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This research presents a numerical simulation of an unsteady two-dimensional channel
flow of Newtonian and some non-Newtonian fluids using the finite-volume method.
The walls of the geometry oscillate sinusoidally with time. We have used the Cartesian
curvilinear coordinates to handle complex geometries, i.e., arterial stents and bulges and
the governing Navier–Stokes equations have been modified accordingly. Physiological
pulsatile flow has been used at the inlet to characterize four different non-Newtonian
models, i.e., the (i) Carreau, (ii) Cross, (iii) Modified Casson, and (iv) Quemada. We have
presented the numerical results in terms of wall shear stress (WSS), pressure distribution
as well as the streamlines and discussed the hemodynamic behaviors for laminar and
laminar to turbulent transitional flow conditions. An increase of wall shear stress and
a decrease in wall pressure are significantly observed at the stenosis throat for high
Reynolds number and highly stenosed arteries. Likewise, the flow recirculation also
increases if the narrowing level and the Reynolds number increases in the dilated region
which eventually leads the stream to experience a transition to turbulence at Re=750.
The results for the fluid flow through an aneurysm just after a stenosis with oscillating wall
are novel in the literature.

Keywords: physiological pulsatile flow, non-Newtonian fluids, moving arterial wall, aneurysm, finite-volume
method

1. INTRODUCTION

Atherosclerosis, an arterial disease, is defined as a focal, inflammatory fibro proliferative response
to multiple forms of endothelial injury (George and Johnson, 2010). In atherosclerosis, deposits
and accumulation of lipid compounds and cholesterol, as well as a generation of connective tissues,
originate a partial decrease in the arterial cross-sectional area; which is called stenosis. On the other
hand, an aneurysm is illustrated as circumscribed dilation of an artery emerging from a procured or
congenital debility of the arterial wall. Moreover, an abdominal aortic aneurysm (AAA) is observed
when an abnormal ballooning occurs in the abdominal aorta (Deplano et al., 2007). Atherosclerotic
lesions essentially are seen in arterial segments with high curvature or bifurcations and junctions
initiating notable alterations in flow structure (Berger and Jou, 2000). Although the actual reasons
behind this phenomenon are still not fully uncovered, it has been confirmed that once amild stenosis
forms, the resulting flow disturbance plays a vital role in the further evolution of the disease (Moayeri
and Zendehbudi, 2003). However, the seriousness of the disease has been taken into account with
importance since it has increased the rate of mortality in the developed countries during the last few
decades.

The degree of constriction highly influences the flow pattern through the diseased artery, and
many researchers have studied this phenomenon. Tu et al. (1992) performed a finite element
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numerical simulation considering steady and pulsatile blood flow
for various constriction levels and Reynolds numbers in the artery
with a rigid wall. Reducing the arterial area by 25, 50, and 75%
and taking physiological inlet condition of the blood flow into
consideration, Long et al. (2001) performed a numerical simu-
lation of pulsatile blood flow in straight tube stenosis models.
Again, comparison of numerical results for simple pulsatile and
physiologically pulsatile flow through a 61% stenosed artery was
made by Zendehbudi and Moayeri (1999) in an axisymmetric
rigid tube.

Tu and Deville (1996) performed finite element simulations
considering physiological pulsatile flow through a severe stenosis
where they usedHerschel–Bulkleymodel and considered the non-
Newtonian property of blood. They illustrated the results for both
steady and pulsatile flow conditions in terms of velocity profiles,
formation and propagation of recirculation zones, pressure distri-
bution in the stent, wall shear stress and the vorticity contours.
Comparison between various viscosity models along with the
Newtonian model was carried out by Razavi et al. (2011). They
concluded that if the degree of stenosis increases, the flowbecomes
more disturbed in the downstream of the stenosis andWSS devel-
opment becomes remarkable at the stenosis throat. An analytical
study of the unsteady and incompressible flow of micropolar non-
Newtonian fluid in a stenosed artery was investigated by Ellahi
et al. (2014) where they found that increasing stenosis height
causes the flow impedance to increase. Upadhyay et al. (2012)
also presented a mathematical model of two-phase blood flow in
arteries remote from the heart. They transformed the Campbell-
Pitcher two phasemodel into biofluidmechanical setup. They also
measured the rate at which the wall pressure decreases along the
stenosis.

Karimi et al. (2013) developed a 3Dmodel of a common carotid
artery with axisymmetric stenosis and illustrated comparisons of
the simulation results with the experimental data to study hemo-
dynamic characteristics of the flow. They used Carreau andModi-
fied Power-lawmodel, as well as a Newtonian model to realize the
hemodynamical differences of 2D axisymmetric and 3Dmodels in
pulsatile blood flow. They found a nonsymmetric flow in the post-
stenosis region due to the presence of extensive secondary flows
particularly at diastole that can only be detected in 3Dmodeling.
However, Harloff et al. (2013) alsomade a 4D imaging to study the
flow velocity inside a stenosed artery.Moreover, some researchers,
including Saleem et al. (2014), have made a notable contribution
in the field of blood flow simulation in stenosed arteries in recent
years.

Similarly, many researchers paid attention studying the hemo-
dynamics in aneurysms, another cardiovascular disease, andmade
successful contributions. The numerical simulation of an arterial
aneurysm was initially done by Perktold (1986) who examined
the pulsatile blood flow by incorporating the paths of single
particles in an axisymmetric aneurysm. The simulation provided
visualization of the progress, transition, and disappearance of
vortices. Later, Kumar andNaidu (1996) numerically analyzed the
nonlinear axisymmetric pulsatile blood flow dynamics in rigid
vessels with varying degrees of an aneurysm. Then, Kumar and
Naidu (1996) numerically examined the pulsatile blood flow in
a rigid vessel with several degrees of axisymmetric aneurysms.

They observed unsteady recirculation zones that may degrade
the blood cells. High shear stresses were also observed near the
ends of the aneurysm that might be a reason for the generation
of stents in the downstream regions of the aneurysm. Egelhoff
et al. (1999) experimented the pulsatile flow in AAAs of both
axisymmetric and asymmetric geometries, whereas Yip and Yu
(2001) investigated the transition to turbulence in pulsatile AAA
flows.

Volokh and Vorp (2008) were the first researchers to develop a
mathematical model that coupled both the development and the
rupture of the AAA where they provided reasonable qualitative
results showing possible AAA ruptures. Zhang et al. (2009) stud-
ied the hemodynamics of internal carotid artery vessels with an
aneurysm and created a 3-dimensionalmathematicalmodel based
onComputed TomographyAngiography (CTA). They used lattice
BGK model to study the hemodynamics of a partially dilated
internal carotid artery. Paramasivam et al. (2010) developed a
code to facilitate the diagnosis and treatment of AAAs.

Many investigations have been done unveiling various new
aspects including the hemodynamic parameters in dilated vessels
by many researchers during past few years. Various hemody-
namic factors have been examined under pulsatile Newtonian
flow condition in an asymmetrically shaped aneurysm by Shupti
et al. (2013). Otani et al. (2013) done simulation and investigated
hemodynamics in differently positioned aneurysms coiled at vari-
ous packing densities to determine the flow stagnation. Berg et al.
(2014) conducted an interesting research comparing the efficiency
ofCFDand4Dmagnetic resonance imaging technique to visualize
the hemodynamics of a two aneurysm model and concluded that
CFD could predict accurately intracranial velocities for practically
used geometries when boundary conditions are given.

Blood flow through a stenosed artery may show unusual flow
behaviors and generate forces on the plaque surface and arterial
walls as well. Tian et al. (2013) numerically simulated pulsatile
flow of non-Newtonian models past a stenosed artery with sev-
eral degrees of severity. Disturbances in the flow domain like
the atherosclerotic diseases affected the magnitudes of WSS, wall
shear stress gradient (WSSG), etc., on both walls but the lower
wall was found to experience substantially greater WSSG. Again,
Su et al. (2014) modeled blood flows in normal and diseased
arterial branches and compared results to illustrate the blood flow
behaviors regarding different hemodynamic parameters.Only sig-
nificant stenosis (≥75% area reduction) altered the pressure fields
and flow rate in the branches and at each bifurcation.

Rabby et al. (2014) studied the Newtonian laminar fluid flow
in an axisymmetric stenosis for the Reynolds number Re= 300
with a mild oscillating wall. Later on, Shupti et al. (2015) have
investigated the non-Newtonian fluid flow behavior through a
single stenosis of maximum 60% area reduction with moving
wall. In the presence of a single stenosis, for the higher Reynolds
number, the flow becomes asymmetric that leads them to do
further studies couples with stenosis and aneurysm.

The aim of this paper is to study the hemodynamic scenario
inside a diseased arterywhere a 100%dilated aneurysm takes place
at the downstream location of a constriction. The viscous effects
of various viscosity models are first compared regarding wall
pressure, wall shear stress, and streamlines. Later, a comparative

Frontiers in Mechanical Engineering | www.frontiersin.org November 2017 | Volume 3 | Article 122

http://www.frontiersin.org/Mechanical_Engineering
http://www.frontiersin.org
http://www.frontiersin.org/Mechanical_Engineering/archive


Shupti et al. Pulsatile Non-Newtonian Flows in Aneurysm

discussion is made to demonstrate the laminar and laminar to
turbulent flow transition considering Cross model of viscosity.

2. MATHEMATICAL FORMULATIONS

Physiological pulsatile flow condition is provided at the inlet,
and the simulation is done for a range of Reynolds numbers,
Re= 300, 500, and 750. The channel wall is assumed to bemoving
sinusoidally in the cross-stream direction and blood is modeled
both as isothermal Newtonian and non-Newtonian fluids for the
flow field computation. The governing momentum equations for
laminar-to-transitional time dependent pulsatile incompressible
flows are as (Tu and Deville, 1996):

∂u
∂x +

∂v
∂y = 0 (1)

ρ

(
∂u
∂t + u∂u
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where (x, y) are the dimensional coordinates and (u, v) are the
velocity components parallel to (x, y). Alsoρdenotes the density of
the fluid,µ(|γ̇|) is the shear-rate dependent viscosity and t denotes
time, p is the pressure of the fluid. Here, γ = 1

2
(
∇u + ∇uT

)
is the identity tensor and rate of deformation tensor. Moreover,
µ represents the blood viscosity and depends on deformation of
the shear rate γ and whose magnitude is |γ̇| =

√
2γ : γ. In large

arteries, the fluid can be taken as a Newtonian fluid because the
non-Newtonian effects are not significant. For example, in carotid
and femoral arteries blood behaves as Newtonian fluid where
viscosity becomes a constant (Pedley, 1994), generally denoted
by, µ∞ = 3.45× 10−3 Pa s. However, it does not exhibit a con-
stant viscosity at all flow rates and especially in small arterial
branches. Therefore, the non-Newtonian properties of blood have
also been considered in this study and the constitutive relations
are presented in Section 5 for non-Newtonian models.

We have modified the above governing equations using the
general Cartesian curvilinear coordinate that is briefly described
in the following section.

2.1. Coordinate Transformation
Thomson et al. (1974) introduced a finite difference formulation
in a transformed curvilinear coordinate system. The physical flow
domain is mapped onto a rectangular domain in the computa-
tional space. Mapping xi → ξj where Jij shows the components
of the Jacobian matrix, J, of the transformation,

Jij =
∂xi
∂ξj

(4)

|J| is the determinant of the Jacobian matrix, i.e.,

|J| =
∂xi
∂ξj

Aij, (5)

where, Aij are the components of the cofactor of the Jacobian
matrix. A is defined as

|A| = |J|J−1. (6)

Here, it is assumed that Φ= f (ξ1, ξ2, t) is a generic variable.
Then the temporal and spatial derivatives may be expressed in the
following way,
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Clearly, the equation (8) becomes,
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Here, amovingwall condition is used in the radial direction and
the streamwise coordinate (ξ1) does not depend on time. Equation
(7) can be written as,

∂ϕ
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The radial variable ξ2 is the function of time and space as,
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)
. (11)

So, the time derivative of the radial coordinate is,

∂ξ2
∂t =

ξnew2 − ξold2
dt , (12)

where, A is the amplitude of oscillation and D is the diameter of
channel. The governing equations (1)–(3) become,
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where, ξ1 and ξ2 are used to represent coordinates along x and y
directions, respectively.

3. COMPUTATIONAL GEOMETRY

Achannel has been considered as the geometry in this studywhere
a cosine-shaped stenosis exists followed by another cosine shaped
aneurysm. The geometry is shown in Figure 1A. The deformed
shape of the geometry causes the diameter of the channel, δ,
to vary along the horizontal axis [i.e., δ = δ(x)]. The height of
the channel is constant throughout the artery and is represented
as D (i.e., δ =D in the upstream and downstream regions of
the deformed segments). The constriction and the dilation are
centered at 5D and 8D downstream from the channel inlet, respec-
tively (i.e., the inlet location is at x/D=−5). The stenosis is
centered at x/D= 0.0 with a length 2D while the aneurysm is
centered at x/D= 3.0 having a length of 4D. The mathematical
formulation is given below:

y
D = 1 − fc

2

(
1 + cosxπD

)
; −D ≤ x ≤ D (16)

y
D = 1 +

fc
2

(
1 − sin xπ

2D

)
; D ≤ x ≤ 5D, (17)

where, fc = δ/D controls the height of the stenosis. For stenosis,
fc = 1/2, which gives a 50% decrease in the cross-sectional area.
For aneurysm, fc = 1, which gives a 100% expansion of the cross-
sectional area at the center of the dilation.

4. PHYSIOLOGICAL FLOW

We obtained the physiological pulsatile velocity profile from the
solution of a one-dimensional momentum equation where the
pressure gradient is expressed as the Fourier series of time. This
physiological velocity profile was first computed by Womersley
(1955) for a tube by using the pressure gradient.

The steady part of the solution of the velocity field is obtained
as:

u(y) = Ū
[
1 − 4 y

2

D2

]
. (18)

The oscillatory part of the solution takes the following form:

u(y) =
A
inω
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ρ
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)
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(√
ρ
µ inω

D
2

)
. (19)

Using the definition of Womersley number, α = D
√

ωρ
µ ,

the full solution including the steady and oscillatory part for N
harmonics can be written as:

u(y, t) = Ū
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1 − 4 y

2
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+
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MnAh2

inµα2
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cosh
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inα y
D
)
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(√

inα 1
2
) ]

ei(nωt+θn). (20)

The real part of this solution generates the physiological veloc-
ity profile at the inlet of the channel,

u(y, t) =
AD2

nµα2Dr
[coshθ1 cosθ1 sinhθ2 sinθ2 cos P

− sinhθ1 sinθ1 coshθ2 cosθ2 cos P

− coshθ1 cosθ1 coshθ2 cosθ2 sin P

− sinhθ1 sinθ1 sinhθ2 sinθ2 sin P + Dr sin P], (21)

where,

ϕ1 = α

√
n
2
y
D (22)

ϕ2 =
α

2

√
n
2

(23)

P = nωt + θn (24)

Dr = cosh2θ2 cos2θ2 + sinh2θ2 sin2θ2. (25)

A B

FIGURE 1 | (A) The schematic geometry and (B) A portion of grid system (x− y view).
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In the above equations, A0 and A are constants that correspond
to the steady and oscillatory components of the pressure gradient;
Mn, θn, and N resemble coefficients, phase angle, and the num-
ber of harmonics of the flow. Here, we are considering the first
four harmonics of the pressure pulse; so, N = 4. ω

def= 2π
T , T and

i =
√

−1 are the frequency of the pulsations, time period of a
pulsating cycle and unit imaginary number, respectively. Where,
bulk velocity, Ū depends on the Reynolds number. In the present
study, for streamwise velocity, no slip condition has been used on
the wall, but the normal velocity component changes as v = ∂ξ2

∂t .
The zero gradient condition is applied at the outlet of the artery,
where velocity gradient u and v are zero along the streamwise
direction.

5. NON-NEWTONIAN VISCOSITY MODELS

The shear rate varies over a range of 1–1200 s−1 over a car-
diac cycle in human arteries (Li et al., 2007). So, blood behaves
as non-Newtonian fluid during some instants of the cardiac
cycle. Hence, it is essential to study the non-Newtonian behav-
ior of blood to understand the hemodynamics fully. Viscosity
is constant against the shear rate in Newtonian fluids while it
has an opposite behavior for the non-Newtonian fluids. There
are four non-Newtonian viscosity models that are incorporated
into the numerical simulation. The models are summarized in
Table 1.

6. NUMERICAL METHOD

In this study, semi implicit pressure linked equation (SIMPLE)
algorithm based on the finite-volume method has been used to
solve the governing equations with collocated grid arrangements.
To discretize the diffusion and convective terms in the momen-
tum equations, a second-order accurate central difference has
been used. The transient term was discretized using a three-point

TABLE 1 | Constitutive equations of non-Newtonian models.

Model Molecular viscosity

Carreau (1972) µ(|γ̇|) = µ∞ + (µ0 − µ∞)
[
1 + (λγ̇)2

](n−1)/2

µ0 = 0.056Pa s
λ= 3.131 s
n= 0.3568

Cross (1965) µ(|γ̇|) = µ∞ + (µ0−µ∞)[
1+

(
γ̇
γc

)n]
µ0 = 0.0364Pa s
γc = 2.63 s−1

n= 1.45

Modified Casson (González
and Moraga, 2005)

µ(|γ̇|) =
(√

ηc +
√

τ0√
γc+

√
γ̇

)
ηc = 3.45×10−3 Pa s
τ0 = 2.1×10−2 kgm−1 s−2

γc = 11.5 s−1

Quemada (1978) µ(|γ̇|) = µp

(
1 − 1

2
k0+k∞

√
|γ̇|/γc

1+
√

|γ̇|/γc
ϕ

)−2

ϕ=0.45 for haematocrit
µp =1.2×10−3 Pa s
γc = 1.88 s−1

k∞ = 2.07
k= 4.33

backward difference scheme with a constant time step∆t= 10−3.
Since momentum equations are integrated over collocated grid
arrangements, Rhie and Chow (1983) interpolation scheme is
used to ensure strong pressure-velocity coupling. After discretiza-
tion the velocity equations are solved by BI-CGSTAB of Van
der Vorst (1992) solver and the Poisson type pressure correction
equation is solved by incomplete Cholesky-conjugate (ICCGS) of
Kershaw (1978) method. For the convergence of the velocity and
pressure equations, the tolerance of the residuals is considered
10−7 and 10−8, respectively.

7. CODE VALIDATION

In the present study, the present numerical results are compared
with the experimental results of Ahmed and Giddens (1983)
considering the axisymmetric pipe with steady inlet velocity.
The results are also compared with the numerical results of
Damodaran et al. (1996) in the same Figure 2. Moreover, for this
specific study, a grid independence test has also been performed
as a part of code validation.

A grid resolution test is done to find the suitable grid arrange-
ment where the numerical solution is independent of grid
size. Different combinations of grid have been chosen here for
this experimental purpose where: case 1: (x× y)= (240× 90),
Case 2: (x× y)= (300× 80) and Case 3: (x× y)= (330× 110).
The Reynolds number has been fixed at 300 where the aneurysm
is considered as 100% dilated and the stenosis as 60% constricted.
Figure 3 illustrates the comparative results of Case 1, 2, and 3
in terms of the non-dimensionalized streamwise velocity. The
velocity profiles plotted at the different axial locations and it is
seen that results do not vary significantly while varying the grid
arrangements. So, from these results it can be concluded that the
results are not grid sensitive. Therefore, Case 3 (330× 110) has
been used in all other simulations for studying the non-Newtonian
blood flow phenomena. The x− y view of a portion of the grid is
shown here in Figure 1B and it shows that the grid distribution is
remarkably refined near the upper and lower wall of the channel
to accurately resolve the wall shear stress.

The geometry plays an important role in the arterial blood flow
dynamics. Hence, disease as stenosis leading to a huge dilation
causes severe deformation of the artery and thus remarkable flow

A B

FIGURE 2 | Comparison of streamwise velocity in two different axial locations
(A) x/D= 0.0 and (B) x/D= 2.5 considering axisymmetric wall condition and
compared with the experimental results of Ahmed and Giddens (1983) and
numerical results of Damodaran et al. (1996) while Re= 500 and 75%
stenosed model.
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FIGURE 3 | Grid resolution test with respect to streamwise velocity at various axial locations, i.e., x/D= inlet, x/D=−4.0, x/D=−3.0, x/D=−2.0, x/D=−1.0,
x/D= 0.0, x/D= 1.0, x/D= 2.0, x/D=3.0, x/D= 4.0, x/D= 5.0, . . ., x/D= 14 outlet based on three grid combinations, Case 1: solid line for 240×90 control
volumes, Case 2: dashed line for 330×110 control volumes considering stenosis= 60% constricted and aneurysm= 100% dilated for Re= 300.

diversion. As a consequence, wall pressure and wall shear stress
along with streamlines experience a significant alteration in a
diseased artery. In this section, we have presented the results of
the numerical simulation of blood flow for both Newtonian and
non-Newtonian cases through a diseased arterial model. The wall
of the diseased model has been considered to be oscillating where
the maximum amplitude of oscillation, A= 3× 10−4.

8. RHEOLOGICAL BEHAVIOR IN TERMS
OF WALL SHEAR STRESS AND WALL
PRESSURE

Wall shear stress (upper-wall) distribution across a 60% stenosed
artery followed by 100% dilated arterial segment with Re= 300
is depicted in Figure 4A. The oscillating wall shear stress reaches
the highest peak at the center of the stenosis and decreases inside
the aneurysm in all viscositymodels. However, the Carreaumodel
experiences the highest magnitude while the Newtonian model
always maintains the lowest wall shear stress throughout the
artery.

Wall pressure (upper-wall) contributed by different rheological
models, and also the Newtonian model is presented in Figure 4B
that shows opposite patterns than that of the wall shear stress.
The pulsatile flow creates significantly high pressure on the walls
(upstream of the stent) in all models. It experiences a small drop
in the constriction by all the rheological models where the Car-
reau model creates the local lowest and Cross, and Newtonian
models cause higher wall pressure. The wall pressure decreases
remarkably at the distant downstream location (near x/D= 12) of
the aneurysm and maintains negative magnitudes after x/D= 4.
Notably, the Newtonian and the Cross model cause the peak wall
pressure near x/D=−1 while wall pressure decreases largely in
Carreau model.

9. LAMINAR FLOW BEHAVIOR

In the next paragraphs, we have particularly discussed the hemo-
dynamic behavior regarding the parameters, i.e., streamlines, wall
pressure, and wall shear stress for several Reynolds numbers and
degrees of stenosis considering the Cross model that has already

been mentioned in Section 5. However, the bulk velocity, Ū is
computed here considering Re= 300 to study the laminar flow
behavior.

9.1. Wall Pressure and Wall Shear Stress of
Cross Model
Wall pressure (upper-wall) for various Reynolds numbers is com-
pared in Figure 5A where the percentages of the stenosis and
aneurysm are 60 and 100%, respectively. Thewall pressure reaches
its peak at the pre-stenosis zones and drops at the stenosis throat
in all the fluids. The Re= 300 flow drops maximum and causes
almost zero pressure at the stenosis center. The wall pressure
increases again in the aneurysm but becomes negative at the
distant downstream regions. However, the lower Reynolds num-
bers cause moderate wall pressure throughout the artery; neither
tremendously high nor low.

The aorta restricts the blood flow to cause a negative pressure
on the arterial walls during the diastolic and systolic phases (Ku,
1997). It has been observed nearly zero pressure at the throat loca-
tion and negative magnitudes at the distant downstream location
of this diseasedmodel whichmight restrict blood flow to different
body parts (Young et al., 1975).

Figure 5B demonstrates the wall shear stress caused by various
Reynolds numbers in the diseased artery for Cross model. The
shear stress pattern seems to be very oscillating throughout the
arterial segment for all the Reynolds number where the physio-
logical profiles are also evident. Here, Re= 100 flow causes lower
ranges of variation in the stress magnitudes, whereas the Re= 300
flow demonstrates highly chaotic pattern coupled with irregular
sharp ends throughout the entire geometry. In fact, the peak
stress that occurs at the stenosis throat, and the lowest peaks in
the aneurysm, are caused by the flow with the highest Reynolds
number. These characteristics match with the results by Tian et al.
(2013).

Wall pressure and wall shear stress (upper wall) in the diseased
artery for the Cross fluid has been depicted in Figure 6 consid-
ering different constriction percentages i.e., 40, 50, and 60% for
Re= 300 in a 100% dilated artery. It is evident from the figure that
increasing constriction causes more pressure drop at the stenosis
center, but it remains unchanged for all the stenosis constrictions
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A

B

FIGURE 4 | (A) Upper-wall pressure, p/ρU2 and (B) upper-wall shear stress, τw/ρU2 for different viscosity models while stenosis= 60% constricted and
aneurysm=100% dilated for Re= 300 where the amplitude of wall oscillation, A= 3×10−4.

A

B

FIGURE 5 | (A) Upper-wall pressure, p/ρU2 and (B) upper-wall shear stress, τw/ρU2 for different Reynolds numbers, i.e., Re= 100, 200, and 300 considering the
Cross model when stenosis=60% constricted and aneurysm= 100% dilated where the amplitude of wall oscillation, A=3×10−4.

at the pre- and post-diseased segments which correspond to the
results revealed by Young et al. (1975).

The consequences of changing stenosis height on the wall shear
stress are apparently visible in Figure 6B that is different from

the previous results considering different Reynolds numbers.Wall
shear stress increases at the stenosis throat, drops irregularly in
the dilation and recovers at the post-aneurysm regions. However,
both the positive and negative peaks are caused by the 40%
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A

B

FIGURE 6 | (A) Upper-wall pressure, p/ρU2 and (B) Upper-wall shear stress, τw/ρU2 for different stenosis percentages i.e., 40, 50, and 60% considering the Cross
model when aneurysm= 100% dilated and Re= 300 where the amplitude of wall oscillation, A= 3×10−4.

A B

FIGURE 7 | Streamlines while aneurysm= 100% dilated and Re= 300 for (A) various Reynolds numbers, i.e., (a) Re= 100, (b) Re= 200, and (c) Re= 300 and (B)
various percentage of stenosis, i.e., (a) 40, (b) 50, and (c) 60% for Cross model where the amplitude of wall oscillation, A= 3×10−4.

constricted model. Again, shear stress becomes negative in the
aneurysm for all the cases presented here.

9.2. Streamlines
Figure 7A illustrates the flow pattern in a 50% stenosed and 100%
dilated arterial segment for Re= 100, 200, and 300. Figure 7Aa
illustrates streamlines for Re= 100 where the fluid velocity is
insignificant producing insignificant recirculation in the artery.
Vortices are observed to form in the downstream of the stenosis

and under the extended region of the vessel when the Reynolds
number becomes 200. The velocity is very high at the stenosis
throat in this case. However, the small vortices tend to become
bigger in the aneurysm when the Reynolds number is 300. More-
over, two more pairs of small recirculation zones are observed in
this case; one in the downstream of the stent and another in the
upstream of the aneurysm. Hence, the curvatures of the geometry
along with the oscillating wall condition might be responsible for
this phenomenon.
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Figure 7B represents the streamlines in a diseased artery for
Re= 300 considering different stenosis percentages i.e., 40, 50,
and 60%. It is evident from the Figures 7Ba,b that though the
velocity range is same for the two cases, flow recirculation is
significantly higher in the 50% stenosed model than the 40% one.
However, the number of vortices increases as the percentage of
stenosis is increased. Total five pairs of recirculation zones are
observed at the post-lip regions causing huge flow recirculation
in the arterial segment if the percentage is increased to 60%.
Additionally, the effect of wall oscillation is apparently visible in
all the diseased models.

The pulsatile condition of blood flow caused by the cyclic
nature of blood contributes to forming flow recirculation. Con-
sidering this fact, recirculation regions in the diseased artery
during different phases of a physiological cardiac cycle with
50% stenosis and 100% aneurysm for Re= 300 are illustrated

FIGURE 8 | Streamlines at different physiological phases (A) t/T = 9.0,
(B) t/T = 9.1, (C) t/T = 9.2, (D) t/T = 9.3, (E) t/T = 9.5, (F) t/T = 9.7,
(G) t/T = 9.10 when aneurysm=100% dilated and stenosis= 60%
constricted for Re=300 where the amplitude of wall oscillation,
A= 3×10−4.

in Figure 8. Several recirculation zones are found to form
and gradually lose the velocity during the systolic phases
through t/T = 0.0− t/T = 3.0. However, large flow recircula-
tion is observed in the aneurysm, but small eddies form at
the post-stenotic zone at t/T = 3.0 that can be resembled as
the late systolic phase. Flow velocity drops at early diastole in
Figure 8E with small vortices and recovers the initial magnitude
1.4 through the late diastolic phases i.e., t/T = 7.0− t/T = 10.0.
In fact, the flow intensity of the late diastole matches with early
systolic one.

Figure 9 illustrates the flow recirculation scenario in laminar
flow distribution in a diseased artery during different phases of
a physiological cardiac cycle with 60% constricted stenosis and
100% dilated aneurysm. Total six pairs of vortices are observed
to form at different streamwise locations of the arterial segment
owing to the effect of Re= 500 where the moderately bigger pair

FIGURE 9 | Streamlines at different physiological phases (A) t/T = 9.0,
(B) t/T = 9.1, (C) t/T = 9.2, (D) t/T = 9.3, (E) t/T = 9.5, (F) t/T = 9.7,
(G) t/T = 9.10 when aneurysm= 100% dilated and stenosis= 60%
constricted for Re= 500 where the amplitude of wall oscillation,
A= 3×10−4.
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forms in the dilation at t/T = 9.0. The vortices propagate toward
the outlet throughout the cardiac cycle, and two moderately big
pairs appear at the upstream and downstream of the aneurysm
near the peak systole. After the peak systolic phase, vortices of the
proximal region of the aneurysm becomes bigger than all other
pairs. However, the vortex structures become exactly similar as
the beginning phase during the end systolic phase that is shown
in Figure 9D. The highest magnitude of velocity is also observed
during this cardiac phase. Scenario for the diastolic phases are
shown in Figures 9E–G, where the flow velocity decreases gradu-
ally and the bigger vortices propagate toward the downstream of
the aneurysm.

10. LAMINAR TO TURBULENT
TRANSITIONAL FLOW BEHAVIOR

High Reynolds numbers are incorporated here to study the transi-
tional behavior of the flow andRe= 750 has been used to compute
the bulk velocity, Ū.

10.1. Wall Shear Stress for Various
Physiological Phases
We have studied theWSS (upper-wall) through a diseased arterial
segment for Re= 300, Re= 500, and Re= 750 for different phases

A B

C D

E F

FIGURE 10 | Upper-wall shear stress, τw/ρU2, at different physiological phases (A) t/T = 9.0, (B) t/T = 9.1, (C) t/T = 9.2, (D) t/T = 9.5, (E) t/T = 9.7, (F) t/T = 9.10
when aneurysm= 100% dilated and stenosis= 60% constricted for various Reynolds numbers, i.e., Re=300, Re= 500, and Re= 750 where the amplitude of wall
oscillation, A=3×10−4.
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of a cardiac cycle. The results are depicted inFigure 10. TheseWSS
diagrams are illustrated at different instants of the physiological
pulsatile cycle.

The magnitude of WSS for the three Reynolds numbers main-
tains a range of (−0.1, 0.2) in the beginning phase of a physio-
logical cycle where the maximum Reynolds number causes the
highest magnitude at the stenosis nose. As the flow experiences
the systolic phases of a cardiac pulse, the range ofWSSmagnitude
increases. At t/T = 9.1, the highestWSS is observed at the stenosis
throat among all the phases where Re= 750 causes the highest
value, and the Re= 300 flow causes the minimum one. However,

theWSS pattern is chaotic at x/D= 1.0 where the flow experiences
different phenomena owing to geometric effect.

During the peak systole, at t/T = 9.2, the instantaneous WSS
magnitude of the Re= 750 flow shows irregular magnitudes in
the post-stenosis region. It becomes high at the center of the
aneurysm and also at the downstream region. All the Reynolds
numbers contribute to a range of moderate WSS during the early
diastolic phase, i.e., t/T = 9.5. Again, all the low ranged Reynolds
number flows cause almost identical WSS patterns during the late
diastolic phases and the end diastolic WSS matches with the early
systolic one. Hence, during the entire cardiac pulse, it is evident

A B

C D

E F

FIGURE 11 | Upper-wall pressure, p/ρU2, at different physiological phases (A) t/T = 9.0, (B) t/T = 9.1, (C) t/T =9.2, (D) t/T = 9.5, (E) t/T =9.7, (F) t/T = 9.10 when
aneurysm=100% dilated and stenosis= 60% constricted for various Reynolds numbers, i.e., Re= 300, Re= 500, and Re= 750 where the amplitude of wall
oscillation, A=3×10−4.
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that the Re= 300 and Re= 500 flow characteristics are more or
less identical with variation in magnitudes throughout the arterial
segment. But the Re= 750 flow becomes transitional to turbulent
and shows different behavior in this study that may be difficult to
predict the complete flow dynamics sometimes.

10.2. Wall Pressure for Various
Physiological Phases
The comparative illustration of wall pressure (upper-wall) caused
by different pulsatile phases of a cardiac cycle because of dif-
ferent Reynolds numbers is shown in Figure 11. Wall pres-
sure decreases into negative magnitude and around zero in
the stenosis for Re= 300 and Re= 500 and, but; Re= 750 flow
causes the pressure to increase gradually after downstream of
the stenosis and attain the highest at the aneurysm center dur-
ing the beginning of the cardiac pulse. It drops to a range of
negative magnitude at x/D= 3.0 during the next phase where
all the Reynolds numbers cause almost identical wall pressure
distribution.

Interesting wall pressure distribution is observed at the peak
systolic phase where all the flows cause the wall pressure to drop
considerably at the center of the stenosis. It recovers to nearly
zeromagnitudes for the laminar flow conditions after this position
while the high Reynolds number transitional to turbulent flow
decreases the pressure more at about x/D= 4.0 and x/D= 6.0.
However, all the flows experience a range of wall pressure between
(−8, 0) during early diastole. The highest Reynolds number causes
the flow to create highly negative wall pressure at the center of the
stenosis during the peak diastole at t/T = 9.7. The laminar flows
also drop at this location and then tries to recover the pressure
to zero magnitudes, but Re= 750 flow creates irregular pressure
distribution in the post-aneurysm regions during the peak and
end of the diastolic phases.

10.3. Streamlines and Vorticity
Figure 12A illustrates the streamlines in the arterial segment for
various Reynolds numbers using the Cross model. A range of

velocity field (−0.2, 0.1) is observed to create negative flow field
and thus recirculation in the near wall regions of the Re= 300
model that is shown in Figure 12Ai. However, the velocity main-
tains a high value near the central axis of the geometry and
also symmetric vortex arrangement leaving the flow completely
laminar.

The effect of increasing the Reynolds number to 500 is evident
in Figure 12Aii. The streamlines become highly curved from the
distal end of the stenosis up to the outlet position. Slight high
velocity is observed around the central axis for a few streamwise
locations, i.e., stenosis neck, the center of the bulge and proximal
and distal ends of the aneurysm. A pair of large recirculation
regions forms under cover of the dilation owing to the presence of
negative velocity in these zones. Moreover, several eddy pairs are
observed to form in the pre- and post-aneurysm regions that also
resemble the effect of wall oscillation along with high Reynolds
number.

A completely different phenomenon is noticed in streamlines
for a diseased artery when the Reynolds number is 750. The flow
becomes irregular with a wider range of velocity and extremely
curved streamlines throughout the arterial segment. Numerous
vortices are observed to form in different parts of the geometry
that are asymmetric about the central axis. In fact, the flow loses
its laminar characteristics at this Reynolds number and becomes
translational to turbulent.

The vorticity that is given by ω = ∂v
∂x − ∂u

∂y describes the
local spinning motion of the fluid. More insight of the circulatory
phenomenon because of high constriction level coupled with high
Reynolds number is depicted in Figure 12B. The vortex units
rotate in the clockwise and anti-clockwise directions and give
positive and negative values ofω, respectively. Clockwise rotations
are represented by the solid lines while the dashed lines represent
the anti-clockwise rotations.

Negative vortical structures are observed to form covering a
large area (0.0≤ x/D≤ 5.0) in the dilated portion of the artery
in the Re= 300 model (Figure 12Bi). However, clockwise rota-
tion of the flow is evident along the central axis of the artery
with positive magnitude resembling laminar flow condition. The

FIGURE 12 | (A) Streamlines and (B) Vorticity when aneurysm= 100% dilated and stenosis= 60% constricted for various Reynolds numbers, i.e., (i) Re= 300, (ii)
Re=500, and (iii) Re= 750 visualizing the transition of the Cross model from laminar to translational where the amplitude of wall oscillation, A= 3×10−4.
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FIGURE 13 | Streamlines in different physiological phases (A) t/T =9.0, (B)
t/T = 9.1, (C) t/T = 9.2, (D) t/T = 9.3, (E) t/T = 9.5, (F) t/T =9.7, (G)
t/T = 9.10 when aneurysm= 100% dilated and stenosis= 60% constricted
for Re= 750 where the amplitude of wall oscillation, A= 3×10−4.

degree of flow separation increases as the Reynolds number
increases. Multiple negative vortices form in the near wall regions
throughout the entire arterial segment whereas, clockwise rota-
tions are also observed along the central axis. Nevertheless,
the flow scenario is different in the case of Re= 500 than the
previous case due to highly dense positive and negative flow
circulations.

Figure 12Biii shows the vorticity for the same geometry con-
sidering Re= 750 where translational to turbulent flow charac-
teristics are apparently visible. The flow becomes irregular that
does not follow any pattern. Highly negative rotations take place
in different parts of the near wall regions following a complete
asymmetric pattern about the central axis. The clockwise spin-
ning also occurs in numerous separate zones. In essence, the
flow phenomena change drastically when the Re= 750 that cor-
responds to transitional flow characteristics and the laminar to
turbulent transition is assumed to occur when the Re> 500. Flow

recirculation owing to the effect of different phases of a physiolog-
ical pulsatile cycle for the transition to turbulent flow condition
is depicted in Figure 13. Multiple vortices of various sizes are
observed to form in different parts of the artery. Two moderate
sized vortices form in the dilation; one under the upper wall and
the other at the distal end of the aneurysm near the lower wall
during t/T = 9.0.Number of recirculation regions and their length
increase during the next cardiac cycle and the largest vortex form
near about t/T = 9.1. After the peak systolic phase, the vortices get
smaller and fewer during t/T = 9.2–9.5. The size of the vortices
gets bigger, and the length of the recirculation region increases
through the late diastolic phases. However, the asymmetric behav-
ior of vortex generation and propagation is observed during the
entire cardiac cycle due to the effect of laminar to turbulent flow
transition.

11. CONCLUSION

Hemodynamic factors, contributing to the deterioration of arte-
rial diseases, have been numerically investigated in this paper.
Finite-volume method has been used as the numerical technique,
and the results have been presented in terms of hemodynamic
parameters, i.e., wall pressure, wall shear stress, and streamlines
for Re= 300, 500, and 750 considering sinusoidally oscillating
wall condition for a coupled constricted and dilated channel.
Comparisons are presented both for laminar and transitional flow
considering various Reynolds numbers and also percentages of
constriction keeping the aneurysm height fixed.

Both the Newtonian and non-Newtonian characteristics for
wall pressure and wall shear stress are compared. The Newtonian
model has presented comparatively lower wall shear stress and
higher wall pressure in the arterial segment with 60% constricted
stenosis than the other rheological models. Re= 300 causes a
remarkable drop of wall pressure in the stenosis and at the distant
downstream region. Moreover, it causes a very high shear stress
at the stenosis throat with a severely oscillating pattern. The
results for wall pressure are also compared varying the stenosis
percentages with 100% dilated aneurysm.Wall pressure decreases
maximum in the 60% stenosedmodel at the center of the stenosis,
but it maintains an identical range at the downstream region.
So, increasing Reynolds number affects the pressure distribution
both at the center and downstream region while variation in
stenosis percentage only affects the stenosis throat region. The
effect of high wall shear stress of throat location prevails in the
post-aneurysm downstream locations during the peak systolic
phase as the flow experiences a laminar to turbulence transition.
Moreover, the wall pressure falls tremendously during the entire
diastole resulting serious health risk due to the effect of full
occlusion.

The flow recirculation is found significant during the systolic
phases for highly constricted stenosis and high Reynolds number
in the Cross model. The flows become transitional to turbulent
if the percentage of stenosis is increased more. Flow separation
increases for the higher Reynolds number transitional flow in
different parts of the geometry with a completely asymmetric
pattern. Alongside, the streamlines also become chaotic and con-
centrated. High Reynolds number laminar flow contributes to

Frontiers in Mechanical Engineering | www.frontiersin.org November 2017 | Volume 3 | Article 1213

http://www.frontiersin.org/Mechanical_Engineering
http://www.frontiersin.org
http://www.frontiersin.org/Mechanical_Engineering/archive


Shupti et al. Pulsatile Non-Newtonian Flows in Aneurysm

the formation and propagation of multiple vortices in different
parts of the artery in an axisymmetric manner whereas, chaotic
and unpredictable recirculation occurs because of the laminar to
turbulent flow transition.

Wall shear stress distribution plays a significant role in throm-
bus formation and progression which again contributes to causing
stroke and even full occlusion (Bark and Ku, 2010). It can also
cause endothelial or inner side damage of the arterial walls (Fry,
1968) which is apparently evident in our study at the stenosis
throat. The resistance to flow, i.e., a significant drop of wall pres-
sure becomes highly apparent at the downstream of the diseased
artery and also at the throat which increases the risk to restrict
the flow to different body parts (Young et al., 1975). Moreover,
the highly stenosed and high Reynolds number model causes
extremely remarkable flow recirculation inside the dilation along
with high shear stress at the stenosis throat which is more likely to
cause various vascular diseases.
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