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The Ragone relation is a facile approach to assess and compare electro-chemical battery

performance in terms of two critical performance parameters: power density and energy

density. This power and energy nexus is equally relevant for thermal energy storage

materials for thermal management applications that require a balance between energy

storage capacity and on-demand cooling or heating rates. Here, thermal energy storage

is evaluated for sensible heating and for phase-change materials (PCMs). We propose an

analytic expression using a lumped mass model for thermal storage through an analogy

with heat diffusion that allows for intuitive mapping of materials and components in

power-energy space. In addition, a previously proposed figure-of-merit, ηq, describing

the intrinsic capability of PCMs to rapidly absorb or discharge heat is placed in the

context of the thermal Ragone (power-energy) relation. This figure of merit serves as a

proxy for the cooling power of PCMs and single-phase materials to store thermal energy.

Thus, ηq plotted against energy density can serve graphically to illustrate performance

tradeoffs between different thermal storage materials, as well as composites composed

of different materials.

Keywords: thermal energy storage (TES), phase change material (PCM), composite thermal energy storage

materials, thermal network analysis, Ragone plot

INTRODUCTION

A half century ago, Ragone published an overview of electro-chemical and fuel-cell batteries
(Ragone, 1968) to compare power and energy performance of batteries in electrical automotive
applications, prior to the emergence of plug-in electric vehicle (EVs) (Rotering and Ilic, 2011).
This graphical comparison, later termed a “Ragone plot,” visibly and quantitatively represents
how different battery technologies compare relative to these two performance metrics for
EVs. Automotive applications are particularly demanding for batteries because of the need for
both range and acceleration (Kroeze and Krein, 2008). Matching of batteries to high-current
motors is particularly challenging because of the former’s slow response time and intrinsic
direct-current output.

Thereafter, the Ragone plot has become an essential mapping method to compare different
electrochemical energy storage technologies. For example, Christen and Carlen (Christen and
Carlen, 2000) modeled the performance of energy storage devices with physical fundamentals,
and later Christen and Ohler proposed optimized energy storage devices based on the Ragone
plot (Christen and Ohler, 2002). Simon and Gogotsi (Simon and Gogotsi, 2008) considered
electrochemical capacitors to motivate material research directed toward high power and energy
applications. Etacheri et al. invoked a Ragone plot (Etacheri et al., 2011) to assess leading research
on lithium (Li)-ion batteries. Winter and Brodd (Winter and Brodd, 2004) used the approach to
review battery and other storage technologies including fuel cells.

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2019.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2019.00029&domain=pdf&date_stamp=2019-06-04
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tsfisher@ucla.edu
https://doi.org/10.3389/fmech.2019.00029
https://www.frontiersin.org/articles/10.3389/fmech.2019.00029/full
http://loop.frontiersin.org/people/664447/overview
http://loop.frontiersin.org/people/287643/overview
http://loop.frontiersin.org/people/126454/overview


Yazawa et al. Ragone Relations for Thermal Energy Storage

GRAPHICAL ABSTRACT | Lumped thermal capacitance is placed in the

middle of thermal conduction in order to effectively match the time constant in

dynamic thermal response.

Here, we focus on thermal energy storage for potential use
in a variety of time-dependent thermal energy and thermal
management systems in which heat must be efficiently stored
and transferred. Conventional thermal energy storage has been
studied as an inexpensive alternative to electro-chemical batteries
as a form of energy storage and sometimes as a provider of larger
energy capacity, e.g., geothermal energy (Lund and Freeston,
2001) and other thermal energy storage technologies (Guo and
Goumba, 2018). As with supercapacitors in power electronics,
an emerging class of problems involving pulsed forms of power
requires high thermal power density over short time periods.
Inevitably, approaches to increase the power density of thermal
energy storage (use of larger volume fraction of heat spreaders,
inclusion of high thermal conductivity particles or fibers, or the
use of low-melting point alloy PCMs) tend to increase power
density at the cost of energy storage density. In such cases, the
balance between energy and power becomes critical, particularly
for space- or weight-constrained systems. We therefore provide
here a thermal Ragone analysis to identify the important
attributes for material research and system development.

This article first considers the close analogy between thermal
and electrical systems, and provides a comparison and discussion
of their similarities and differences (Thornton et al., 1986; Ikeda
et al., 2010). The paper then presents metrics for thermal storage
based on conventional solid materials, followed by consideration
of phase-change materials (PCMs) (Cabeza, 2015) specifically
used in time-dependent thermal management. A figure of merit
(ηq) based on the analytical solution to the Neumann-Stefan
phase-change problem developed in prior work (Shamberger,
2016) is placed in the Ragone context to consider single-phase
materials along with PCMs on an equivalent basis.

MODELING OF DYNAMIC
CHARACTERISTICS

Electro-Thermal Analogy
The concept of energy storage capacity is common to both
thermal and electrical regimes. For either conducting or

TABLE 1 | Properties and characteristics in the thermal and electrical analogy

based on an energy flow in a rectangular solid with length L [m] and

cross-sectional area A [m2].

Thermal Electrical

Potential T [K] V [V]

Current Q̇ = T/Rth [W] I = V/Rel [A] = [W/V]

Capacitance Cth = ρLAcp [J/K] Cel = εA/L [F] = [J/V2 ]

Resistance Rth = L/kA [K/W] Rel = L/σA [�] = [V2/W]

Time constant τth = Cth × Rth [s] τel = Cel × Rel [s]

Diffusivity αth = k/ρcp [m2/s] αel = L2σ/ε [m2/s]

where ρ is density [kg/m3 ], cp is specific heat [J/kg/K], k is thermal conductivity [W/m/K],

and α is thermal diffusivity [m2/s].

insulating materials, the analogy described herein is generally
applicable for solids or fluids at rest (i.e., no convection or
advection), as there is no equivalent to convective processes
in the electrical regime. Consequently, some electrical circuit
analysis methods are generally applicable for transient and
steady-state energy analysis of thermal problems (e.g., Robertson
and Gross, 1958). In practice, thermal problems generally depend
on the three-dimensional geometry of the substance. Hence,
here we assume lumped thermal properties to better connect
with the electrical analogy. Table 1 identifies equivalent terms
in this analogy, including related SI units. Thermal (electrical)
parameters use temperature (voltage) as the potential, where a
thermal (electrical) current is driven by a spatial gradient in
those potential terms. Capacitance and resistance terms refer
to accumulation of heat (charge), or resistance to a thermal
(electrical) current, respectively. In general, electrical parameters
contain an extra potential term in the denominator that derives
from the fact that the electrical terms involve the flow of charge
instead of energy.

In thermal management of electronics, for example, the heat
flow quantity allowed for conduction path in limited dimensions
is an important factor of technology. This applies to thermal
storage where the thermal current behaves similar to electrical
current in electrochemical batteries. Trade-off between heat
power and energy capacities is qualitatively equivalent to that of
electrochemical batteries for EVs.

Lumped Thermal Model
To clarify the nature of dynamic thermal storage, we first analyze
a case of a lumped single-phase thermal mass, applying the
equivalent circuit approach drawn from the electrical analog.
We consider a volume consisting of a rectangular block with
a geometry of length L [m] along the heat flow direction, and
cross-sectional area A [m2] perpendicular to the flow direction,
and with adiabatic lateral and terminal boundaries. The initial
temperature of the block is uniform at T0. The heat contact
face is defined with a Dirichlet boundary condition, where the
temperature is given as a constant for t > 0 for sufficiently long
times. The opposite side is considered to experience a Neuman
boundary condition, where the temperature gradient is always
zero (dT/dx = 0). In energy charging mode, a temperature
reservoir at Th contacts at time zero and is thereafter maintained.
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The temperature response at the other end, as well as the energy
storage and rate of energy storage is of primary interest. At
steady state (t → ∞), the temperature approaches T (L, t) →
Th, representing full charging capacity. For the case of cold
reservoir contact (Tc < Th), the approach is similar but with heat
extraction until thermal equilibrium is achieved. Figure 1 shows
a conceptual schematic of the physical representations.

A simple thermal circuit diagram can be developed in an
analog to electrical circuits. In this first-order model, a lumped
capacitance exists within the total thermal resistance (R = R1 +
R2) across the object. The lumped thermal mass should not be
either at the contact or the opposite end, as shown in the circuit
diagram of Figure 2.

By utilizing the Thermal Quadrupoles method (Maillet et al.,
2000), both resistances R1 and R2, as well as the capacitance Ceff,
can be cast in terms of impedances via a Laplace transform, with
Z1, Z2, and Z3 described by:

Z1 = Z2 =
cosh (γL) − 1

kAγ sinh(γL)
,Z3 =

1

kAγ sinh(γL)
(1)

where, γ =
√

p
α
, and p is the Laplace transform parameter.

After a long time period, with dimensionless time α t/L2 → ∞
and its equivalent in Laplace space (γL)2 = L2p/α → 0, Z1

and Z2 asymptotically converge to the pure resistances of a half-
length (L/2) of the solid. Similarly, Z3 converges to the pure heat
capacity in Laplace space 1

Ceff p
since sinh(x)

∣

∣

x→0
≈ x. More

generic analytical modeling methods are found in literature using
Green’s functions (Cole et al., 2011) and Bessel functions (Ozisik,
1993). These are extensively used for determining the details of
temperature profile at specific time. In our objectives, however,
knowing time constant is rather important for further analyses
rather than the time series data. The analytic model is later
verified by comparing to a discrete model and validating with
numerical calculations with a couple of finite element method.
The thermal resistances and capacitance of the circuit in Figure 2
can be expressed as,

R1 = R2 =
1

2

L

kA
(2)

Ceff = ρLAcp (3)

where the effective capacitance is lumped to themid point of total
thermal resistance. The block of the lumped system is symbolized
in Graphical Abstract.

The time constant of the transient thermal response of a single-
phase volume is determined as,

τ = Ceff × R1 =
ρCp

2k
L2 =

L2

2α
(4)

The effective resistance contribution to the transient response is
assumed to be one half (mean point). This assumption is verified
in subsequently with a distributed thermal mass model. The
time-dependent temperature T (L, t) and heat flow rate Q̇(t) at
the contact are of most interest here. Defining the temperature

excess at the contact as θ (t) = [T(L,t)−Tc]
[T(L,t→∞)−Tc]

, this quantity is

expressed as,

θ(t) =
(

1− exp(−
t

τ
)

)

(5)

The time-dependent stored specific energy in the solid per unit
temperature rise E(t) is found as E (t) = cpθ (t) . As t → ∞ the
specific heat energy stored per unit temperature rise E∗ [J/kg/K]
in this lumped system converges to the total specific energy filling
the capacitance; hence it becomes the traditional definition of
specific heat,

E
∗
= E (t) |t→∞ = cp

(

1− exp

(

−
t

τ

))

|t→∞ = cp (6)

The specific power (per thermal storage mass and temperature
rise) Q̇ (t) [W/kg/K] flows through the contact (x = 0) and can
be expressed as,

Q̇ (t) =
dE (t)

dt
= cp

d

dt

(

1− exp(−
t

τ
)

)

=
cp

τ
exp

(

−
t

τ

)

(7)

This function only decreases as time increases. Hence the specific
power is maximum at t → 0 when contact is made and decreases
to zero as t → ∞. The maximum specific power is,

Q̇
∗
(t) =

cp

τ
exp

(

−
t

τ

)

|t→0 =
cp

τ
=

2kL2

ρ
(8)

The specific power consists of a ratio of two elemental material
properties k / ρ, and the specific energy is essentially the same as
classical definition of specific heat cp of the material. These are
the metrics of the thermal power-energy relation in the simple

FIGURE 1 | Schematics of the physical representations of the cases of contacting a hot (Left) or cold (Right) reservoir. For both cases, temperature reservoir initially

contacts the object block at t = 0.
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FIGURE 2 | Thermal network diagram of a lumped mass thermal model.

Depending on contacting to the hot or cold, the energy flow direction is

changed by the switch (SW).

FIGURE 3 | Thermal Ragone plot for single phase materials (Table 2). Impact

of involving latent heat for paraffin wax (section Modeling of Phase-Change

Material) is included. The values are specific to a cubic geometry with length of

0.1m surrounded by adiabatic boundaries except the heat flow face. In the

calculation, initial temperature of 40◦C, contact temperature of 60◦C, and
melting temperature (paraffin) of 50◦C are used.

heat diffusion regime. This relation can be called the thermal
Ragone relation by analogy to electro-chemical batteries. The
thermal Ragone plot shows the maximum specific power for
a particular geometry following (Equation 8) as a function of
the maximum specific energy following (Equation 6). Figure 3
contains a thermal Ragone plot for the selection of single-phase
materials in Table 2.

DISTRIBUTED THERMAL MASS MODEL

A distributed thermal mass model has been demonstrated
previously (Jackson and Fisher, 2016) with a numerical time-
dependent analysis for a single-phase material. This approach
assesses the previously discussed lumped mass model’s ability
to capture the dynamics of the thermal process. The boundary
conditions and dimensions are exactly the same as the lumped
model. The dimensionless temperature responses of both models

TABLE 2 | Material properties of selected solids.

Solids ρ [kg/m3] cp [J/kg/K] k [W/m/K] α [m2/s]

Aluminum 2700 896 207 8.56 × 10−5

Copper 8960 386 380 1.10 × 10−4

Indium 7310 225 81.8 4.97 × 10−5

Diamond 3530 516 2200 1.21 × 10−3

Graphite 2260 720 800 4.92 × 10−4

Silicon 2329 710 140 8.47 × 10−5

SiN 3200 700 30 1.34 × 10−5

SiO2 2200 700 1.4 9.09 × 10−7

GaN 6150 490 130 4.31 × 10−5

Polyethylene 1030 1256 0.188 1.45 x 10−7

Paraffin wax 774 2160 0.15 8.97 × 10−8

FIGURE 4 | Normalized temperature responses of the discrete model (n =
20). Lumped-mass model in a bold line for solid silicon with a time constant of

67.5 s.

are compared in Figure 4. The i represents the element number
from the contact face (0 ≤ i ≤ n), and 1x is the length of
an element such that L = n1x. We compare the normalized
temperature rise found from lumped model and this numerical
model. The figure clearly shows the consistency of the time
constants (at x = L), when the normalized temperatures achieve
63.2% of steady-state. The difference that the lumped model does
not capture is the slower temperature rise near x = L in the early
stages and faster convergence to steady state for times beyond the
time constant.

MODELING OF PHASE-CHANGE
MATERIAL

Lumped Mass Model
Utilization of latent heat enhances the thermal energy capacity
per mass [J/kg] for energy storage applications. A lumped mass
dynamic model with an effective heat capacity is developed here
to include phase-change with a latent heat contribution. Two
sets of properties must be considered for the liquid and solid
phases, for which suffixes l and s are used, respectively. In a phase
transition, changes in volume are neglected for convenience,

Frontiers in Mechanical Engineering | www.frontiersin.org 4 June 2019 | Volume 5 | Article 29

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Yazawa et al. Ragone Relations for Thermal Energy Storage

FIGURE 5 | Lumped mass model for a phase-change material (PCM). The

equivalent analytic thermal circuit (Left) represents 1-D dynamic thermal

storage (Right).

and hence the geometry remains a rigid container. Using an
approach similar to the enthalpy method (Jackson and Fisher,
2015), an effective specific heat cp,eff is introduced. We consider a
temperature window around the true melting point in which the
lower side temperature Tm1 and the higher side temperature Tm2

are critical.

cp,eff = cp,s (T < Tm1) (9)

cp,eff =
cp,l (T − Tm1) +H + cp,s (Tm2 − T)

Tm2 − Tm1
(Tm1 ≤ T ≤ Tm2)

(10)

cp,eff = cp,l (Tm2 < T) (11)

where H is the heat of fusion. The melt front moves as heat
flows, and the location corresponding to the mean melting
temperature, Tm = (Tm1 + Tm2) / 2, is tracked. Hence, the
thermal capacitance originating from the combined effects of
sensible heat in the liquid and solid together with the latent heat
are lumped at the melting front with distance from the source
x (0 ≤ x ≤ L). Due to these dynamics, the split point location,
x, depends on the progression of the melting front, causing the

thermal resistances Rl = x
klA

and Rs = (L−x)
ksA

, to be functions of

time. The effective capacitance is then determined as,

Ceff = (ρs (L− x) + ρlx)Acp,eff (12)

Therefore, the three elements (Rl, Rs, and Ceff ) in the dynamic
thermal circuit in analogy can be established as shown in
Figure 5. As a special case of H = 0 and if the properties for
both liquid and solid phases are exactly the same, the lumped
point of the mass becomes L / 2 and hence, the time constant
is the same as discussed previously. Here we define an effective
time constant τ eff at a point where the normalized temperature
reached to 63.2%.

The temperature response is found by a single lumped thermal
mass model based on (Equation 5) but with the foregoing
expression for Ceff. A numerical calculation has also been
conducted by applying this Ceff into the model derived in section
Distributed Thermal Mass Model.

Analytical Model
To validate the approximate dynamic models described above,
we compare these results against the exact analytical solution
for a semi-infinite medium with constant temperature boundary

condition. The analytical solution of the two-region Neumann-
Stefan problem in 1-D is:

Tl(x,t) − Tw

Tm − Tw
=

erf
(

x/2
√

αlt
)

erf (λ2)
and

Ts(x,t) − T0

Tm − T0
=

erfc
(

x/2
√

αst
)

erfc
(

λ2
√

αl/αs

) (13)

In the ideal limit of a small temperature difference across the
phase transition region (x = xm), Tm1 Tm and Tm2 Tm, both left
side terms converge to unity. The location of the phase transition
xm(t) is found by co-solving the foregoing equations, where λ2 is
a solution of the transcendental equation:

λ2
√

π =
Stl

exp
(

λ2
2
)

erf (λ2)
−

Sts
√

αs
√

αl exp
(

λ2
2αl/αs

)

erfc
(

λ2
√

αl/αs

) (14)

The parameter λ2 is much greater than unity when the material is
single-phase. In the case of a hot contact for instance, the Stefan
number St is defined as:

Sts = Cp,s (Tm − Tc ) /H (15)

Stl = Cp,l (Th − Tm ) /H (16)

where Tm is the melting temperature. For Stl < 1, λ ∼
√
Stl.

Through the foregoing methodology, the location of the melting
front xm(t) and the end wall temperature T (L, t) are solved. Here,
the normalized temperature of melting point θm is defined as,

θm = (Tm − T0) / (Tw − T0 ) (17)

Figure 6 summarizes the temperature response, which includes
the lumped models (single exponential and numerical) based
on Ceff and the analytical model. Due to the progression of the
lumped mass location (see Figure 2), the Ceff based models show
slower response than the analytic model in early stages and then
somewhat overpredict the response speed after crossing near the
time constant of lumped models. The cross point for the case θm
= 0.0 is quite close closed to the time constant, which is 3.2 ×
104 s, while the effective time constant for the case θm = 5.0 is 2.6
× 104 s. Larger θm (higher melting temperature) tends to show a
quicker temperature rise.

Here, the thermal Ragone relation can be extended by
utilizing Ceff as a proxy for general phase-change materials
(PCMs). A larger Ceff due to latent heat drastically increases
the maximum specific energy (see Equation 6). In contrast, the
maximum specific power changes only moderately with other
thermophysical properties (thermal conductivity and density).
The impact of phase change on effective specific power is
observed in Figure 6 as the analytic model from the exact
solution of the Neumann-Stefan problem shows faster initial
response compared to the lumped Ceff model and then goes
slower after passing the effective time constant.

Figure of Merit for Thermal Storage
Materials
The previous sections provide a means to analyze relative trade-
offs in cooling power and thermal energy storage by analyzing
a particular test geometry. However, practical thermal storage
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problems consist of unique geometries and boundary conditions
that may complicate comparisons among different PCMs, and
are time-dependent. Following a parallel approach, Shamberger

introduced a cooling power figure-of-merit (ηq) (Shamberger,
2016) for thermal management materials that is derived from
the analytical solution to the Neumann-Stefan problem (Carslaw

FIGURE 6 | Normalized end wall temperature θ (x=L, t) to steady state for different models, with L = 0.01m. Material properties are typical for paraffin wax (Table 1)

with a heat of fusion H = 2.44 x 105 [J/kg]. The lumped (single exponential function) and numerical models use Ceff determined by Equations (9–11). For this

example, the normalized true melting temperature range is 0.1. Analytical models are the cases of normalized melting points θm = 0.5 and 0.0.

FIGURE 7 | Thermal Ragone plot of (A,B) low-temperature PCMs (Tm < 300◦C) (Chase, 1998; Solder Alloy Directory, 2008; Lide, 2010; Shamberger et al., 2017),

along with three potential high-k materials: copper (Cu), graphitized carbon fiber (Gr), and aluminum (Al), and (C,D) high-temperature PCMs (Tm > 300◦C) (Janz et al.,
1978, 1979; Chase, 1998; Solder Alloy Directory, 2008; Kenisarin, 2010; Lide, 2010; Shamberger et al., 2017), illustrating the cooling power figure or merit ηq

calculated for 1T = 10◦C, as a function of the specific effective storage enthalpy (A,C), and the volumetric effective storage enthalpy (B,D). PCMs are clustered by

materials class as labeled. Properties of water (empty triangle) and erythritol (filled triangle) are also illustrated. Shaded gray region represents sub-optimal

Pareto space.
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and Jaeger, 1959), and can be applied to both single-phase and
phase-change materials:

ηq =
√

kρcp

erf (λ2)
=

k

erf (λ2 )
√

α
(18)

where, λ2 is the parameter found by solving (Equation 14)
as discussed in the previous section, and implicitly requires a
working temperature range, 1T to be defined. This figure-of-
merit is directly proportional to heat flux for the case of melting
of a semi-infinite medium, assuming constant temperature
boundary conditions and small values for the Sts, Stl < 0.5.
Furthermore, ηq is also proportional to the temperature rise of
the surface under constant cooling power boundary conditions,
suggesting the generality of this term in conductive heat transfer
of the phase change problem. The principal advantage of this
figure of merit is that it allows facile comparison between
different classes of materials (e.g., paraffins, low melting point
alloys, inorganic salts, salt hydrates) whose thermophysical
properties differ widely, separate from the extrinsic role of
boundary conditions in determining the heat flux at a given point
in time.

Here, we adopt ηq as a proxy for cooling power for PCMs and
use this figure-of-merit as an alternative approach to generate a
thermal Ragone plot for PCMs (Figure 7). Some sets of materials
are amenable to Pareto optimization, which refers to a convex
space defined by cooling capability, figure-of-merit ηq, and the
specific effective storage enthalpy, 1Heff = H + cp1T [J/g].
Inside this convex space, sub-optimal materials can always be
out-performed by Pareto-optimal materials or combinations of
thereof for both metrics. These metrics relate directly to the
principal function of thermal energy storagematerials: howmuch
heat the can store, and how quickly they can store/discharge heat.

Because thermophysical parameters of materials including the
effective enthalpy of fusion,H, scale with themelting temperature
of a material, Tm, it is instructive to separate PCMs into low-
Tm (Tm < 300◦C) and high-Tm (Tm > 300◦C) groups for
different technological applications. Common low-Tm PCMs
include water, salt hydrates (Lorsch et al., 1975; Abhat, 1983;
Zalba et al., 2003; Sharma et al., 2009; Shamberger and Reid,
2012, 2013), paraffins (Domalski and Hearing, 1996; Lemmon
and Goodwin, 2000; Lide, 2010), low-Tm alloys (Chase, 1998;
Solder Alloy Directory, 2008; Lide, 2010; Shamberger et al., 2017),
and other organic compounds (e.g., erythritol; Domalski and
Hearing, 1996; Lemmon and Goodwin, 2000; Lide, 2010). These
five example materials generally represent a Pareto-optimal front
when compared on the basis of energy storage per unit mass
(see following figure). Of these materials, low-Tm alloys have the
highest capacity for cooling power, due primarily to their large
thermal conductivities, whereas salt hydrates and paraffins can
each store significantly more thermal energy per unit mass than
low-Tm alloys due to the high density of the latter materials.
While paraffins may be slightly sub-optimal with respect to a few
select salt hydrates, they still find common use because of their
ease of handling, and easily tunable melting temperatures. When
energy storage density is considered on a volumetric basis, nearly
all other low-Tm PCMs are sub-optimal compared against low-
Tm alloys and salt hydrates, see b) of the following figure. PCMs

that melt in a higher temperature range tend to have significantly
larger enthalpies of fusion, which tend to dramatically affect their
energy storage density while only affecting ηq in a relatively
minor way (see following figure). High-Tm PCMs primarily
consist of inorganic salts (sulfates, nitrates, chlorides, carbonates,
and fluorides) (Janz et al., 1978, 1979; Chase, 1998; Kenisarin,
2010; Lide, 2010), as well as some metals and alloys (Chase, 1998;
Solder Alloy Directory, 2008; Lide, 2010; Shamberger et al., 2017).

In summary, metallic phases tend to have the highest ηq, due
largely to their large thermal conductivities, whereas inorganic
salts can each store significantly more thermal energy per unit
mass and volume than metals due to the high density of the
latter materials. Within inorganic salts, most of the variation
observed between different classes of salts can be attributable to
(1) different masses of the anionic species, (2) different intrinsic
thermal conductivities of different salt species, and (3) different
ranges of Tm in different salts, which indirectly affects the energy
storage density.

CONCLUSIONS

The Ragone relationships for thermal storage materials designed
for thermal management were explored, based on an electro-
thermal analogy. The dynamic thermal response can be derived
by temporal energy balance equations in a continuous medium.
We demonstrated that a lumped thermal mass model worked
well to determine the time constant along with the quick
positioning of heat power-energy space, which is Ragone relation
from the property information. Latent heat of fusion provides a
significant increase in heat capacitance per given physical mass
or volume, which drastically extends the energy capacity in the
Ragone relation. The analysis for phase-changematerials (PCMs)
were also conducted by introducing enthalpy method. The
lumped model for PCMs observes a discrepancy from the exact
model but still the prediction is useful for first order estimate
in thermal power and energy space. As a metric specifically for
material selection for thermal storage, we utilize ηq as a proxy for
a material’s capability to absorb or release heat (cooling/heating
power density). This approach results in a thermal Ragone
diagram which schematically illustrates the thermal energy and
power capacities of a certain class of PCMs.
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NOMENCLATURE

A area, m2

C heat capacity, J/K

cp specific heat, J/kg/K

E energy, J

e electron charge, Coulomb

H latent heat of fusion, J/kg

I electrical current, A

k thermal conductivity, W/m/K

L length, m, heat of fusion, J/kg, or Lorentz number, (-)

m mass, kg

N number

Q heat, W

R thermal resistance, K/W

T temperature, ◦C or K

t time, s

V voltage, V

Greek symbols

α thermal diffusivity, m2/s

ε permittivity, F/m

λ solution of transcendental equation, (-)

θ temperature difference, K

ρ density, kg/m3

σ electrical conductivity, 1/�

τ time constant, s

Subscripts

0 initial state

eff effective value

el electrical

l liquid phase

m melting

s solid phase

th thermal

w wall

∗ specific value, ∗/kg
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