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It is a great challenge to efficiently convert low-grade heat (<100°C) to electricity. Currently 
available heat-to-current converters, such as thermoelectric generators, operating in a 
low-grade heat regime reach efficiencies no higher than a few percent (<3%). Herein, 
we illustrated a thermal capacitive electrochemical cycle (TCEC) using electrochemical 
cell, where the connection to the hot or cold reservoirs alternates in a cyclic charging–
heating–discharging–cooling mode to convert heat into electricity, which performs as an 
electrochemical heat engine. TCEC technology is a cost-effective method for exploiting 
the temperature-dependent electrostatic potential in an electric double layer (EDL) at 
carbon electrode/electrolyte interfaces; it produces net electricity by altering the EDL 
thickness via heating and cooling. In this paper, TCEC on supercapacitor was confirmed 
on commercial supercapacitor, which showed a poor conversion efficiency. To improve 
the performance, we redesigned the cell by employing the pouch cell setup with acti-
vated carbon as electrode materials and homemade temperature controlling system, 
which boosted the efficiency from 0.5% of commercial supercapacitor to 3.05% when 
cycling between 10 and 65°C. A higher efficiency of 3.95% could be reached by using 
microwaved exfoliated graphene nanosheets (MEG) and nitric acid-treated MEG, which 
could help in decreasing the energy loss caused by charge leakage.

Keywords: low-grade heat, electrochemical heat engine, thermoelectric, thermal cycle, supercapacitor

inTrODUcTiOn

A vast amount of low-grade heat (<100°C) exists in the environment and in the form of waste heat 
in industrial processes. Efficient conversion of this low-grade heat to electricity is challenging due to 
the low temperature differential and the distributed nature of these heat sources (Bell, 2008; Rattner 
and Garimella, 2011; Chu and Majumdar, 2012). Solid-state thermoelectric materials, which work 
on the temperature difference between two heat reservoirs, have been studied as major candidates 
for heat to electricity conversion (Rosi, 1968; DiSalvo, 1999; Poudel et al., 2008; Snyder and Toberer, 
2008). The figure of merit (ZT) of thermoelectric materials can reach 2 at high temperatures but is 
limited to 1.5 below 100°C, resulting in a low conversion efficiency of <3% in harvesting low-grade 
heat (Vining, 2009; Kraemer et  al., 2011; Zebarjadi et  al., 2012; Feng et  al., 2013). The Seebeck 
effect in electrochemical thermogalvanic cells has also been investigated, but the poor ionic mass 
transport between two heat reservoirs gives a poor efficiency of <0.5% (Quickenden and Mua, 1995;  
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FigUre 1 | (a) Schematic diagram of charge–voltage cycle for thermal capacitive electrochemical cycle (TCEC). (B) Theoretical efficiency of TE and TCEC (ηrec: heat 
recuperation efficiency).
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Hu et  al., 2010). Other technologies, such as thermoionic and 
ultracold-atom thermoelectric engines, have also attracted inter-
est but are typically expensive and inefficient (Brantut et al., 2013; 
Meir et al., 2013). Currently available heat-to-current converters 
operating in the low-grade heat regime reach efficiencies no 
higher than a few percent.

Recent studies of the thermodynamic cycle using electro-
chemical cells show great potential. In these systems, the con-
nection to either the hot or cold reservoir alternates in a cycle 
(Lee et al., 2014; Yang et al., 2014a,b; Härtel et al., 2015b). This 
electrochemical heat engine converts heat into electricity by oper-
ating in the charging–heating–discharging–cooling mode, which 
resembles the Stirling and Carnot heat engine that generates 
mechanical work via a heating–expansion–cooling–compres-
sion cycle. There are two categories of thermo-electrochemical 
cycles: thermally regenerative electrochemical cycle (TREC) and 
thermal capacitive electrochemical cycle (TCEC). The TREC is 
based on the temperature-dependent redox reaction (faradic) in 
a battery system. The battery voltage is dependent on temperature 
and is determined by the Nernst equation (Hammond and Risen, 
1979; Chum, 1981; Wessells et al., 2011), thus tuning along with 
changing temperature. Net energy is produced by the voltage 
difference, originating from the heat absorption and the entropy 
change in the system. Lee et al. (2014) developed a TREC using a 
copper hexacyanoferate (CuHCF) cathode and a Cu/Cu+ anode. 
They used NaNO3 and Cu(NO3)2 electrolytes for CuHCF and 
Cu electrodes, respectively, which were separated by an anion 
exchange membrane. The system showed a heat-to-current con-
version efficiency of 3.7% when cycling between 10 and 60°C. An 
efficiency of 5.7% can be achieved under 50% heat recuperation, 
which is comparable to thermoelectric materials with ZT ≈ 3.5 at 
this small temperature gradient. However, some limitations must 
be considered in the further development of TREC technology, 
such as limited potential materials for electrodes due to the harsh 
requirements in this system, long waiting time for each cycle and 
poor efficiency along with high cost.

The TCEC exploits the temperature-dependent electrostatic 
potential (non-faradic) in an electric double layer (EDL) to con-
struct a thermodynamic cycle (Härtel et al., 2015b). The energy 
storage in an EDL, which has been widely used in supercapacitors, 

is based on the electrostatic separation of charges upon polariza-
tion at the carbon electrode/electrolyte interface (Frackowiak and 
Beguin, 2001; Goodenough et al., 2007; Zhang and Zhao, 2009; 
Zhu et  al., 2011; Conway, 2013). The Gouy–Chapman–Stern 
(GCS) theory models the ion distribution close to the planar 
electrodes, and the potential distribution (φ) can be described by 
Poisson–Boltzmann equation (Von Helmholtz, 1879; Gouy, 1910; 
Chapman, 1913; Stern, 1924; López-García et al., 2011):
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where kb is the Boltzmann constant, T is the absolute temperature, 
e is the electron charge, σ is the surface charge density, C is the 
ion concentration in bulk solution, NA is Avogadro’s constant, ε0 
is the vacuum permittivity, εr is the relative permittivity of the 
electrolyte, and L is the EDL effective thickness.

As described in Eq.  1, the energy extraction of the capaci-
tive mixing (CAPMIX) technique has been studied by mixing 
sea saltwater with river freshwater (Brogioli, 2009; Brogioli 
et al., 2012, 2013; Hatzell et al., 2014; Härtel et al., 2015a). The 
tendency of the charged ions to move away from the electrode 
when decreasing the salt concentration leads to the expansion of 
the EDL; this is referred to as “capacitive double-layer expansion” 
(CDLE). The increased EDL thickness decreases the capacitance 
and thus increases the electrode potential at a fixed electrode 
charge. Therefore, the positive electrode becomes more positive 
and the negative electrode becomes more negative, resulting in 
the full cell voltage rise. The potential also shows a near-linear 
increase with temperature because the first term of kbT provides 
the predominant T dependence (Rica et al., 2012; Janssen et al., 
2014). Based on this temperature dependence, TCEC could be 
designed. A schematic diagram of the charge–voltage cycle is 
shown in Figure 1A. The supercapacitor is externally charged at 
Tc (step 1) and is then heated up to Th at an open circuit (step 2). 
A temperature rise increases the ion thermal motion and thus the 
ions move farther into solution, leading to CDLE. Moreover, εr 
usually decreases with increasing temperature, and so the capaci-
tance further decreases and thus the electrode potential increases. 
The cell is then discharged at a higher potential at Th, and the 
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FigUre 2 | Cross-sectional view of the microwaved exfoliated graphene 
nanosheets electrode.
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energy can be harvested through an external circuit (step 3).  
The cycle is completed by cooling from Th to Tc at an open circuit, 
which compresses the EDL (step 4). The efficiency (η) can be 
calculated as:

 
η =

−
−

W E
Q Q

loss

h rec  
(2)

where W W T S V q= = = −∫ ∫ ∫d d d
  

 is the maximum work 
between discharge and charge in a cycle. Eloss is the energy loss 
in the system. Qh is the total heat input from the hot reservoir to 
the device and consists of heat flows during heating that occurs 
in step 2 and the isothermal discharging in step 3. During the 
isothermal operation at Tc and Th, the system efficiency can be 
improved by heat recuperation (Qrec), as part of the heat rejected 
in cooling step 4 can be used for heating in step 2 (Bejan and 
Kraus, 2003; Serth and Lestina, 2014). A recuperation efficiency 
of 50–70% can be readily achieved (Lee et al., 2014; Yang et al., 
2014a). Recently, Härtel et al. (2015b) presented a thermocapaci-
tive cycle that harvested low-grade heat using a commercial 10 F 
supercapacitor between Tc = 0°C and Th = 65°C. However, the 
efficiency calculated by equation  (2) is only 0.5% without heat 
recuperation, which is one order of magnitude lower than the 
theoretical model shown in Figure 1B (Janssen et al., 2014; Härtel 
et al., 2015b).

Herein, we improved the performance of TCEC cells by opti-
mizing the cell design and applying carbon materials to weak the 
non-uniform heating and self-discharge. Homemade pouch cell 
assembled with activated carbon achieved a thermal-to-electricity 
conversion efficiency of 3.05% when cycling between 10°C and 
65°C without heat recuperation. And this efficiency could be 
further improved to 3.95% by employing microwaved exfoliated 
graphene nanosheets (MEG) and nitric acid-treated MEG. The 
TCEC on grapheme-based supercapacitor also showed a higher 
stability and durability.

MaTerials anD MeThODs

electrode Materials Preparation
Our low-cost solution method allows preparation of few-layer 
MEG by mild oxidation (Zheng et al., 2011; Zhai et al., 2014). 
About 1 g of natural graphite flakes (Sigma Aldrich) were added 
into 50  ml mild oxidizer, which consisted of concentrated 
H2SO4 (96%; Sigma Aldrich) and hydrogen peroxide (30%; 
Prolabo) at a volume ratio of 9:1. The resulting mixture was 
stirred under room temperature for 2 h and then washed with 
deionized water for several time to remove residual reactants. 
The MEG nano sheets were obtained after irradiating the dried 
powder from previous oxidation in microwave oven (700 W) 
for 1 min.

Pouch cell Fabrication
Uniform heating is difficult to achieve in a matter of minutes in 
a commercial cylinder-type supercapacitor, and as a result only 
a small amount of CDLE occurs before the self-discharge. This 
indicates that the whole cell must be rapidly and uniformly heated 
in order to maximize the thermal voltage rise and the subsequent 
discharge. Therefore, a two-electrode pouch cell configuration 

was used. For electrochemical cell based on activated carbon, 
activated carbon powder (Kuraray Chemical Co., 1,300 m2/g) and 
5 wt% polytetrafluoroethylene (PTFE, 60% dispersion in water) 
was mixed into a paste and then coated on the Al current collector 
(Frackowiak and Beguin, 2001; Zhang and Zhao, 2009; Zhu et al., 
2011). After drying overnight at 100°C in vacuum, two carbon 
electrodes (40 µm, ~5 mg) and a porous polypropylene separator 
(Celgard3501) were sandwiched with 250  µl electrolyte [1.5  M 
tetraethylammonium tetrafluoroborate (TEA-BF4) solvated in 
acetonitrile (AN)] (Stoller and Ruoff, 2010). The typical thickness 
of a cell was 1–1.5 mm.

The MEG electrodes will be prepared by coating slurry (MEG 
powders with 5wt% PTFE) on graphite rods for the electrode 
potential measurement, and on Al foil for TCEC pouch cell 
assembly. The electrodes will be dried overnight at 100°C under 
vacuum, washed with ethanol, and then soaked in electrolytes 
(1.5 M TEA-BF4 solvated in AN).

Microstructure characterization
The cross-sectional structure of the MEG electrode was deter-
mined through Scanning Electron Microscope (Hitachi S-4800). 
The MEG films were approximately 32 µm thick with a mass of 
2–3 mg (Figure 2).

electrochemical Measurement
The open circuit voltage (OCV) changes of supercapacitor during 
heating or cooling were measured by potentiostats with a two-
electrode configuration (Gamry reference 3000). The charging or 
discharging process was also conducted in the same potentiostats 
under constant current of 100 mA/g.

resUlTs anD DiscUssiOn

We measured the cell voltage by placing a fully charged Panasonic 
4.7 F supercapacitor in a hot water reservoir at 65°C (Figure 3A). 
After heating, the voltage increased in the first 100  s and then 
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FigUre 3 | (a) OCV for fully charged supercapacitor (Panasonic 4.7 F) at 65°C. (B) Cell voltage rise vs. temperature. (c) Home-made TE temperature cycler and 
pouch cell. (D) Charge–voltage cycle for the pouch cell using activated carbon electrodes. (e) Cell voltage vs. time plot for first and second thermal cycles 
(Imeasure = 100 mA/g, t3/t1 ~ 0.65).
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decreased over time. Thus, the response time of CDLE is faster 
than the self-discharge. A temperature coefficient (α = ∆ ∆V T/ )
of 0.593 mV/K was measured by thermal voltage rise at different 
temperatures for the fully charged supercapacitor (black squares, 
Figure 3B), which is consistent with previously reported results 
(Härtel et  al., 2015b). However, uniform heating is difficult to 
achieve in a matter of minutes in a commercial cylinder-type 
supercapacitor, and as a result only a small amount of CDLE 
occurs before self-discharge. This indicates that the whole cell 
must be rapidly and uniformly heated in order to maximize the 
thermal voltage rise and the subsequent discharge. Therefore, a 
two-electrode pouch cell configuration was used in a follow-up 
experiment (Figure  3C). A homemade thermoelectric-based 
temperature cycler was used to control heating and cooling using 
LabVIEW programs. Thermopaste (Omega) was applied to all 
of the interfaces to ensure good thermal contact (Kraemer et al., 
2011; Feng et al., 2013; Yang et al., 2014a). Figure 3D shows the 
experimental charge–voltage curve of pouch cell using activated 
carbon electrodes; the work obtained was 1.6  J/g when cycling 
between Tc = 10°C and Th = 65°C. The measured α was 1.09 mV/K 
(red spot, Figure 3B), which is higher than that of a commercial 
supercapacitor.

The efficiency of TECE could be obtained after knowing the 
output work and input heat. The amount of total thermal energy 
used in the primary heat source (here, the thermoelectric module 
was used) is dependent on the setup of temperature controlling 

system, which is difficult to be determined. Referring to other 
research works in the related field (Lee et al., 2014; Yang et al., 
2014a,b; Härtel et  al., 2015a,b), it confirms that the calculated 
efficiency only includes thermal energy absorbed by the device 
and does not include the total energy used in the primary heat 
resource. Unlike the thermoelectric device, TCEC works in the 
isothermal operation, indicating that no extra energy is required 
to maintain the temperature difference. Basically, the total thermal 
energy Qh needed comes from two parts: one is for the increase 
of temperature in device Q C T2 = P∆  (step 2) and the other is 
the heat absorbed in high temperature for energy conversion 

Q T S V q T V
T

q T q3 = ∫ = − ∫ = − ∫
∂
∂







 ≈h h

q

hd d d α ∆  (step 3). Given 

the mass ratio of each material, the specific heat (Cp) of the pouch 
cell was 0.685 J/gK. Therefore, Qh equals 52.4 J/g, and an efficiency 
of 3.05% can be achieved. The efficiency can be raised to ~4.76% 
under 50% heat recuperation.

To further improve the conversion efficiency, one of the most 
promising ways is to decrease the significant energy loss caused 
by charge leakage. As shown in Figure 3D, the cell voltage rise of 
AC pouch cell was 58 mV in step 2, which is close to the calculated 
value of 59.95 mV (ΔV = αΔT). However, the significant voltage 
drop caused by charge leakage decreased the effective voltage rise 
to 41 mV. As seen in Figure 3E, the charge leakage also occurred 
during the isothermal discharging (step 3) because the amount of 
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FigUre 4 | (a) Base potential of MEG electrode vs. thermal potential change (Tc = 10°C, Th = 65°C). (B) Charge–voltage cycle for the pouch cell using MEG 
(positive) and HNO3-treated MEG (negative) electrodes. (c) Cell voltage vs. time plot for first and second thermal cycles (t3/t1 ~ 0.8).
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discharge in step 3 is less than the amount of charge transferred 
to the cell in step 1, causing a coulombic efficiency of ~65%. The 
ideal discharge curve should follow the red dash line; the yel-
low area represents energy loss. When the TCEC cell with both 
identical carbon electrodes is completely discharged at Tc, the 
base potentials of the positive (φTc

+) and negative (φTc
−) electrodes 

should be at the same value as their given self potential (φTc0), and 
thus the cell voltage Vcell = φTc

+ − φTc
− = 0. With external charging 

at the voltage of Vext at Tc (step 1), the base potential of the posi-
tive electrode increases to φTc

+ = Vext/2, and that of the negative 
electrode decreases to φTc

− = −Vext/2, resulting in a cell voltage 
Vcell ≈ Vext. When heating from Tc to Th (step 2) and discharging at Th  
(step 3), the Vcell increases as a result of CDLE but the temperature 
rise also enhances the charge leakage due to the self-discharge in 
the EDL, which is driven by two mechanisms. In the electrolyte, 
the ions tend to move away from the electrode to increase their 
solvation (Reszko-Zygmunt et  al., 2005; Fletcher et  al., 2010; 
Andreas, 2015). In the carbon electrode, the base potential of 
each charged electrode (φTc

+, φTc
−) tends to come back to their 

self potential (Brogioli, 2009; Brogioli et al., 2012). Our previous 
study shows that self potential is tunable by adjusting the concen-
tration of strong acid groups on the carbon electrode. Therefore, 
to address the slow ion diffusion (Brogioli, 2009; Fletcher et al., 
2010), ion desolvation (Levy et al., 2012; Bankura et al., 2013), 
and partial overlap of EDLs (Schaldach et al., 2004; Huang et al., 
2008; Biesheuvel et al., 2014) in the complex geometry of the nar-
row pores in activated carbon during heating, we used few-layer 
MEG (Zheng et  al., 2011; Zhai et  al., 2014) and HNO3-treated 
MEG (N-MEG) as electrodes materials.

Figure  4A is the electrode base potential vs. the thermal 
potential change for the individual as-prepared MEG electrode. 
The measured data under different Vext can be fitted by GCS theory 
as a solid black curve (Brogioli, 2009; Brogioli et al., 2012; Hatzell 
et al., 2014) (Note: we only show the data points of Vext = 500 mV 
in Figure 4A.). For the identical electrode system using the MEG 
for both positive and negative electrodes, the green spot repre-
sents the self potential φTc0 of MEG electrode at Tc = 10°C, and the 

green squares (φTc
+, φTc

−) are the base potentials for the positive 
and negative charged MEG electrodes under the external voltage 
of 500  mV and their corresponding thermal potential change 
(φTc

+, φTc
−) after heating to Th  =  65°C. As noted, the external 

charging dominates the electrode base potentials to φTc
+ and φTc

−, 
and thus the corresponding Δφ+ and Δφ− are determined along 
the GCS curve. The blue spot is the self potential of the MEG 
electrode treated with nitric acid for 12  h, which decreases to 
a less positive value (φTc0

−) and roughly falls on the same GCS 
curve. By using HNO3-treated MEG as the negative electrode, 
the charge leakage in TCEC could be improved by operating in 
a smaller driving force between φTc

− and φTc0
− (blue arrow) than 

that between φTc
− and φTc0 (green arrow). Figure 4B shows the 

charge–voltage cycle performed by a pouch cell using MEG and 
HNO3-treated MEG as positive and negative electrodes, respec-
tively. The measured α is 1.32 mV/K (blue triangle, Figure 3B), 
which could generate a higher thermal-stimulated voltage 
increase than that of activate carbon pouch cell and obtain more 
net electricity of ~2.6 J/g. Therefore, the system achieves a high 
conversion efficiency of 3.95% without heat recuperation as the 
estimated Cp is 0.87 J/g. From the voltage vs. time plot shown in 
Figure 4C, we observe that the charge leakage can be improved 
with a more linear discharging curve, thus the coulombic effi-
ciency was improved to ~80%.

cOnclUsiOn

In summary, we tested TCEC on commercial supercapacitor, acti-
vated carbon-based supercapacitor and MEG-based supercapaci-
tor. TCEC on commercial supercapacitor gave a low conversion 
efficiency (<1%), which resulted from the nonuniform heating 
on cylinder-type structure. In order to maximize the thermal 
voltage rise, and then subsequent discharge, we built up a home-
made temperature control system and employed a two-electrode 
configuration cell based on activated carbon, which successfully 
enhanced the thermoelectric efficiency to a higher level of 3.05%. 
It was illustrated that the performance could be further improved 
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as if we could decrease the energy loss resulted from the charge 
leakage. Self potential of MEG was tuned by nitric acid treatment. 
Pouch cell of MEG as anode and HNO3-treated MEG as cathode 
showed a larger temperature coefficient and a climbing energy 
conversion efficiency of 3.95% while TCEC on it had a better 
durability and stability with over 80% coulombic efficiency. This 
work proves that TCEC is a cost-effective electrochemical heat 
engine as it could use readily available carbon materials and 
operate without expensive ion-selective membranes. A TCEC is 
expected to have a faster cycle time than a TREC because the 
equilibration time to achieve a fully charged EDL and the CDLE 
response time are on a scale of minutes. Meanwhile, adjusting 
the concentration of strong acid group on the carbon electrode 
is proved to be an effectual way to increase the potential differ-
ence between the charged electrode and its self-potential, which 
provides opportunities for TCEC optimization.

A thermal cycle can be achieved with adequate mechanical 
design; for example, a heat wheel equipped with an electrochemi-
cal cell rotating between a hot and cold side, which could broaden 
the application of this technology in industry. Unlike temperature 
gradient technologies operating at low temperature differentials, 

the isothermal operation of a thermal cycle enables effective heat 
recuperation (50–70%) from the cooling process back to the 
heating process, which can considerably boost overall system 
efficiency.
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