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Yes, there are. They result from the splitting of a large correlated contact into many small

patches. When the lubricant consists of thin solid sheets, like graphene, the patches

are expected to act independently from each other. Crude estimates for the friction

forces between hard, stiff solids with randomly rough surfaces are given, which apply

to surfaces with Hurst roughness exponents H > 0.5. The estimates are obtained by

combining realistic contact-patch-size distributions with friction-load relations deduced

for isolated contact patches. The analysis reveals that load is carried predominantly by

large patches, while most frictional forces stem from small contact patches. Low friction

is favored when the root-mean-square height gradients are small, while a large roll-off

wavelength and thus large root-mean-square roughness is predicted to lead to small

friction. Moreover, friction is found to increase sublinearly with load in a nominally flat,

structurally lubric contact.

Keywords: friction, superlubricity, contact mechanics, theory, graphene

1. INTRODUCTION

When two solids are pressed against each other, surface atoms experience large normal and lateral
forces from the counterbody in the true contact points. While normal forces on atoms in the
top layer are, for the most part, unidirectional with minor relative fluctuations, lateral forces are
expected to quickly change sign on small scales (Hirano and Shinjo, 1990; Shinjo andHirano, 1993),
because atoms are (statistically) pushed as many times to the left as to the right. If this expectation
were generally true, solid friction would be generally super small. However, plastic deformation,
e.g., in the form of dislocations that are nucleated by corner-stress concentrations (Sørensen et al.,
1996; Sharp et al., 2016) or by strong interfacial interactions (Dietzel et al., 2017) but also the
presence of loosely bonded atoms (lubricant, airborne contamination, etc.) (He et al., 1999; Dietzel
et al., 2008) can lead to a systematic interlocking of solids and thereby to significant interfacial
shear stresses and thus noticeable friction during sliding. Significant friction can also arise when
two solids with identical lattice spacings are perfectly aligned with each other or when the solids
happen to be one-dimensional (Aubry, 1983), or, in some other exotic situation that may interest
some physicists (Müser et al., 2003) but does not relate to applications.

Real solids happen to be three-dimensional and their surfaces tend to be chemically
passivated. Under these circumstances, simulations of flat, clean, crystalline, and amorphous model
systems (Hirano and Shinjo, 1990; Müser et al., 2001; Verhoeven et al., 2004; Dietzel et al.,
2018), scaling arguments (Müser et al., 2001) and even experiments on small antimony particles
adsorbed on graphite (Dietzel et al., 2008, 2013, 2017) show that friction can be a sublinear
function of the contact area. In this case, the ratio of the (static) shear force and the normal force
would disappear in the thermodynamic or macroscopic limit. The effect has been called structural
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Müser Limits of Structural Lubricity

lubricity (Müser, 2004). It is revealed most prominently by
graphite flakes rotated against a graphite substrate (Dienwiebel
et al., 2004) but also by misoriented MoS2 transfer
films (Martin et al., 1993).

Structural lubricity is a special form of superlubricity (Baykara
et al., 2018). The latter term only implies friction coefficients
below 0.01, irrespective of its molecular origin (Martin and
Erdemir, 2018). Soft-matter systems, in which a liquid lubricant
remains in the contact, such as in hydrogels or solvated
polymer brushes, may have tiny friction coefficients (Lee and
Spencer, 2008; Martin and Erdemir, 2018) but are not addressed
in this work.

The critical question to be addressed for flat, clean interfaces
is whether—or more precisely to what contact length (Sharp
et al., 2016)—do elastic restoring forces dominate the
interfacial deformation forces so that multistability is avoided?
Multistability means that different microscopic equilibrium
configurations are possible for identical macroscopic set-ups.
It is a necessary condition for hysteresis at small velocities and
thus for Coulomb friction (no or weak dependence of friction
on the sliding velocity) to occur, as explained so beautifully in
Prandtl’s work on the origin of friction (Prandtl, 1928; Popov
and Gray, 2012). Simple scaling arguments (on static friction)
suggest that elastic restoring forces should keep the upper
hand in contacts between three-dimensional crystals and that
there is a tie when one or both solids are amorphous (Müser,
2004). Even if corrections to these simple scaling laws might
always turn the interfacial interactions into the winner (Sharp
et al., 2016), friction forces should remain extremely small,
because the domains moving as a correlated, effectively rigid
unit would supposedly be extremely large. In fact, Sharp et al.
(2016) found that the (kinetic) friction between a circular
disk with a flat surface and an essentially infinite substrate
dropped exponentially with the ratio of the shear modulus G
and the local maximum traction τmax. Whenever G is given by
relatively strong covalent or metallic bonds but τmax results from
weak van-der-Waals interactions, friction forces can remain
extremely small.

The situation is sensitive to the dimension of the
objects (Shinjo and Hirano, 1993; Müser, 2004), because
one-dimensional solids become effectively softer at large
scales, while three-dimensional objects become stiffer. This
is ultimately at the root for elasticity to “outperform”
interfacial interactions up to large scales and thereby to
allow for superlubricity of three-dimensional solids. In
contrast, one-dimensional chains are rather prone to elastic
instabilities (Aubry, 1983), while the onset of (local) elastic
instabilities in more highly-dimensional objects should almost
unavoidably induce non-elastic deformations (Hammerberg
et al., 1998; Müser, 2001). This conclusion is inline with the
observation that wearless (Coulomb) friction with atomic-force
microscope tips can generally only be observed with soft
cantilevers (Socoliuc et al., 2004).

The symmetry of solids (amorphous vs. crystalline) in direct
contact matters for static friction, because it determines how
systematic lateral forces add up or cancel each other (Müser et al.,
2001; Müser, 2004). Even the shape of contact patches and their

orientation to a substrate can affect the static friction in this
regard (de Wijn, 2012, 2014).

When assessing the effect of interfacial symmetry on structural
lubricity, kinetic friction is more difficult to address than
static friction, as a better geometric interlocking (and thus
higher static friction) does not automatically lead to more
or more intense instabilities (Müser et al., 2003). In fact,
when a thin layer of weakly adsorbed molecules mediates
the locking between solids, kinetic friction is expected to
turn out substantially smaller for commensurate than for
incommensurate surfaces, while the opposite is true for their
static friction (Müser, 2002). Interestingly, the symmetry of the
surfaces appears to be surprisingly irrelevant for kinetic friction
when interlocking is due to the contact-induced generation of
dislocations (Sharp et al., 2016).

Thus, if chemically passivated solids are hard enough to not
deform plastically during contact, the only possible mechanism
mediating a significant friction stress between solids across the
interface is related to the presence of mobile atoms or molecules
in the interface. Contaminants may induce a linear scaling of
shear forces with contact area (He et al., 1999; Müser and
Robbins, 2000; He and Robbins, 2001; Dietzel et al., 2008) and
in fact, super low friction forces have first been reported to
necessitate ultra-high vacuum (Martin et al., 1993; Dietzel et al.,
2008). However, it recently turned out that contaminants (e.g.,
airborne molecules) do not have to act that way and that the
concept of structural lubricity may persist even under ambient
conditions (Cihan et al., 2016; Özoğul et al., 2017), for example,
when the contaminants can easily glide past a smooth surface, as
is the case for graphite.

Given the analysis of friction between flat solids, friction
coefficients appear possible that might be even smaller than so-
far reported experimental values near 10−3 for molybdenum
disulfide (MoS2) (Martin et al., 1993) or hydrogen-enriched
diamond-like carbon coatings (Erdemir and Eryilmaz, 2014).
However, the multi-scale roughness on almost any natural or
technical surface induces interfacial stress distributions that are
much more heterogeneous than those encountered in model
systems (Persson, 2001, 2008; Campañá et al., 2008), such as
graphene and flat antimony islands moving past graphite, or
the plane-parallel walls that are routinely studied with molecular
dynamics. Superlubricity is then suppressed even more strongly
than in the case of circular disks (Sharp et al., 2016). Individual
contact patches could act independently, so that the static friction
force rather than the kinetic friction force of individual patches
would need to be considered.

In this paper, an attempt is made to estimate the friction
coefficient for situations, in which individual contact patches
are too small for dislocations to be nucleated, while the
separation between them is large enough so that they can
act essentially independently. Solids separated by thin, solid
lubricants shouldmatch this category.Within a contact patch, the
lubricant’s large in-plane stiffness makes it act like a rigid sheet.
However, a lubricant sheet can bend rather easily outside contact
patches (Lee et al., 2010). This allows it to minimize its energy
in a given contact patch without being much constrained by the
energy minimization in an adjacent contact patch, if the given
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sheet happens to extend over more than one contact patch.While
in-plane, intra-bulk deformation might also add to the ability of
graphite flakes to locally minimize their free energy, the pertinant
transverse deflections of asperities are assumed to be negligibly
small in comparison.

2. THEORY

The following set-up, which is sketched in Figure 1, is considered
in the theory: the substrate is treated as an infinitely stiff solid
composed of discrete atoms. It is supposed to adhere weakly to
a solid, two-dimensional lubricant, which is going to be called
graphene, because graphene is the most appropriate material
for the theoretical considerations pursued here. We will be
predominantly concerned with estimating themaximumpossible
lateral forces between the stiff substrate and graphene. The layer
separates the substrate from a rough, but elastically deformable
counterface. Due to its compliance, the top layer is assumed to be
able to accommodate the corrugation of graphene much better
than the more rigid substrate, such that slip occurs between the
substrate and graphene. None of the results identified hereafter
would be affected if compliance or elasticity were divided up
more evenly between the two solids in contact. However, the
treatment would become rather cumbersome and thereby its
simplicity be hidden.

Three main assumptions are made, which the author of this
paper believes to be reasonable even if they are uncontrolled
approximations. (i) The graphene sheets are so large that in
general not more than one sheet resides within a connected
contact patch. (ii) A given sheet can accommodate each
microscale contact patch to essentially the best of its abilities
without being affected by the geometry of adjacent patches,
i.e., it can move back and forth small distances within a patch
without having to pay significant elastic or surface energy for
the associated deformation (in particular bending) between the
patches. (iii) Within a contact patch, the in-plane bonds of
graphene are too stiff to allow for elastic multistability. Free
bending of the sheet is suppressed by the relatively large normal
stresses within a patch, but possible, for example in-between the
two stress bumps in the double asperity contact of Figure 1.

Last but not least, a model for the relation between local
normal and lateral forces needs to be identified. Two extreme
points of view can be taken toward this end. One extreme would
be to claim that in contact, the lateral force of a substrate on a

FIGURE 1 | Schematic of the considered system: flat, rigid substrate

separated from a rough, elastic indenter through two-dimensional solid

lubricant particles. Normal forces on atoms can be estimated from continuum

theory. Lateral forces fluctuate wildly from one atom to the next whenever the

(projected) lattice constants of the solid bodies do not match closely.

graphene atom can only depend on an atom’s lateral position
relative to the substrate irrespective of the normal force squeezing
it against the substrate. This would automatically lead to a shear
force independent of the normal force and perhaps be a model
assumption favored by those who believe that microscopic shear
stresses are independent of the microscopic normal stresses.
This viewpoint indeed makes sense if adhesive forces exceed the
external forces, e.g., in soft-matter systems or potentially also
for flat solids moving under their own adhesive force over a
surface. The other extreme view would be to treat the interactions
between chemically passivated solids in zones of high pressures
within a hard-disk picture. In this case the determination of
the relation between normal and shear forces reduces to a
geometrical exercise, whose result is that the tangential force is
the tangent of an effective slope times the normal force. The same
relation is obtained in the case of short-range repulsion and large
contact pressures (Müser, 2008).

To incorporate the two just-discussed limits, the following
(interfacial) lateral force component fnx of atom n is assumed

fnx = un · µm ·
(

fnz + f offz

)

, (1)

when the atom is squeezed at a random lateral position with a
normal force fnz against a rigid substrate, while f offz invokes an
additional offset to the lateral force, which can be due to adhesion.
Here µm can be interpreted as a microscopic friction coefficient
(which would be the static friction coefficient for commensurate
surfaces), while un can be treated as a random number of zero
mean distributed on (−1,1) for non-commensurate surfaces. In
a first approximation, un can be treated as uniformly distributed.
In section 2.2, we show that a more realistic distribution does not
lead to relevant changes of the presented treatment.

Determining a reasonable value for µm is certainly more
important than reflecting the correct distribution function of un.
The classical hard-sphere value forµm is close to 0.3, which is also
obtained for Lennard-Jones atoms moving past Lennard-Jones
systems. The graphene bond, however, is relative strong while the
bond length is relatively short. This leads to a reduction of µm,
which is estimated to be 0.1 from a set of small simulation runs
of various atoms sliding over graphite.

Estimating a net friction force from Equation (1) can be
broken up into three steps. First, the distribution of contact patch
size needs to be identified. Second, an expression for the rms-
lateral force in a contact patch of size A carrying a load L needs
to be found. Third, the results from the first two steps need to be
merged and ballpark estimates for materials coefficient be made.

Since the main target of this paper is the analysis of rough,
stiff contacts, adhesion is assumed to be small enough to barely
affect the contact-patch statistics, i.e., adhesion should be small
enough so that in the relevant load range the proportionality
coefficient between true contact area and load is not increased
by more than order 10% compared to the adhesion-free case.
However, adhesion will be included in as far as that adhesive
effects can increase the rms lateral force of a patch of a given size
A. Moreover, it will be assumed that the normal pressure is small
enough for the relative contact area to bemuch less than unity but
sufficiently large for more than two or three meso-scale asperities
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to be in contact so that a linear dependence of the real contact
area on load is a good approximation (Pastewka et al., 2013).

2.1. Contact-Patch Statistics
Many surfaces in nature and technology can be described as being
randomly rough. The most common characterization is in terms
of their height spectrumC(q) (Persson, 2014), which is essentially
defined with four numbers, that is, the Hurst roughness exponent
H, the short wavelength cutoff λs, the roll-off wavelength λr,
and the spectrum at either one of the two wavelengths, or,
alternatively, the root-mean-square height gradient ḡ. The part
of the spectrum, which is the most relevant to this work, is
the so-called self-affine branch, on which C(q) is proportional
to q−2·(1+H), i.e., for λs < 2π/q ≤ λr, where q denotes the
magnitude of a given wavevector.

In addition to the four numbers needed to define C(q),
it also matters to some degree if the transition from self-
affine scaling to the roll-off regime is smooth or abrupt.
The findings for the contact-patch size distribution n(A)
summarized in this section are predominantly based on
computer simulations (Müser and Wang, 2018) using the more
realistic smooth transition (Palasantzas, 1993; Jacobs et al., 2017).

Computer simulations of continuum models for surfaces
reveal three scaling regimes for the n(A) dependence. At small
A, n(A) is approximately constant (Campañá, 2008), up to a
small-scale cross-over area of Müser and Wang (2018)

As ≈
3π(2−H)

16κ2(1−H)
λ2s , (2)

where κ is the proportionality coefficient relating the true relative
contact area ar and the mean macroscopic pressure p0 via

ar =
κp0

E∗ḡ
. (3)

The value of κ turns out close to two for typical values of Hurst
exponents. Thus, if the generic value of H = 0.8 is used, As turns
out close to λs.

Individual contact patches of size A < As show a relation
between contact area and load similar to that of Hertzian
contacts. Note, however, that the identification of this scaling
regime necessitates the contact mechanics treatment to use
discretizations that are much finer than λs. Real surfaces appear
to show self-affine scaling of the height topography almost
down to the smallest measurable scales, i.e., even down to the
nanometer scale (Jacobs et al., 2017). It could be argued that λs
was only introduced as ameans to have a well-defined continuum
model for contact mechanics, in which contact patches are true
areas rather than isolated points. Because of the self-affine branch
extending almost to atomic scales, it is doubtful that the small-A
scaling regime exists in reality. In fact, when the self-affine scaling
was taken down to (twice) the discretization length, a Hertzian
scaling regime was not identified (Hyun et al., 2004). For this
reason, but also because the net load carried by the (hypothetical)
quasi-Hertzian patches is minuscule and even more importantly
because thermal activation most certainly assists the sliding

motion in sub-nanometer scale contacts, the effect of these ultra-
small patches on both friction and normal force will be ignored.
Instead, it will be assumed that a contact area of A > Amin is
needed to convey a (quasi-) static shear force in a given contact
patch, where Amin should be larger but not much larger than
atomic dimensions. In the following, Amin will be set equal to the
(hypothetical) As and estimated to be of order 1 nm2.

The distribution of medium- and large patches was observed
to obey (Müser and Wang, 2018)

n(A) = n (Aref)

(

Aref

A

)2−H/2

e−(A−Aref)/Amax , (4)

where Aref is a reference patch size on the self-affine scaling
branch and Amax is a characteristic (maximum) patch size. Thus,
the probability for patch areas exceeding Amax is suppressed
exponentially. To keep the closed-formmathematical description
simple, the exponential factor in Equation (4) will therefore
be replaced with a Heaviside step function 2(Amax − A). A
numerical analysis of the relative errors of this approximation on
the final friction coefficient shows that this approximation only
leads to effects of the order of 10%.

A central question to address is, how large is Amax? For H =
0.8, Amax was found to depend on the ratio ǫf ≡ λs/λr with a
rather steep power law of Amax ∝ ǫ

β

f , where β(H = 0.8) =
1.5 ± 0.1, and a more moderate power law on the normal stress
through Amax ∝ p

γ
0 with γ (H = 0.8) = 0.55 ± 0.05 for normal

pressures well below the pressure, at which contact percolates.
Combining these two laws results in

Amax = g(H) · ǫβ(H)
f ·

(

κp0

E∗ḡ

)γ (H)

· λ2s (5)

The simulation data presented in reference Müser and Wang
(2018) is consistent with a numerical value of g(H = 0.8) ≈
0.023. When p0 is so small and/or ǫf so large that Amax does not
turn out at least ten times As, the conditions for the derivation
of Equation (5) are obviously violated. Likewise, Amax should not
be anywhere near λ2r . Sensitivity by the reader regarding the used
parameters and range of applicability is required.

Similar relations as that in Equation (5) are expected to
hold for other Hurst exponents >0.5, however, with changed
numerical values for g(H), β(H), and γ (H). The reason why
interfaces with a Hurst exponent less than one half should behave
differently than those above it is that the elastic energy in full
contact stems predominantly from the long- (short-) wavelength
roughness above (below) H = 0.5, Indeed, Amax reveals a power
law dependence neither on ǫf nor on p0 for H = 0.3 (Müser and
Wang, 2018).

2.2. Relation Between Load and Friction
Force in a Meso-Scale Patch
This section is concerned with the question of how the mean-
square force within a contact patch increases with its area
under the assumption that the area is small enough to prevent
the nucleation of a dislocation. To facilitate the treatment, the
adhesion-free case is considered first.
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2.2.1. Adhesion-Free Case
In the hard-disk, adhesion-free limit, the effective normal offset
force f offz is neglected. Given Equation (1), the square of the lateral
force that the substrate exerts onto a randomly placed graphene
sheet in contact patch p then reads

F2lp = µ2
m





∑

n∈patch p

unzfnz





2

. (6)

To calculate the expectation value of that expression, we neglect
correlation of the lateral forces acting on adjacent graphene
atoms. This assumption is ultimately justified when the substrate
has significant elements of randomness, as it occurs in disordered
systems. [Commensurate contacts are not considered here, also
because the lubricant patches and the two (single-crystal, but
randomly rough) confining walls would have to have identical in-
plane elementary cells and all three would have to be perfectly
oriented—a situation that appears to be rather irrelevant].
Equation (6) then simplifies to

〈

F2lp

〉

= µ2
m

〈

∑

n∈patch p

u2nzf
2
nz

〉

. (7)

≈ µ2
mNp

〈

u2n
〉 〈

f 2nz
〉

patch p
, (8)

= µ2
mNp1A2 〈

u2n
〉

〈σ 2〉patch p. (9)

By going from Equations (7, 8), it was assumed that the
relative lateral position of graphene atoms to substrate atoms is
independent of pressure, which can be motivated by the strong
in-plane bonds of graphene. In Equation (9), the average over
the normal stress is taken over the contact patch area in the
continuum approximation and a constant area 1A is assigned
to each graphene atom. Moreover σ refers by default (that is,
when no indices are added) to the normal stress, while 〈. . . 〉patch p

indicates an average over patch p.
Thus, to evaluate typical lateral forces, we need to evaluate

the second moment of the random numbers un and the second
moment of the stress in individual patches. The second moment
of a uniform random number on (−1, 1) is 1/3. If we had
distributed un according to un = cos(ϕn), where ϕn is a uniform
random number on (0, 2π) the result would have been 1/2. If
instead, it had been chosen as un = cos(ϕ(x)

n ) cos(ϕ
(y)
n ), it would

have been 1/4. Both numbers results in a negligible difference
for the final friction coefficient in the semi-quantitative analysis
presented here.

The second moment of the stress in a patch as a function of
its patch size Ap needs to be determined next. The overwhelming
part of contact points resides in patches belonging to the Pr(A) ∝
A−(2−H/2) scaling regime. Campana observed a linear relation
between load and contact area on that branch with rather
small scatter in the proportionality constant from one patch to
the next (Campañá, 2008). Our own simulations supported his
finding (Müser and Wang, 2018). It is therefore meaningful to
approximate the distribution of normal stresses with the function
that describes the full stress distribution.

Stress distributions in elastic contacts are well-described
by Persson (2001) and Campañá and Müser (2007)

Pr(σ ) ∝ e−2(σ−p0)2/(E∗ ḡ)2 − e−2(σ+p0)2/(E∗ ḡ)2 . (10)

Evaluating the second moment of σ over the ideal distribution
and normalizing it to the true contact area, which satisfies ar ≈
2p0/E∗ḡ (assuming that p0 ≪ E∗ḡ),

〈

σ 2〉 ≈
1

√
2π

(E∗ḡ)2 (11)

is obtained while the first moment of the normal stress reads
〈σ 〉 ≈ E∗ḡ/2.

Putting all things together and forming the ratio µ ≡
√

〈F2rp〉/Lp, where Lp is the load carried by the meso-scale

patch, yields

µ

µm
=

√

2

3 ·
√
2π

√

Np

≈ 0.5 ·
√

Np. (12)

Except for a slightly reduced pre-factor of ≈ 0.5, this relation is
identical to that obtained for a delta-distributed normal force. A
similar result is obtained for any other stress distribution that
does not change with contact area and that is not too broad.
Thus, corrections to the normal stress distribution used here can
scarcely matter.

2.2.2. General Case
The calculation starting from Equation (6) can be repeated for
the general case by replacing fnz with fnz + f offz . The mean-square
lateral force in patch p is readily obtained as

〈F2lp〉 = µ2
m · 〈u2n〉 ·

(

〈f 2nz〉 + 2〈fnz〉 · f offz +
(

f offz

)2
)

· Np (13)

Results for 〈u2n〉 or 〈f 2nz〉 can then be taken from the above
treatment of the adhesionless case.

2.2.3. Sanity Check
It is certainly not possible to compute high-precision lateral
forces from models that are as simple as the one pursued here. It
might yet be useful to check if the correct order of magnitude of
experimental results is reproduced. Toward this end, the model is
now applied to estimate the friction between a disordered cluster
sitting under its own adhesive load on a graphite substrate.

In order to conduct a comparison, an adhesive stress needs to
be ascertained first. Assuming 12-6 Lennard Jones interactions
between atoms residing in opposite solids, the surface energy
between two planes (after integrating over the volume of the
counterbody and the line below a material point at the surface)
is obtained to

γ (z) =
4 · 22/3

3
· γ0 ·

{

(

ζ

z

)8

−
(

ζ

z

)2
}

, (14)
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where γ0 is the true cleavage energy and σ can be gauged to be
ζ = 3

√
2zeq so that a realistic interlayer spacing (zeq = 3.4 Å for

graphite) is obtained. γ0 = 0.37 J/m2 is taken for the cleavage
energy of graphite (Wang et al., 2015).

After differentiation of the second summand on the r.h.s. of
Equation (14) with respect to z, the magnitude of the adhesive
pressure per unit area at the equilibrium distance thus turns out
to be

pa =
16 · 21/3

3
·

γ0

zeq
. (15)

The numerical value for the case study conducted here is about
1 GPa. It is obtained for graphite interacting with graphite,
but a similar order of magnitude should be obtained, for
example, for antimony on graphite. Both fall in-between a clear
classification of being insulators or metals and thus have a similar
electronic polarizability, which determines the magnitude of
dispersive interactions.

Using the result from Equation (13), the (maximum) shear
stress in the absence of an external normal force is then simply
estimated to be

τ = µm · pa ·
√

1A

2 · A
, (16)

where 1A is the surface area per graphite atom.
Using an atomic friction coefficient of µm = 0.1, the correct

value of 1A = 2 · a2ip/
√
3, where aip = 1.4 Å is taken as

the in-plane distance between two graphite atoms, the relation
τ = (0.1/

√
A) J/m2 is obtained. This ballpark estimate fits

experimental results extremely well, see, e.g., the structural-
lubricity branches shown in Figure 2 of reference Dietzel et al.
(2017). While difficult to prove, the author wishes to state that
none of the (many) ad-hoc numbers used in this ballpark estimate
had been adjusted to achieve this level of agreement with the
experimental data. The level of agreement certainly benefits from
some fortuitous error cancelation, also because the repulsion in
the 12-6 Lennard Jones interaction law (the starting point for
the pa = 1 GPa-estimate) is significantly less accurate than
the exponential repulsion in a Buckingham potential, provided
the 1/R6 singularity is screened in the Buckingham potential at
small R.

2.3. Merging Single-Patch Friction Laws
With Patch-Area Statistics
The results from sections 2.1, 2.2 remain to be combined. In the
limit of weak coupling between adjacent patches, each isolated
patch is supposed to contribute to the maximum of its ability so
that the total friction force and total load need to be summed up
over the various patch-size scaling regimes. In other words, each
graphite sheet is assumed to resist the sliding motion with the
maximum of its abilities, or more precisely, with the rms of the
lateral force. When replacing a sum over discrete patches with a
continuous integral, net force components of

〈Fα〉 =
∫

dAn(A)Fα(A), (17)

are obtained.
As argued in section 2.1, the dominant contribution for

both normal and lateral force stems from the self-affine scaling
branch of n(A). The central difference between normal and lateral
force is that the normal load grows linearly with A while the
lateral force only scales with

√
A. As a consequence, the load

is carried predominantly by the large patches for the n(A) =
c · A−2+H/2 relation:

Fz =
2 · c · Fcharz

H
·

{

(

Amax

1A

)H/2

−
(

As

1A

)H/2
}

· (18)

where c is a normalization constant and Fcharz a characteristic
normal force per (surface) atom, i.e.,

Fcharz = E∗ḡ1A/κ (19)

for a randomly rough surface.
In contrast, the lateral force turns out to be dominated by the

small patches for H < 1:

Fx =
2 · c · Fcharx

1−H
·

{

(

1A

As

)
1−H
2

−
(

1A

Amax

)
1−H
2

}

, (20)

where the characteristic atomic lateral force can be deduced to be

Fcharx =
µm√
2

√

(

Fcharz

)2 + 2Fcharz pa + p2a . (21)

When H is very close to unity, Equation (20) is well
approximated by

Fx(H → 1) = c · Fcharx · ln(Amax/As). (22)

Defining the friction coefficient as the ratio of lateral and normal
force gives

µ ≈
Fcharx

Fcharz

·
H

1−H

√

1A

As
·
(

As

Amax

)H/2

(23)

for Hurst exponents that do not approach H = 1 too closely
from below,

At this point, elaborate guesses could be inserted for the
various quotients that arise in Equation (23). However, a quick
estimate might be more instructive. The ratio Fcharx /Fcharz will be
in the order of 0.1. For H = 0.8, the ratio H/(1 − H) is equal
to 5. The minimum size of a contact patch that does not move
in a thermally activated matter is of order As = π · 1 nm2,
while the surface area associated with a single (graphite) atom
is roughly 1A = π · 3 Å2 (bond length of 1.4Å and a packing
fraction of the honeycomb lattice of 0.68). The crucial number
is the value for Amax. According to a review on solid friction
and contact aging (Baumberger and Caroli, 2006), it usually lies
in the micrometric range, so let us call a typical radius 1 µm.
This turns the last factor of the r.h.s. of Equation (23) into
1/1,000H . Combining all these factors yields µ = 3.5 · 10−4. This

Frontiers in Mechanical Engineering | www.frontiersin.org 6 May 2019 | Volume 5 | Article 28

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Müser Limits of Structural Lubricity

value should be clearly below the detection limit for macroscopic
friction experiments. At the same time, it only applies to the
friction between two nominally flat surfaces and not to a pin-on-
disk geometry. For the latter, friction coefficients should turn out
distinctly larger, because many small contact patches should exist
near the macroscopic contact line.

It is interesting to note that the precise estimate for the size As

is not particularly relevant. It almost enters only in a logarithmic
fashion into Equation (23). For H = 0.8, µs is predicted to
decrease only by 25% if As is increased by a factor of ten. The
only truly critical variable in Equation (23) is Amax.

Rather than taking a potentially arbitrary number from
experiment, results for Amax obtained from contact-mechanics
simulations can be used, i.e., those summarized in section 2.1.
However, the author fears that the resulting formula might be
over-interpreted even if it is labeled with clear caution signs.
Mathematically literate readers, however, are invited to insert
the pertinent expression for Amax into Equation (23). They will
find that the friction coefficient in the model is predicted to
decrease with a weak power law of the nominal contact pressure
squeezing the surfaces together. At the same time, µs is found
to decrease quite quickly with the ǫf, i.e., for H = 0.8 roughly
according to ǫ0.78f . This leads to the counterintuitive result that
more roughness (on large wavelength) leads to less friction.
Yet, roughness at small wavelengths increases friction—unless
adhesive effects start to contribute significantly. The important
restriction for these results to be borne out experimentally is that
the dominant source of friction is a structural interlocking in the
absence of dislocations and contaminants on the surfaces.

3. DISCUSSION AND CONCLUSIONS

In this work, a theory for structural lubricity of hard randomly
rough surfaces that are lubricated with thin lamellar solids
(graphene) was developed. The main assumptions entering the
theory was that each individual contact patch is structurally lubric
and that non-connected contact patches could act independently
from each other. This is because different patches are lubricated
by different sheets and/or thin sheets can buckle in-between two
patches so that they are able to accommodate the local interface
to the best of their abilities and as if there were no constraints on
the sheet locally from other patches.

This study also included a back-of-the-envelope type
calculation for the friction of flat, amorphous antimony particles
moving in ultra-high vacuum on graphite (Dietzel et al., 2017).
Results turned out rather promising thereby giving credibility to
the possibility of structural lubricity.

The theory finds the friction coefficient to quickly decrease
with the characteristic contact patch size, which itself increases

with load. Thus, if none of the usual friction mechanisms
matters significantly, the ratio of lateral and normal force
should decrease with increasing load, up to the point
where the externally imposed stress induces dislocations.
Assuming that maximum or characteristic contact patches
are micrometer sized, a minimum friction coefficient of order
5 · 10−4 is identified for nominally flat surfaces. For larger
maximum contact patches, plastic deformation might be
difficult to avoid.

A potentially counter-intuitive result of the theory is that
increasing the roll-off wavelength λr and thus the rms-roughness
is predicted to reduce friction, at least until plasticity sets in. The
reason is that larger values of λr (while keeping the surface height
spectrum at smaller wavelengths unchanged—whereby the rms-
gradient would remain essentially unaltered) increases the typical
distance between meso-scale contact patches. As a consequence,
individual contact patches tend to carry more load, whereby
the characteristic size of individual small-scale patches within
the meso-scale patch increases. Finally, large individual contact
patches have a small ratio of (maximum) shear forces and load.

For pin-on-disk type experiments, the microscopic scaling
theory would have to be folded with the macroscopic Hertzian
stress profile of the tip, as done, for example, in reference Müser
(2016). It seems clear that this procedure leads to many more
small patches near the (macroscopic) contact line and thereby
to a substantial increase of the estimated friction coefficient. In
addition, the predicted power law dependence of µ on the load
would become (even) weaker.

Obviously, the results presented in this paper should be taken
as crude order-of-magnitude guesses, even if much effort was
made to provide reasonable pre-factors. In fact, most of the effort
was made to provide reasonable pre-factors, which hopefully did
not hide the simplicity of the scaling arguments. It would yet be
interesting to apply the theory to a well-characterized contact,
in which height spectra—or even better height topographies—
of both surfaces are provided. In the case of a surface whose
profile violates the random-phase approximation and/or for
the regular pin-on-disk measurement, a full contact-mechanics
analysis might have to be conducted first so that contact-patch
statistics are accurate.
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Özoğul, A., İpek, S., Durgun, E., and Baykara, M. Z. (2017). Structural
superlubricity of platinum on graphite under ambient conditions: the effects
of chemistry and geometry. Appl. Phys. Lett. 111:211602. doi: 10.1063/1.50
08529

Palasantzas, G. (1993). Roughness spectrum and surface width of self-affine fractal
surfaces via the k-correlation model. Phys. Rev. B 48, 14472–14478.

Pastewka, L., Prodanov, N., Lorenz, B., Müser, M. H., Robbins, M. O., and
Persson, B. N. J. (2013). Finite-size scaling in the interfacial stiffness of
rough elastic contacts. Phys. Rev. E 87:062809. doi: 10.1103/PhysRevE.87.06
2809

Persson, B. N. J. (2001). Theory of rubber friction and contact mechanics. J. Chem.

Phys. 115:3840. doi: 10.1063/1.1388626
Persson, B. N. J. (2008). On the elastic energy and stress correlation in the contact

between elastic solids with randomly rough surfaces. J. Phys. Condensed Matter

20:312001. doi: 10.1088/0953-8984/20/31/312001
Persson, B. N. J. (2014). On the fractal dimension of rough surfaces. Tribol. Lett.

54, 99–106. doi: 10.1007/s11249-014-0313-4
Popov, V. and Gray, J. (2012). Prandtl-Tomlinson model: history and applications

in friction, plasticity, and nanotechnologies. ZAMM J. Appl. Math. Mech. 92,
683–708. doi: 10.1002/zamm.201200097

Prandtl, L. (1928). Ein Gedankenmodell zur kinetischen Theorie der festen Körper.
Z. Angew. Math. Mech. 8:85.

Sharp, T. A., Pastewka, L., and Robbins, M. O. (2016). Elasticity limits
structural superlubricity in large contacts. Phys. Rev. B 93:121402.
doi: 10.1103/PhysRevB.93.121402

Shinjo, K. and Hirano, M. (1993). Dynamics of friction: superlubric state. Surf. Sci.
283, 473–478.

Socoliuc, A., Bennewitz, R., Gnecco, E., and Meyer, E. (2004). Transition
from stick-slip to continuous sliding in atomic friction: entering
a new regime of ultralow friction. Phys. Rev. Lett. 92:134301.
doi: 10.1103/PhysRevLett.92.134301

Sørensen, M. R., Jacobsen, K. W., and Stoltze, P. (1996). Simulations of atomic-
scale sliding friction. Phys. Rev. B 53, 2101–2113.

Verhoeven, G. S., Dienwiebel, M., and Frenken, J. W. M. (2004). Model
calculations of superlubricity of graphite. Phys. Rev. B 70:165418.
doi: 10.1103/PhysRevB.70.165418

Wang, W., Dai, S., Li, X., Yang, J., Srolovitz, D. J., and Zheng, Q. (2015).
Measurement of the cleavage energy of graphite. Nat. Commun. 6:8853.
doi: 10.1038/ncomms8853

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Müser. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org 8 May 2019 | Volume 5 | Article 28

https://doi.org/10.1063/1.5051445
https://doi.org/10.1103/PhysRevE.78.026110
https://doi.org/10.1209/0295-5075/77/38005
https://doi.org/10.1088/0953-8984/20/35/354013
https://doi.org/10.1038/ncomms12055
https://doi.org/10.1103/PhysRevB.86.085429
https://doi.org/10.1103/PhysRevB.90.039906
https://doi.org/10.1103/PhysRevLett.92.126101
https://doi.org/10.1021/acsnano.7b02240
https://doi.org/10.1088/1361-6528/aaac21
https://doi.org/10.1103/PhysRevLett.111.235502
https://doi.org/10.1103/PhysRevLett.101.125505
https://doi.org/10.1007/s40544-014-0055-1
https://doi.org/10.1016/S0167-2789(98)00132-8
https://doi.org/10.1023/A:1009030413641
https://doi.org/10.1103/PhysRevE.70.026117
https://doi.org/10.1088/2051-672X/aa51f8
https://doi.org/10.1126/science.1184167
https://doi.org/10.1126/science.1153273
https://doi.org/10.1103/PhysRevB.48.10583
https://doi.org/10.1063/PT.3.3897
https://doi.org/10.1023/A:1009086631388
https://doi.org/10.1103/PhysRevLett.89.224301
https://doi.org/10.1209/epl/i2003-10139-6
https://doi.org/10.1103/PhysRevLett.100.055504
https://doi.org/10.1007/s11249-016-0750-3
https://doi.org/10.1103/PhysRevB.61.2335
https://doi.org/10.3390/lubricants6040085
https://doi.org/10.1103/PhysRevLett.86.1295
https://doi.org/10.1063/1.5008529
https://doi.org/10.1103/PhysRevE.87.062809
https://doi.org/10.1063/1.1388626
https://doi.org/10.1088/0953-8984/20/31/312001
https://doi.org/10.1007/s11249-014-0313-4
https://doi.org/10.1002/zamm.201200097
https://doi.org/10.1103/PhysRevB.93.121402
https://doi.org/10.1103/PhysRevLett.92.134301
https://doi.org/10.1103/PhysRevB.70.165418
https://doi.org/10.1038/ncomms8853
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles

	Are There Limits to Superlubricity of Graphene in Hard, Rough Contacts?
	1. Introduction
	2. Theory
	2.1. Contact-Patch Statistics
	2.2. Relation Between Load and Friction Force in a Meso-Scale Patch
	2.2.1. Adhesion-Free Case
	2.2.2. General Case
	2.2.3. Sanity Check

	2.3. Merging Single-Patch Friction Laws With Patch-Area Statistics

	3. Discussion and Conclusions
	Author Contributions
	Acknowledgments
	References


