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In spite of its obvious importance, the subject of tribology has relatively low visibility in the

engineering community and among the general public. The author’s hypothesis is that

this problem is at least partly due to the poor “availability” of tribology. In other words,

there are practically no simple methods or concepts having high predictive power for

tribological problem-solving. That situation is due to the extremely inter-disciplinary and

multi- scale character of tribological processes. Fortunately, however, recent methodical

and didactical developments in the field of tribology offer hope that the situation may

soon change. It is time to integrate certain basic aspects of the mechanics of interfaces

into the curricula of technical universities. The author further argues that one of the key

problems confronting tribology and its future grand challenges is solving the problem of

the “third body.”

Keywords: contact mechanics, lubrication, wear, adhesion, tribochemistry, elastohydrodynamics, boundary
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INVISIBLE TRIBOLOGY

Whether a technical device or a living being—every system is made up of connected parts. These
connections of various kinds—from simple supports to rivets, screws, glued connections, various
types of bearings, wheels, and so on are the subject of a science named Tribology. Tribology
is a subject integral to any mechanical system containing moving parts or joints—starting with
molecular “machines” (as motor proteins in living cells) (Dudko et al., 2003) and micro and nano
mechanical systems (Bhushan et al., 1995) over the huge field of traditional macroscopic tribology
(Dowson, 1979) up to the contacts between tectonic plates (Scholz, 2002). The word “Tribology”
was introduced 1966 by the British commission guided by Jost (1966). The Jost Report identified
incorrect lubrication and the accompanying wear and friction issues as the main reasons for the
failure of mechanical systems. Since then it is has been (somewhat) widely recognized that tribology
has immediate influence on global energy consumption, costs and emissions—key technological
and hot political issues of the modern society (Holmberg and Erdemir, 2017). And yet, if you ask
people on the street what “Tribology” is, most of them will not be able to associate this word with
any practical object or problem. How can the tremendous importance of tribology be reconciled
with its relatively low social and technological visibility?
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WHAT IS THE REASON FOR LOW

VISIBILITY OF TRIBOLOGY?

The answer may lie in the poor availability of tribology to the
broader engineering community. Scientific and technological
visibility and public perception of each discipline is determined
not only by its importance but very decisively also by its
availability. Thus, Analysis was almost a sacral science only
for a few “initiates” until Leibnitz invented his intuitive
and practical notations (Leibnitz, 1674-1676). This seemingly
“merely didactical” invention made Analysis available literally
for everybody—now it is a part of the curriculum of any high
school. The availability of a subject is strongly associated with
its complexity, and the complexity of the mechanics and physics
of interfaces is notoriously high. Just a superficial glance in an
anatomic atlas (Bourgery, 2017) shows that the main elements
of the supporting structure of the human body, bones, are—
in spite of their complicated internal structure—much simpler
than the joints. The latter have a truly spectacular architecture
and very specialized material properties, which still cannot be
reproduced artificially (Jin and Dowson, 2013). No wonder that
it is much more difficult to repair the joints than it is to mend
bones. Structural elements and their joints are both omnipresent
in a variety of systems—they are both generic, unavoidable
aspects of any structure. The difference between them is in the
availability of models used to describe them: For the basics of
mechanics of materials students only need proficiency in analysis
of one variable and the simplest ordinary differential equations,
while the simplest (Hertzian) contact problem is formulated
as an integral equation with mixed boundary conditions. This
qualitative difference in complexity is the reason for the fact that
students of almost all engineering majors study the theory of
beams in their first or second semester, but only acquire a very
rudimentary notion of the mechanics of connections.

DID TWO CENTURIES SINCE THE WORK

OF COULOMB BRING PROGRESS?

Tribology is the science of friction, wear and lubrication.
The first experimental study of friction that was broadly
publicly discussed and had a decisive impact on the subsequent
development of science and engineering seems to be the memoir
of Amontons (1699). He was the first to formulate, based on
experimental observations, the “law of friction” which is now
widely known as “Amontons’ law.” In 1781 Charles Augustin
de Coulomb published his remarkable, timeless book on friction
(see available later edition, Coulomb, 1821) where he described
many properties of dry friction that even today remain subjects
of active research. In particular, he investigated the dependency
of the coefficient of friction on time, velocity, normal force,
apparent contact area, humidity andmaterial pairing. Some of his
observations—e.g., the explicit time dependency of the coefficient
of friction—have been understood only two hundred years later
(Rice and Ruina, 1983; Dieterich and Kilgore, 1994) and many
remain not understood to this day. For example, Coulomb found

that the intensity of friction in the contact of wood on metal,
depending on the duration of contact, slowly increases and
reaches its peak after 4–5 days, and sometimes more. In contact
of two metals, friction shows completely different behavior: it
achieves the stationary value in an instant. In wood on wood
contact friction achieves the stationary value in a few minutes
(Popova and Popov, 2015). These observations aremore than 200
years old, but only began to be understood on themicro scale very
recently (Carpick and Bennewitz, 2014).

The most striking deficiency in the current state of the art
of tribology, is that we still cannot predict the coefficient of
friction in practically any pairing, and in many cases we even do
not really understand what the main governing parameters are.
This is due to the complexity of physical processes determining
tribological properties (Persson and Tosatti, 1996): contact
interactions, adsorbed layers (Robbins and Krim, 1998; He
et al., 1999; Müser et al., 2001), tribochemical reactions, mixing
processes and wear (Scherge et al., 2003), elastohydrodynamic
lubrication (Ertel, 1939; Hamrock and Dowson, 1977), boundary
lubrication (Kenausis et al., 2000), shear melting (Persson and
Popov, 2000), cavitation (Etsion, 2013; Savio et al., 2016),
adhesion (Rabinowicz, 1961), interaction with system dynamics
(Kado et al., 2014; Teidelt, 2015; Milahin, 2016; Wetter, 2016)
material properties (Khadem et al., 2017) and fracture mechanics
(Ciavarella et al., 1999)—to mention only some.

Clearly, there are many complex tribology problems which
have been solved, as e.g., those connected with hydrodynamic
and elastohydrodynamic lubrication. It should also be noted that
many tribological problems have beenmet with working practical
solutions—otherwise we would not have functioning cars, trains,
airplanes, and other modern conveniences. Nonetheless, many
such solutions were arrived at mostly by trial and error, in
combination with iterative improvement. Many fundamental
problems, particularly those involving dry and boundary
lubrication remain not well understood.

IS THE TIME RIPE FOR A “REVOLUTION”

IN TRIBOLOGY?

Several developments of the last decades have the potential to
change the future standing of tribology among other engineering
sciences. Consider, for example, the theories of hydrodynamic
and elastohydrodynamic lubrication (Hamrock and Dowson,
1981), understanding of hard coatings (Donnet and Erdemir,
2008) and lubrication additives (Spikes, 2004).

In the following I would like to discuss in more detail two key
developments that concern contact mechanics.

FFT-Based Boundary Element Method:

Searching for Consensus and New

Paradigms in Tribology
The first of these developments is an extremely effective
numerical simulation method of contact of rough surfaces.
It is known as the Fast Fourier Transform-based Boundary
Element Method, or FFT-BEM. Following years of debate on
the underlying theory, the engineering community created a
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tool that allows direct calculation of realistic contact conditions.
Several modifications of this method are mentioned in Müser
et al. (2017). The most common version of the FFT-Based
Boundary Element Method (Putignano et al., 2012) can be
applied both to normal and tangential contacts with arbitrary
contact interaction (Pohrt and Li, 2014), to viscoelastic bodies
(Carbone and Putignano, 2013; Kusche, 2016) and adhesive
(Popov et al., 2017; Rey et al., 2017) contacts. This method
recently became the standard method of numerical simulation
of tribological contacts both in academic and industrial
research and development and changed significantly the ways
of thinking and the direction of further development of
tribology. While around 2010 high resolution simulations
of contact of rough surfaces were available to only a few
leading groups worldwide, now they can be carried out in
practically every tribological group, the corresponding programs
are even provided for on-line simulations (Tribology Simulator,
2018).

Progress in Didactics of Contact

Mechanics Since Hertz
The second development is more of didactical nature. It does
not contribute much to the results obtained in 136 years since
the seminal work of Hertz (1882) but merely presents them in
a form accessible even to undergraduate students. This didactic
invention is the Method of Dimensionality Reduction (MDR)
(Popov and Heß, 2015) which can be considered a reformulation
of the solution method for contact of axi-symmetrical bodies
first developed by Schubert (1942). In the literature, Schubert’s
method is mostly associated with the name of Sneddon, due
to the Sneddon’s highly cited paper (Sneddon, 1965). In reality,
the method was suggested not only by Schubert but (later)
also by Green and Zerna (1954), Collins (1959), and Galin
(1961) but it took decades until it became well-known and
“established” and Sneddon indeed did much for advertising this
solution, including the translation and publication of the book of
Galin.

The MDR, according to Barber (2018), is basically a
reinterpretation of the equations of Schubert-Galin-Sneddon
using a simple contact with a one-dimensional elastic foundation.
MDR summarizes the known solutions and presents them
in a simply reproducible mnemonic form. The true added
value of the MDR becomes visible only when considering
more general problems. Due to theorems allowing for (exact
or approximate) reduction of tangential contact problems
(Cattaneo, 1938; Mindlin, 1949; Jäger, 1995; Ciavarella, 1998),
viscoelastic contact problems (Radok, 1957) and adhesive
contact problems (Johnson et al., 1971) to non-adhesive normal
contact, the MDR becomes a very compact, universal and
intuitive tool for understanding and analyzing a great variety
of contact problems. As a matter of fact, it provides a sort
of “pocket edition” of all solutions in contact mechanics of
point contacts obtained by researchers in the last 136 years.
This didactic tool requires only the basics of analysis for its
application and thus makes contact mechanics available to
a broad engineering community. Barber notes that MDR is

comparable with the moment-area method for the solution of
beam deflection problems in the mechanics of materials. Both
have restricted fields of applicability—but wide enough to be
worth studying by engineers; both are simple and instructive.
All major problems of the mechanics of connections—such
as normal and tangential contact, stresses at the surface and
inside the material, viscoelastic contacts, adhesion, wear and
fretting, influence of shape, and material gradients (Heß,
2016) on adhesive strength and wear as well as damping
in oscillating contacts—this complete spectrum of essential
contact problems can be analyzed with MDR without using
complicated mathematical tools. However, integrating contact
mechanics in the basic engineering courses remains a great
challenge.

A GRAND CHALLENGE IN RESEARCH OF

FRICTION: “THIRD BODY”

Surfaces have essentially different properties compared with the
bulk of materials, and tribological loading massively changes
the properties of surface layers. The interface properties of
tribological contacts may be influenced by the composition of the
atmosphere, humidity, presence of lubricants, adsorbed layers,
and wear debris. The intermediate space of and around the
interface essentially determines the tribological properties and
is called “third body” (Godet, 1990). To exaggerate somewhat,
understanding friction means understanding the third body.
The influence of the third body in a broad sense has been
demonstrated on all scales. Thus, one of the great discoveries
of nanotribology was structural superlubricity in the contact
of well-prepared atomically smooth surfaces (Dienwiebel et al.,
2004). However, the presence of flakes of lamellar solids that
can freely rotate completely destroys the effect of superlubricity
(Filippov et al., 2008). A similar effect can be due also to other
impurities in the interface, even of single atoms (Müser et al.,
2001). Under other conditions, interfacial processes are needed to
achieve the state of low friction (Li et al., 2011). Intermixing and
surface modification are also essential in classical macroscopic
tribology, such as in combustion engines, where the formation
of a chemically modified surface layer was shown to be the key
for understanding tribological properties (Scherge et al., 2003).
Even in systems with hard coatings, where, at the first glance,
the essential role should be played by material properties, in
reality it is the surface modification of these properties which
does matter (Pastewka et al., 2010). The same is valid on the
mesoscale: surface changes lead to time dependent kinetics of
tribological properties (Ostermeyer, 2003). Contact mechanics
of rough surfaces made enormous progress in recent years,
but its necessary input, the surface topography, doesn’t remain
static in the course of a tribological process. Thus, one of the
most valuable and effective modern tools of looking into the
interface—the FFT-based BEM helps understanding the given
configuration of the surfaces but does not help understanding its
changes as it cannot describe inelastic behavior and is not capable
of describing such highly non-linear processes as formation of
wear debris and material intermixing. Finding new concepts for
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characterizing and understanding the third body is therefore an
urgent need of tribology and one of its great challenges.

We hope that now is the right time to approach this
“problem of the third body.” On the empirical level it could be
a combination of non-equilibrium thermodynamics of surface
layers, similar to the framework used in Bryant et al. (2008) and
kinetics of formation and wear of the surface layers similar to
the works of Ostermeyer and Müller (2006). For example, it is
generally recognized that in lubricated contacts the wear process
is controlled by formation and wearing out of the boundary
lubrication layer build trough mechanochemical reactions of
additives with the surfaces. The wear process of this boundary
layer could be described in the general framework suggested
in 1958 by Rabinowicz (1995) and confirmed by direct quasi-
molecular simulations in Aghababaei et al. (2016). This concept
is a generic and robust approach as it basically says that
the wear particles can appear if the stored elastic energy is
sufficient for their formation. The process of wear particle
initiation has to be completed by mechanics of wear debris in
the gap between two bodies and the transport of wear particles.
The latter could be described using a macroscopic empirical
framework similar to Schargott (2009). The reverse process of
the layer deposition can be described using the classical concept
of mechanically activated thermal processes (Spikes, 2018) which
was validated experimentally also for the particular process of
additive deposition (Gosvami et al., 2015). Detailed discussion
of the current state of tribology and its topical problems can be
found in a collaborative analysis (Vakis et al., 2018). The above
suggestions are of course only my personal attempt to predict the
future development of understanding of the third body.

GOLDEN AGE OF TRIBOLOGY

Classical tribology covering such applications as ball bearings,
gear drives, clutches, brakes, etc. was developed in the context
of mechanical engineering. But now contact mechanics and
tribology expand to qualitatively new fields of applications,
which are at the forefront of the global development trends of
technology and society, in particular micro- and nanotechnology
(Bhushan, 2017) as well as biology (Gorb, 2009) and medicine
(Willert et al., 2005; Paterson, 2007; Li et al., 2008). At
the same time, tribology developed experimental methods,
theoretical concepts, and numerical tools allowing effectively
mastering the seemingly complicated physics and mechanics of
interconnections. After intensive and controversial discussions,
recently, several attempts have been undertaken to achieve
consensus on the present state and available tools of tribology
(Müser et al., 2017; Vakis et al., 2018). These attempts and the
rapid expansion into new research areas such as nano-technology
and life sciences give hope that the coming years will be a true
golden age of tribology.
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