate the average per sector, in some cases these are based on a single study.
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FiGURe 3 | Difference in percentages of measured to predicted 
energy use of reviewed case studies for different building functions.

FiGURe 2 | Predicted and measured energy use intensities of 
reviewed case studies for different building functions.
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In Figure  2, several of the buildings have high energy use 
intensities (>1000 kWh/m2a) and are therefore not shown. The 
two dashed lines indicate if measured energy use in specific case 
studies is double the predicted value (top left) or is less than half 
the predicted value (bottom right). This visualization emphasizes 
that measured energy use in most case studies is higher than 
predicted energy use. While 15% (9 of 62) of the case studies use 
double the amount of energy initially predicted in contrast to one 
significant outlier that uses less than half the energy initially pre-
dicted. In particular, Ruyssevelt (2014) reported university build-
ings to use 156% more energy than initially predicted, an average 
based on 13 individual studies. This percentage is, however, not 
supported by Knight et al. (2008) and Diamond et al. (2006) who 
report a difference of only 8 and 22% for university buildings, 
respectively. Similarly, Ruyssevelt (2014) reported schools to use 
37% more energy than initially predicted, based on an average 
of 58 individual studies, whereas Pegg et al. (2007) and Kimpian 
et al. (2014) report much higher average percentages of 117% (3 
schools) and 71% (5 schools), respectively.

Figure 3 shows that the number of case studies for the dif-
ferent building functions is not well distributed, the dataset 
consists mainly of offices, schools, and multipurpose buildings. 
Although the sample size is small, analysis indicates that schools 
generally consume more energy than predicted, which is likely 
due to underspecified assumptions for equipment and occupancy 
hours. The discrepancies for offices are much more variable with 
an average of +22% and SD of 50%.

Most studies use compliance modeling with the inclusion of 
equipment energy use, and use model calibration to further under-
stand the underlying causes of a difference. It therefore remains 

unclear how significant the energy performance gap would be 
when performance modeling is compared with measured energy 
use. Although it should theoretically reduce a discrepancy by 
taking into account unregulated factors, the underlying causes 
that impact measured energy use might be very erratic and 
unmanageable, still leaving a significant gap in place.

Underlying Causes
A building energy model represents the speculative design of a 
building and is a simplification of reality. It is therefore important 
to quantify to what degree it is imperfect (Manfren et al., 2013). 
In Figure 4 an overview is given of all the underlying causes of 
the performance gap existent in the different stages of the build-
ing life cycle according to Royal Institute of British Architects’ 
(RIBA) plan of work (RIBA, 2013) and drawn in relation to an 
S-curve visualization of building performance proposed by Bunn 
and Burman (2015). The S-curve model allows for the transient 
and unstable nature of building performance during design stages 
and early stages of operation before the building reaches steady 
operation and can help visualize performance issues. These 
performance issues are identified as underlying causes of the 
energy performance gap, some directly related to the regulatory 
performance gap, whereas others are more applicable to the static 
performance gap, such as the simplification of system design in 
modeling. These issues are discussed and qualitatively analyzed 
to understand their importance.

Addressing every available source will help in assessing evi-
dence on the impact of these issues; therefore, it is also useful to 
look at domestic experiences in this area.

Limited Understanding of Impact of  
Early Design Decisions
During the early design stage, there is a lack of focus and 
understanding on the energy implications of design decisions 
(ZCH, 2014a,b). Choices, such as form, orientation, materials, 
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FiGURe 4 | Underlying causes existent in different RiBA stages [adapted from RiBA (2013)] and S-curve visualization of performance throughout the 
life cycle [adapted from Bunn and Burman (2015)].
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use of renewables, passive strategies, innovative solutions, and 
others, should be critically addressed during the concept design. 
Uncertainty and sensitivity analysis that determine the impact of 
design parameters can guide the design process through identi-
fying and preventing costly design mistakes before they occur 
(Bucking et al., 2014). The impact of such an issue can be highly 
dependent on the project team and is likely to influence various 
aspects of the energy performance of the building.

Complexity of Design
Complexity of design can introduce problems during building 
construction, affecting building performance. For example, 
mistakes in construction become more frequent and complex 
systems are less well understood (Bunn and Burman, 2015). 
Simplicity should be the aim of the design as many of the 
underlying issues are related to the complexity of the building 
(Williamson, 2012).

Uncertainty in Building Energy Modeling
In the detailed design stage, building energy modeling requires 
a high level of detail in order predict energy use of a building. 
Myriad parameters with a certain level of uncertainty can have a 
large effect on the final performance due to the aggregated effect 
of uncertainties. Among uncertainties in design, those related 
to natural variability, such as material properties are relatively 

well covered (de Wit and Augenbroe, 2002). Other uncertainties 
are less well understood and need a strong basis for research to 
be established in modeling procedures. Investigation toward 
well-defined assumptions can assist in more accurately and 
confidently predict performance of a building (Heidarinejad 
et  al., 2013). Different sources of uncertainty exist in the use 
of building simulation. de Wit (2001) classified specification, 
modeling, numerical, and scenario uncertainties, where heuristic 
uncertainty has been added to describe human-introduced errors 
as reported by Kim and Augenbroe (2013).

Specification Uncertainty
Specification uncertainty arises from incomplete or inaccurate 
specification of the building or systems modeled. This refers to 
the lack of information on the exact properties and may include 
model parameters, such as geometry, material properties, 
HVAC specifications, plant and system schedules, and casual 
gains. Parameters related to specification uncertainty are often 
“highly unknown” during the early design stage and can have a 
large effect on the predicted energy use, assumptions for such 
parameters are often not representative of actual values in opera-
tion. For example, Burman et al. (2012) identified that the values 
assumed for specific fan powers were often much lower than in 
operation. Similarly, Salehi et al. (2013) identified that underlying 
equipment and lighting loads were significantly underestimated.
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Modeling Uncertainty
Modeling uncertainty arises from simplifications introduced in 
the development of the model. These include system simplifica-
tion, zoning, stochastic process scheduling, and also calculation 
algorithms. Wetter (2011) asserts that mechanical systems and 
their control systems are often so simplified that they do not cap-
ture dynamic behavior and part-load operation of the mechanical 
system or the response of feedback control systems. This is further 
supported by Salehi et al. (2013) who were unable to model the 
unconventional heating system of a building in utilized modeling 
software, which may lead to wrong performance prediction. Also, 
Burman et al. (2012) found that pumps’ auxiliary power could not 
be modeled for compliance purposes and had to apply default 
values based on HVAC system type. Such tool limitations are 
extensively reported and contrasted and also highlight that cer-
tain systems and its configurations are not supported by building 
simulation software (Crawley et al., 2005).

Numerical Uncertainty
Errors introduced in the discretization and simulation of the 
model. Neymark et al. (2002) performed a comparative analysis 
of whole-building simulation programs and found that promi-
nent bugs and faulty algorithms caused errors of up to 20–45% in 
predicting energy consumption or COP values.

Scenario Uncertainty
Uncertainty related to the external environment of a system and its 
effects on the system. The specification of weather, building opera-
tion, and occupant behavior is in the design model. Accuracy of 
design weather data can have a large effect on the predicted energy 
performance of a building. According to Bhandari et al. (2012), the 
predicted annual building energy consumption can vary up to 7% as 
a function of the provided location’s weather data. While Wang et al. 
(2012a) showed that the impact of year-to-year weather fluctuation 
on the energy use of a building ranges from −4 to 6%. Knowing 
the uncertainty of related microclimate variables is necessary 
to understand its impact on energy prediction (Sun et al., 2014). 
Similarly, occupants are an uncertainty external to the system and 
play a major role in the operation of a building. Occupants operate 
the building through adjusting lighting levels, operate electrical 
devices, open windows, and possibly control HVAC operations. In 
design calculations, occupancy is normally accounted for through 
a fraction profile, which determines their presence in the model 
and separately determines when they can operate building equip-
ment. This profile is simplified by taking the average behavior of the 
occupants, and therefore, neglects temporal variations and atypical 
behavior (Kim and Augenbroe, 2013). Furthermore, occupant 
effects are related to specification uncertainty through assumed 
base loads (e.g., lighting and equipment), which make it difficult to 
determine how occupant profiles or wrong base load assumptions 
impact the energy performance. Murphy and Castleton (2014) 
identified lower lighting energy use than predicted in their case 
study building due to unanticipated unoccupied hours.

Heuristic Uncertainty
Human-introduced error is in the form of modeler’s bias or 
mistakes. User errors are inevitably quite common due to the 

complexity of building energy simulation and its tools, these 
errors range from modelers setting up a building system in 
different ways, forgetting to correctly apply operation or 
occupancy profiles to the correct zones or can be related to 
geometry creation. Some of these errors can have a negligible 
effect on the predicted energy use, whereas others can signifi-
cantly change the final outcome. Guyon (1997) investigated 
the influence of 12 energy modelers on prediction of energy 
consumption of a residential house and found a 40% variabil-
ity in their final predictions. A similar observation was made 
by the building research establishment (BRE) where 25 users 
predicted the energy consumption of a large complex build-
ing and found that their results varied from −46 to +106% 
(Bloomfied, 1988). Although these studies show significant 
differences, not much evidence is available to further support 
these results.

Inter-Model Variability
Energy use prediction is performed using different tools, devel-
oped in different countries, for different reasons and as such 
introduce variability in the results when modeling the same 
building, i.e., inter-model variability. This is directly related to 
uncertainties in building energy simulation; model simplifica-
tion, user error, and numerical uncertainties will drive the 
variability between different tools. These tools are utilized for the 
purpose of building performance prediction and thus have to give 
credible and relatively accurate results. Raslan and Davies (2010) 
compared 13 different accredited software tools and highlight a 
large degree of variability in the results produced by each of the 
tools and consistency in achieving compliance with the build-
ing regulations for the same building. In a more recent study, 
Schwartz and Raslan (2013) performed an inter-model compara-
tive analysis of three different dynamic simulation tools using a 
single case study and found a 35% variability in the total energy 
consumption. Similarly, Neymark et al. (2002) compared seven 
different tools and indicated a 4–40% disagreement in energy 
consumption.

On-site Workmanship
As building regulations become more stringent and new tech-
nologies are introduced, the quality of construction has to be 
improved. On-site workmanship needs to adapt and be trained 
to these increasing levels of complexity in building construction. 
New skills such as extreme air tightness for limiting air infiltration 
give rise to performance issues as air tightness is compromised 
during construction by discontinuous insulation or punctured 
airtight barriers (Williamson, 2012), whereas Olivier (2001) 
reports that UK figures for construction U-values are optimistic. 
Installation of services, such as drainage, air ducts, and electri-
cal pipe work, can often leave gaps that also reduce air tightness 
and induce thermal loss (Morant, 2012). Other common issues 
related to on-site workmanship are eaves to wall junction insula-
tion, incorrect positioning of windows and doors that reduce 
the actual performance of the thermal envelope (ZCH, 2014a,b). 
These issues are more prone to affect the energy performance in 
domestic buildings, where usually the performance of the thermal 
envelope is more significant.

http://www.frontiersin.org/Mechanical_Engineering/archive
http://www.frontiersin.org/Mechanical_Engineering/
http://www.frontiersin.org


January 2016 | Volume 1 | Article 178

van Dronkelaar et al. Review of the Performance Gap

Frontiers in Mechanical Engineering | www.frontiersin.org

Changes after Design
During building design and construction, often products or 
changes are value engineered, affecting building performance, 
while not being fed back to the design team for evaluation 
against the required performance standard (ZCH, 2014a,b). 
These changes can occur due to site constraints, not well thought 
of integration of design modules problems with detailing and 
budget issues. Morant (2012) reported inconsistencies between 
design specified and installed lighting loads in an office, which 
had a considerable impact on the discrepancy between predicted 
and measured electricity use. Good communication and coordi-
nation by the contractor are essential to prevent changes in design 
changes to influence the energy performance.

Poor Commissioning
When a building is constructed, it is handed over, a separate stage 
that includes the installation and commissioning of building ser-
vices, done poorly this results in reduced system efficiency and 
compromising the air tightness and ventilation strategies. Piette 
et al. (1994) and Pang et al. (2012) reported poor commissioning 
of control measures, which were not set up for proper control, and 
operation. Kimpian et al. (2014) identified that inverters for sup-
ply and extract fans were provided to AHUs but were not enabled 
during commissioning, resulting in fans operating at maximum 
speed at all times. In operation, such issues persist and require 
continuous commissioning.

Poor Practice and Malfunctioning Equipment
The actual operation of a building is idealized during design by 
making assumptions for temperature set-points, control sched-
ules, and general performance of HVAC systems. In practice, 
however, it is often the case that many of these assumptions deviate 
and directly influence a building’s energy use. Kleber and Wagner 
(2007) monitored an office building and found that failures in 
operating the building’s facilities caused higher energy consump-
tion, and they underline the importance of continuous monitor-
ing of a building. Wang et al. (2012a) showed that poor practice 
in building operations across multiple parameters results in an 
increase in energy use of 49–79%, while good practice reduces 
energy consumption by 15–29%. Piette et al. (1994) suggest that 
building operators do not necessarily possess the appropriate 
data, information, and tools needed to provide optimal results. 
As such, operational assumptions made in the design stage may 
not be met by building operators (Moezzi et al., 2013).

Occupant Behavior
Another dynamic factor for a building in-use is occupants. They 
have a substantial influence on the energy performance of a build-
ing by handling controls, such as those for lighting, sun shading, 
windows, set-points, and office equipment, and also through their 
presence, which may deviate from assumed schedules. People 
are very different in their behavior through culture, upbringing 
and education, making their influence on energy consumption 
highly variable. One of the major factors that has been reported to 
have a large influence on the discrepancy between predicted and 
measured energy use is the issue of night-time energy use related 
to leaving office equipment on (Kawamoto et al., 2004; Masoso 

and Grobler, 2010; Zhang et  al., 2011; Mulville et  al., 2014), 
this can be both related to occupant behavior (not turning off 
equipment) and assumptions for operational schedules, extended 
working hours not taken into account in the design model. In 
an uncontrolled environment (not extensively monitored), it is 
impossible to determine how one or the other is influencing the 
discrepancy. Azar and Menassa (2012) investigated 30 typical 
office buildings and found that occupancy behavioral parameters 
significantly influence energy use. Parys et al. (2010) reported a 
SD of up to 10% on energy use to be related to occupant behavior. 
A more significant value is reported by Martani et al. (2012) who 
studied two buildings and found a 63 and 69% variation in elec-
tricity consumption due to occupant behavior. Using modeling, 
Hong and Lin (2013) investigated different work styles in an office 
space and found that an austere work style consumes up to 50% 
less energy, whereas a wasteful work style consumed 90% more 
energy than typical behavior. Such work styles were defined by 
modeling parameters for schedules and loads that people have 
an influence on.

Measurement System Limitations
Similar to predicting energy use using building energy models, 
metered energy use obtained from measurement systems needs 
to be validated to ensure accuracy of the data. Limitations of 
measurement systems make adequate assessment of energy 
use inaccurate (Maile, 2010). For energy measurement system, 
the accuracy is the sum of all its components and has an error 
percentage of up to about 1% (IEC, 2003). For monitoring envi-
ronmental variables, typical sensor accuracies lie within 1–5% for 
normal operating conditions, whereas incorrectly placed sensors 
will have increased levels of error (Maile et al., 2010). Most com-
mon sources are calibration errors, or the absence of calibration 
(Palmer and Armitage, 2014). Fedoruk et  al. (2015) identified 
that system measurements were not accurately representing its 
performance due to mislabeling, incorrect installation, and not 
being calibrated. They report that simply having access to large 
amounts of data may actually result in more confusion and 
operational problems.

Longitudinal Variability in Operation
Finally, commonly the energy performance gap is generally 
assessed for a year of measured data. However, longitudinal 
performance is affected by factors such as building occupancy, 
deterioration of physical elements, climatic conditions, and 
building maintenance processes and policies (de Wilde et  al., 
2011). Brown et al. (2010) present a longitudinal analysis of 25 
buildings in the UK and found an increase of 9% in energy use on 
average per year over 7 years, with a SD of 18%. Similarly, Piette 
et al. (1994) analyzed 28 buildings in the US and found an average 
increase of 6% between the third and fourth year, with no average 
increase during the fifth year. Thus, a longitudinal variability in 
operational energy use has to be taken into account when inves-
tigating the energy performance gap. It should be noted here that 
longitudinal variability can be related to many of the previous 
factors mentioned; also, sometimes such increase in energy use 
is related to an expected increase of equipment loads or changes 
in building function.
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TABLe 3 | Potential risk on energy use from reported underlying causes assessed based on general consensus in the literature.

Underlying cause evidence from 
literaturea

Rated impact on 
energy use

estimated quantitative  
effect on energy use

Compliance 
modeling related

Context Energy performance target Low High Yes

Impact of early design decisions Medium High

Complexity of design Low Medium

Model Specification (geometry, material, equipment) High High 20–60% Yes

Modeling (simplification) Medium Medium <10% Yes

Numerical (discretization) Low Low <5%

Scenario (weather, schedule, operation) High Medium 10–30% Yes

Heuristic (user) Low High <70%

Inter-model variability Medium Medium 5–40%

Construction On-site workmanship Medium Low

Changes after design Low Low

Commissioning Poor commissioning Medium Medium <20%

Operation Poor practice in operation High High 15–80%

Occupant behavior High High 10–80%

Degradation of system and materials Low Low <10%

Measurement system limitation Low Low <10%

Energy use variability in operation Low Medium 5–15%

aBased on the number of mentions in the literature and their consensus of the impact on performance.
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Assessing the Underlying Causes
All of these causes combined can have a large influence on the 
final energy performance of a building. Table  3 shows a risk 
matrix that defines the potential-associated risks of the discussed 
underlying causes based on general consensus in the literature. 
An overview of several of the reviewed case studies and their 
reported underlying reasons for a discrepancy are given in the 
Supplementary Material.

Important underlying causes identified in the literature are 
those that a high impact and high evidence rating. These are 
specifically related to specification uncertainty in building mod-
eling, occupant behavior, and poor practice in operation, with 
an estimated effect of 20–60, 10–80, and 15–80% on energy use, 
respectively. Other important factors that are likely to have a high-
rated impact are the energy performance target, impact of early 
design decisions and heuristic uncertainty in modeling.

An assessment of the underlying causes of the energy perfor-
mance gap has shown that there is a need for both action and 
further research to be undertaken. Detailed building prediction 
methods and post-occupancy evaluation have proven to be 
essential in the understanding of building assumptions, occupant 
behavior, systems, and the discrepancy between predicted and 
measured energy use.

ReDUCiNG THe eNeRGY  
PeRFORMANCe GAP

A major concern in the built environment is the segmentation of 
disciplines involved in the building life cycle stages. Traditionally, 
designers, engineers, and contractors are all involved in the 
building development process, but leave once the building is 

physically complete, leaving the end-users with a building they 
are unlikely to fully understand. The design community rarely 
goes back to see how buildings perform after they have been con-
structed (Torcellini et al., 2006). Feedback mechanisms on energy 
performance are not well developed, and it is generally assumed 
that buildings perform as designed, consequently there is little 
understanding of what works and what does not, which makes 
it difficult to continuously improve performance (ZCH and 
NHBC Foundation, 2010). Gathering more evidence on both the 
performance gap and its underlying issues can support feedback 
mechanisms and prioritize principle issues. For this, the primary 
requirement is the collection of operational performance data, 
which can be fed back to design teams to ensure lessons are learnt 
and issues are avoided in future designs. It can help policy-makers 
understand the trend of energy use and support the development 
of regulations. Finally, operational data are valuable to facilities 
management in order to efficiently operate the building. This 
feedback process is illustrated in Figure 5.

Legislative Frameworks
Recently, the UK department of Energy and Climate Change 
introduced the energy-saving opportunity scheme (ESOS) in 
order to promote operational management in buildings. A 
mandatory energy assessment to identify energy savings in cor-
porate undertakings that either employ more than 250 or have 
an annual turnover in excess of ~38 million pounds (50 million 
Euros). An assessor should calculate how much can be saved from 
improved efficiency. How these savings are predicted is, however, 
left open and could entail simple hand calculations instead of 
the more detailed dynamic thermal simulations. Furthermore, 
implementing proposed energy savings is voluntary. In the same 
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context, energy performance contracts are legally binding a third 
party for predicted savings to be realized, otherwise equivalent 
compensation needs to be provided. It thus becomes important 
to make accurate predictions of energy-saving measures as their 
reliability directly influences the profit of the businesses providing 
these contracts. Therefore, building energy modeling is normally 
applied in order to take into account all aspects of energy use. 
Typically, performance modeling is supported by measured data 
to make such predictions. The EU energy efficiency directive calls 
for a need to remove regulatory and non-regulatory barriers to 
the use of energy performance contracting to stimulate its use as 
an effective measure to improve efficiency of the existing building 
stock (European Parliament and Council, 2012).

For new buildings, regulatory limits become ever more 
stringent in order to mitigate climate change. Evidently, these 
regulatory limits are not achieved in practice, which can foster 
a lack of confidence in simulation and may soon be met by legal 
and financial implications (Daly et al., 2014). Burman et al. (2014) 
propose a framework that would enable effective measurement 
of any excess in energy use over the regulatory limit set out for a 
building. This excess in energy use could cause disproportionate 

environmental damage and it could be argued that it should be 
charged at a different rate or be subject to an environmental 
tax. Kimpian et  al. (2014) suggest mandating the disclosure of 
design stage calculations and assumptions as well as operational 
energy use outcomes in building regulations, such data would sig-
nificantly support the understanding of the energy performance 
gap. Furthermore, addressing all aspects of energy use beyond 
regulated energy use for compliance purposes would resolve the 
regulatory performance gap. However, such changes would make 
it difficult for regulators to assess energy efficiency of buildings 
under standardized conditions. Governments continue to face the 
difficult task of balancing the principal of not interfering in the 
affairs of businesses with the recognition of serious consequences 
of energy waste and climate change (Jonlin, 2014).

Data Collection
Accessible meter data are mandatory to confirm that buildings 
really do achieve their designed and approved goals (UKGBC, 
2007). In the European Union, automatic meter readings (AMR) 
are now widely used to record such data sub-hourly. However, a 
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lack of meter data is likely to lead to a progressive widening of 
the gap between predicted and measured energy use (Oreszczyn 
and Lowe, 2009). Energy performance data can be used by design 
teams to enable them to deliver better designs, clients to enable 
benchmarking and develop a lower carbon building brief, build-
ing users to drive change and management in operation, policy-
makers to target plans and incentives and monitor the trend of 
energy use (Government HM, 2010). To this end, sub-metering is 
now mandatory in the UK for new builds. It is common, however, 
to find meters installed, but not properly commissioned and 
validated, which can make data futile (Austin, 2013). Without 
data collection there would be no feedback loop to inform future 
policy and regulation (ZCH, 2010).

Data itself do not solve any of the underlying issues of the 
energy performance gap as it is not directly visible how a build-
ing is working. It needs to be clear what this data represent. The 
issue of determining where errors exist between measured and 
simulated performance is simple when using monthly or diurnal 
plots. At hourly levels, many of the traditional graphical tech-
niques become overwhelmed with too many data points, making 
it difficult to determine the tendency of black clouds of data 
points (Haberl and Bou-Saada, 1998; Coakley et al., 2011). Tools 
to support intuitive visualization are needed to disaggregate and 
display energy uses at detailed levels (building, sub-zone, system) 
and for different time granularity (yearly, monthly, weekly, and 
sub-hourly) comparing predicted and measured energy use tak-
ing a longitudinal approach.

Design improvements
Negating the performance gap starts at the beginning of a project. 
At this point, it is important to set a stringent energy performance 
in-use target, which can assist in a more rigorous review of sys-
tem specifications and operational risks (Kimpian et al., 2014). 
With such in-use expectations, it becomes necessary to carry 
out performance modeling, validate assumptions made in the 
building model, make sure that building fabric is constructed 
to a high standard, systems are properly commissioned and that 
the building is operated as efficiently and effectively as possible. 
Making an accurate prediction of building energy performance 
then becomes an integral part of the design process. A building 
design, however, is based on thousands of input parameters, often 
obtained from guidelines or building regulations, some of which 
have extensive background research, while others are only best-
guess values. In particular, during the early design stage, these 
values have a major influence on the design and its final perfor-
mance. Pegg et al. (2007) argue for the use of feedback to inform 
design and need for realistic and relevant benchmarks. Mahdavi 
and Pröglhöf (2009) suggest the collection of occupancy behavior 
information to derive generalized models and utilize such models 
in building energy simulation. Capturing user-based control 
actions and generalizing these as simulation inputs can provide 
more accuracy in performance modeling predictions, and ide-
ally such results are fed back to improve compliance modeling 
processes as well. Menezes et  al. (2012) used basic monitoring 
results to feed into energy models in order to gain a more accurate 
prediction of a building’s actual performance (within 3% of actual 
consumption for a specific study). Similarly, Daly et  al. (2014) 

showed the importance of using accurate assumption in building 
performance simulation, and identified the risks associated with 
such assumptions. They examined the sensitivity of assumptions 
on predicted energy use by using high and low assumptions and 
found that payback periods of simple retrofits could vary by 
several years depending on the simulation assumptions used.

Continuous feedback can improve the design process and 
more accurately predict actual in-use performance. Such pre-
dictions can be further supported by introducing well-defined 
uncertainties in design, improving the robustness of the building 
design, reliability of energy simulation, and enable design deci-
sion support, in particular when supported by sensitivity analysis 
(Hopfe and Hensen, 2011).

Training and education
Often the real performance of building elements are underesti-
mated, as they are taken from lab tests and omit, for example, 
the occurrence of thermal bridging during construction, which 
are more common with a higher design complexity. During con-
struction, robust checking and testing is necessary to ensure that 
the quality of construction is maintained (Morant, 2012). Clear 
guidance on thermal bridging should therefore be provided to the 
construction industry (ZCH, 2014a,b). Training and education are 
needed to increase skills in the construction industry and ensure 
better communication and quality of construction. Similarly, 
training and education should be enhanced for facility managers, 
to more strictly perform maintenance and operation of buildings. 
Whereas in the design stage, it is important to create awareness 
to energy modelers of the energy performance discrepancy, while 
promoting skills, innovation, and technological development in 
order to deal more appropriately with creating a robust design.

Operational Management
After construction of a building, its systems are commissioned in 
order to perform as expected. However, post-occupancy evalu-
ation has shown that this is often poorly done and that there is 
a lack of fine-tuning during operation (Kimpian et  al., 2014). 
Frequent re-commissioning exercises can help maximize the 
efficiency of building services, avoiding unnecessary energy use 
(Morant, 2012). For guidance in this process, the soft landings 
framework was developed in order to provide extended after-
care, through monitoring, performance reviews and feedback. 
Aftercare and professional assistance are required as technologies 
and solutions made during the design often prove too compli-
cated to be manageable (Way et al., 2014). Continual monitoring 
of the performance during operation is thus important in order to 
ensure that design goals are met under normal operating condi-
tions (Torcellini et al., 2006). It is essential that facilities managers 
take ownership of energy consumption in buildings as they have 
detailed information of operational issues (CIBSE, 2015).

When a building is in-use, a discrepancy between predicted 
and measured energy use can be identified by representing the 
operation using advanced and well-documented simulation tools. 
A calibrated energy model can pinpoint differences between how a 
building was designed to perform and how it is actually functioning 
(Norford et al., 1994), this can then allow operational issues to be 
identified and solved, assisting facilities managers in the operation 
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of their building. Furthermore, it can be used to assess the feasibil-
ity of energy conservation measures (ECMs) through forecasting 
energy savings (Raftery et al., 2011). However, model calibration 
intends to compensate errors that can mask modeling inaccuracies 
at the whole-building level (Clarke, 2001). A well set up methodol-
ogy should therefore be established. Maile et al. (2012) developed 
such a method using a formal representation of building objects to 
capture relationships between predicted and measured energy use 
on a detailed level and were able to identify and solve operational 
issues. Raftery et al. (2011) argue that these calibration methods 
improve the quality of future models by identifying common 
mistaken assumptions and by developing best-practice modeling 
approaches. Reliability and accuracy of calibrated models depend 
on the quality of measured data used to create the model as well 
as the accuracy and limitation of the tools used to simulate the 
building and its systems (Coakley et al., 2012). In addition, there 
are often many constraints to going back to the building in order 
to make it more efficient, such as cost, reputational concerns, and 
liability (Robertson and Mumovic, 2013). A review of and meth-
odology for calibration techniques are presented by Coakley et al. 
(2014) and Raftery et al. (2011), respectively.

CONCLUSiON

Predicted and measured energy use have been shown to devi-
ate significantly, also termed “the performance gap.” This paper 
classifies this gap as either a regulatory, static, or dynamic per-
formance gap. Their differences are explained by the underlying 
approach taken to predict energy use and its comparison with 
measured energy use. The significance of the regulatory energy 
performance gap and its underlying causes have been analyzed:

•	 From 62 case study buildings, the average discrepancy between 
predicted and measured energy use is +34%, with a SD of 55%. 
These studies include a prediction of equipment energy use.

•	 The most important underlying causes identified in the 
literature are specification uncertainty in building modeling, 
occupant behavior, and poor practice in operation, with 
an estimated effect of 20–60, 10–80, and 15–80% on energy 
use, respectively. Other important factors are the energy 
performance target, impact of early design decisions, heuristic 
uncertainty in modeling.

Understanding and mitigating differences between predicted 
and measured energy use require an expansion of research efforts 
and focus on underlying causes that have a medium to high 
impact on energy use. Detailed energy audits and model calibra-
tion are invaluable techniques in order to quantify these causes. 
Furthermore, tools are necessary to support intuitive visualization 

and data disaggregation to display energy uses at detailed levels 
and for different time granularity comparing predicted and meas-
ured energy use taking a longitudinal approach. To successfully 
reduce the energy performance gap, key measures for further 
work and research by the building industry need to be established:

 (1) Accessible energy data are required for a continued gathering 
of evidence on the energy performance gap, and this can be 
established through collaborative data gathering platforms, 
such as CarbonBuzz.

 (2) Legislative frameworks set limits for predicted performance 
and penalize buildings for high operational energy use. More 
effectively, however, governments should relate predicted to 
measured performance through predictive modeling and in-
use regulation. Furthermore, it should consider mandating the 
disclosure of design stage calculations and assumptions as well 
as operational energy use outcomes in building regulations.

 (3) Monitoring and data analysis of operational building per-
formance are imperative to driving change and management 
in operation. While well-defined assumptions need to be 
established through detailed calibration studies identifying 
the driving factors of energy use in buildings.
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