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In the present paper, artificial neural networks (ANNs) are considered from amathematical

modeling point of view. A short introduction to feedforward neural networks is outlined,

including multilayer perceptrons (MLPs) and radial basis function (RBF) networks.

Examples of their applications in tribological studies are given, and important features

of the data-driven modeling paradigm are discussed.
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1. INTRODUCTION

Tribological phenomena have been studied primarily using an experimental methodology, since it
is essentially an empirical science (Bowden and Tabor, 1986). To understand them, a number of
mathematical modeling approaches have been developed, including, phenomenological (Kragelsky
et al., 1982; Popov, 2017), continuummechanics (Johnson, 1985; Hills and Nowell, 1994), analytical
(Goryacheva, 1998; Barber, 2018), probabilistic (Zhuravlev, 1940; Greenwood and Williamson,
1966)1 and stochastic (Nayak, 1971), fractal (Whitehouse, 2001; Borodich, 2013) and self-similarity
(Borodich et al., 2002), multi-scale (Li et al., 2004), atomic and molecular dynamics (Bhushan et al.,
1995), movable cellular automata (Popov and Psakhie, 2007), FEM (Yevtushenko and Grzes, 2010)
and BEM (Xu and Jackson, 2018), MDR (Popov and Heß, 2015), asymptotic modeling (Argatov
and Fadin, 2010), and other (Vakis et al., 2018). However, due to the complex nature of the surface
phenomena, their mathematical modeling is till rather far from playing a central role in tribology.

In recent years, an increasing number of tribological studies turned to the use of artificial
intelligence (AI) techniques (Bucholz et al., 2012; Ali et al., 2014), including data mining (Liao
et al., 2012) and artificial neural networks (Gandomi and Roke, 2015). In the last two decades,
starting from the work of Jones et al. (1997), the areas of successful incorporation of AI generally
and neural networks (NNs) specially have been constantly expanding in tribology research and
cover such diverse applications as wear of polymer composites (Kadi, 2006; Jiang et al., 2007),
tool wear (Quiza et al., 2013), brake performance (Aleksendrić and Barton, 2009; Bao et al.,
2012), erosion of polymers (Zhang et al., 2003), wheel and rail wear (Shebani and Iwnicki,
2018). Nevertheless, it is important to emphasize that, while AI is widely applied for diagnostics
(identification), classification, and prediction (process control) (Meireles et al., 2003), much
remains to be scrutinized to extend its modeling (in a narrow sense of this term) capabilities.

Artificial neural networks (ANNs) are among the most popular AI tools due to their
capability of learning nonlinear mechanisms governing experimentally observed phenomena. The
following two application forms of ANNs represent the most interest for tribological studies

1The English translation of the original paper by V.A. Zhuravlev was published as a historical paper (Zhuravlev, 2007) in the

Journal of Engineering Tribology.
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(Ripa and Frangu, 2004): (i) continuous approximation of
functions of general variables (used for prediction and modeling
purposes) and (ii) discrete approximation of functions (used for
classification and recognition tasks). In the present review, we
have chosen the first form of application (nonlinear regression)
because it requires a greater mathematical modeling emphasis to
the subject matter of tribological research.

2. FUNDAMENTALS OF ARTIFICIAL
NEURAL NETWORKS

In this section, we briefly overview some of the basic concepts
of ANNs, emphasizing the features that can be most useful in
modeling tribological phenomena. For detailed information on
ANNs (see e.g., books by Bishop, 1995; Haykin, 1999 and book
chapters by Dowla and Rogers, 1995; Waszczyszyn, 1999). To
grasp the idea of neural network analysis, an artificial nural
network is introduced as a form of regression modeling (input
to output mapping).

2.1. Universal Approximation Capability of
ANNs
We start with the definition of the sigmoid function σ (x) =

(1 + exp(−x))−1, which represents an increasing logistic curve,
such that σ (x) → 0 as x → −∞, and σ (x) → 1 as
x → +∞. A great number of diverse applications of ANNs
are concerned with the approximation of general functions of
n real variables x1, x2, . . . , xn by superpositions of a sigmoidal
function. This nonlinear regression problem was considered
by Cybenko (1989), who proved a theorem stating that any
continuous function f (x) defined on the n-dimensional unit
hypercube [0, 1]n can be uniformly approximated by a sum

F(x) =

N
∑

j=1

αjσ
(

wj · x+ bj
)

, (1)

where wj · x = wj1x1 + wj2x2 + . . . + wjnxn. Note that the
linear combination of compositions of the sigmoid function
in Equation (1) contains N(2 + n) fitting parameters αj,
wj1,wj2, . . . ,wjn, and bj.

In its essence, a neural network with n inputs, one hidden
layer containing N neurons, and one linear output unit provides
an approximation of the form of Equation (1). Therefore, as
an extension of the approximation capability of the latter, the
following theorem holds (Cybenko, 1989; Hornik et al., 1989):

Theorem (Universal approximation theorem). A single
hidden layer ANN with a linear output unit can approximate any
continuous function arbitrarily well, given enough hidden units.

The above theorem paves the way to the use of ANNs as a
mathematical modeling technique.

2.2. An Artificial Neuron: Weighted
Summation and Activation
Consider Formula (1), where each sigmoid factor in the sum
on the right-hand side can be regarded as an artificial neuron
as shown in Figure 1. Naturally, the task of the j-th artificial

neuron is simple and consists of (i) receiving input signals
x1, x2, . . . , xn multiplied by connection weights wj1,wj1, . . . ,wjn,
respectively, (ii) summing these weighted signals with a bias
input bj to evaluate the neouron’s net input sj, and (iii) activating
the neuron’s output hj = σ (sj) as one numerical value uniquely
defined by the input signals.

2.3. A Single-Hidden-Layer Feedforward
Neural Network
Consider again Formula (1), where the right-hand side represents
the result of an ANN with one hidden layer and one linear
output unit. A combination of approximations of the form of
Equation (1) will produce an ANN with several output units,
which form the ANN’s output layer (see Figure 2).

Overall, a feedforward ANN consists of multiple neuron
units (linked together by weighted connections) with activation
functions each of which takes the neuron’s net input, activates
it, and produces a result that is used as input to another units.
This type of ANN is called multilayer perceptron (MLP) (Priddy
and Keller, 2005). Such ANNs are by far the most popular
approximation technique. In the present review we make a
special emphasis on feedforward multilayer neural networks,
which are naturally suited for modeling. Reviews of other
network types interesting for engineering applications are given
by Meireles et al. (2003) and Zeng (1998).

Let Nin, Nh, and Nout denote the number of inputs, hidden
neurons, and output units, respectively. Then, the number of
learnable (or fitting) parameters is equal to Nh(Nin + Nout +

1) + Nout, provided the output layer uses biases. Observe (Sha
and Edwards, 2007) that in practical applications like materials
science or tribology, it is recommended to develop separate
models for individual output properties, because training time
dramatically increases with Nout. The number of inputs Nin

is determined by the problem under consideration, that is
by the available experimental data. It should be remembered
(Bhadeshia, 1999) that neglect of an important input variable will
lead to an increase in the noise associated with the ANN model’s
predictions. Finally, the number of hidden neuronsNh is a crucial
factor that affects the ANN performance and is routinely a matter
of trial and error, although there are some recommendations
regarding how to choose Nh for given values of Nin and Nout

(Gandomi and Roke, 2015).

2.4. Supervised Learning
Let an ANN be employed for modeling a tribological
phenomenon, which is supposed to be characterized by a
function y = f (x). It is clear that all particular information
learned about the studied phenomenon will be stored in
the values of the weights and biases that are the only fitting
parameters. The process of evaluating appropriate weights and
biases is called training (or learning by examples) and requires a
training set of experimentally measured input-output examples
(xk, yk), where xk is an input vector, yk is a corresponding output
scalar, and k = 1, 2, . . . ,Ntrain. The process of incorporating the
available knowledge into the neural network is distinguished
as supervised learning, because an external teacher (e.g.,
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FIGURE 1 | Schematic of an artificial neuron. Here, xi and wji are inputs and corresponding weights, bj is the neuron’s bias (interpreted as a weight associated with a

unit input), hj is the neuron’s output.

FIGURE 2 | Schematic of a single-hidden-layer neural network.

experimenter) provides the correct output yk for each particular
input xk, that is yk = f (xk).

Let F(x) denote the ANN model prediction, so that F(xk)
is supposed to approximately predict the target value yk,
that is yk ≈ F(xk). Then, according to the least squares
regression, the corresponding total training error can be

computed as
∑Ntrain

k=1

(

F(xk) − yk
)2
, and the training objective

is to minimize the total error over the entire training set. As
a result, one obtains an approximation F(x) for the sought-
for function f (x). The practical implementation of this general
algorithm requires numerical techniques for solving large-scale
minimization problems.

Usually, MLPs are trained in an iterative way using the so-
called back-propagation learning algorithm (Rumelhart et al.,
1986), which utilizes the gradient descent method to update
the values of weights and biases based on propagation of
the output error F(xk) − yk through the network. Thus, as
a result of each iteration, the network gradually learns from
its error.

Finally, because usually an ANN is trained to be used for
inputs that are different from the training examples, a separate

testing set is required to assess the generalization capability of the
ANNmodel (Bishop, 1995).

3. APPLICATIONS OF NEURAL
NETWORKS IN TRIBOLOGY

The use of ANNs in tribological applications was previously
reviewed by Ripa and Frangu (2004), Rudnicki and Figiel (2002),
and Velten et al. (2000). In this section, we make an emphasis on
modeling aspect of ANN technique and overview recent advances
in the field.

3.1. Modeling of Wear Rate and Friction
Coefficient
It is widely accepted that an ANNmodel is likely to be a black-box
model, since its interrelations between the inputs and outputs are
difficult to interpret. Therefore, when applying ANN technique,
an important question is that of choice of the input and output
variables. To illustrate the major factors that should be accounted
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FIGURE 3 | General schematic of ANN for correlating tribological properties with material parameters and testing conditions in sliding wear tests

(after Friedrich et al., 2002).

FIGURE 4 | Structure of the hybrid neural network (Li et al., 2017).

for in modeling of friction and wear, Figure 3 shows a schematic
of the general construction of an ANN for tribological studies.

It should be emphasized that the wear volume and the specific
wear rate are extensive and intensive parameters, respectively.
This, in particular, means that by choosing the wear volume as the
ANN’s output, it will be necessary to specify the sliding distance
as one of the ANN’s outputs. Further, experiments on fretting
wear require the introduction of other relevant parameters such
as number of cycles and tangential displacement amplitude
(Kolodziejczyk et al., 2010).

It is of interest to observe that the specific wear rate (SWR)
of graphene oxide (r-GO) reinforced Magnesium metal matrix
composite was found to depend non-monotonically on the
sliding distance (Kavimani and Prakash, 2017). At the same
time, the effect of decrease in SWR is attributed to the reason
that r-GO forms a self-lubricant layer on the composite surface,
while the effect of further increase in SWR with the sliding
distance is explained by loosening the bonding between the
reinforcement and Mg matrix due to temperature increment
within the composite surface. These interpretations of the ANN
model can be supported by monitoring the coefficient of friction
and the pin temperature in pin-on-disc wear testing.

We note that structural parameters such as the characteristic
size of tested samples that determines the size of the contact zone
may influence the test results as well, especially, for composite
materials, which can reveal the multi-scale features in damage
and wear (Jiang and Zhang, 2013). Note also that the wear track

diameter was suggested to be employed (Banker et al., 2016) as
one of the regression parameters to model the linear wear in pin-
on-disc sliding tests, and it turned out to be more significant
than load or pin-heating temperature. We observe that, whereas
the interpretation of physical mechanisms underlying the input-
output interrelations is challenging, special attention should
be first directed to examining and explaining the input
variable significance.

3.2. Hybrid Neural Network-Based
Modeling
When utilizing an ANN for modeling purposes, many issues
related to the implementation of the ANN, including the choice
of its parameters (e.g., number of neurons in hidden layer) and
a training algorithm, as well as a method of pre- and post-
processing of input/output data, can be resolved in a more or
less standard way (Priddy and Keller, 2005). A much more
sensitive and perhaps most important issue is that of the ANN’s
type and architecture, especially in engineering applications,
like tribological systems. In this respect, the selection of an
appropriate ANN’s architecture should be based on the developed
understanding of related tribological phenomena.

Recently, Li et al. (2017) have shown that a hybrid
neural network (HNN) model, which combines two types of
ANNs, possesses remarkable capability for modeling tribological
properties (see Figure 4). Specifically, along with a back-
propagation (BP) network (this is another name for a MLP) it is
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FIGURE 5 | Schematic of the ANN-based semi-physical fretting wear model (Haviez et al., 2015).

suggested to make use of a radial basis function (RBF) network,
while representing the model’s target outputs as FHNN(x) =

µ1FBP(x)+µ2FRBF(x) with µ1 and µ2 being mixing coefficients.
It is suggested to use a genetic algorithm (Gandomi and Roke,
2015) for training the HNN.

Recall (Du and Swamy, 2006) that the output of the RBF
network can be represented as follows (cf. Equation 1):

F(x) =

N
∑

j=1

wjρ

(‖x− cj‖

σj

)

. (2)

Here, cj is the center vector of the j-th kernel node, wj and σj are
its weight and smoothing factor, ‖x−cj‖ is the Euclidean distance
between the input x and the j-th node’s center, and ρ(·) is the
radial basis function, which is commonly taken to be Gaussian,
that is ρ(x) = exp(−x2/2).

It is of practical interest to observe that since ρ(x) → 0
as x → ∞, the RBFs entering formula (2) are local to their
center vectors c1, c2, . . . , cN , so that a change of parameters of
one certain kernel node, say ck, will have a minor effect for all
input values xwhose distance ‖x−ck‖ from the k-th node’s center
is relatively large. This means that RBF network has a strong
capacity of local approximation.

It is also to note in this context, that in the case of
modeling of microabrasion-corrosion process (Pai et al., 2008)
an RBF based neural network has shown poor generalization
capability compared to BP-MPL because it can memorize the
input data. Radial basis function networks have been successfully
employed for predicting the surface roughness in a turning
process (Asiltürk and Çunkaş, 2011) and flank wear in drill
(Panda et al., 2008).

3.3. Semi-physical NN Modeling for
Fretting Wear
It is known (Estrada-Flores et al., 2006) that the black-
box modeling approach, especially effective when the physical
mechanisms underlying a studied phenomenon are either
obscure or too complex for efficient first-principles modeling.
The semi-physical (or the so-called “gray-box”) modeling
approach combines the flexibility of the black-box approach with
elements of available analytical modeling frameworks.

Recently, a semi-physical NN model was developed by Haviez
et al. (2015) for fretting wear (see Figure 5). Their model

introduces a two-level function approximation for the wear
volume and utilizes the dissipated energy approach for getting
insight into the mechanisms of fretting damage. The main
advantage of this approach is that it reduces the number of
fitting parameters compared to a standard ANN approach. This
allows to cope with the issue of small data sets. On the other
hand, incorporating prior knowledge of the fretting damage
mechanisms into the NN modeling framework makes it easier to
interpret the predicted results.

4. DATA-DRIVEN MODELING PARADIGM

In this section, we discuss important aspects that should be
accounted for, when applying ANNs for modeling purposes.
For this, we dwell on the relevant practical issues that
arose in dealing with ANNs in tribology, materials science
(Bhadeshia, 1999; Sha and Edwards, 2007), process engineering
(Silva et al., 2006), hydrology (Dawson and Wilby, 2001),
thermal science (Yang, 2008), and other mechanical engineering
sectors (Zeng, 1998; Meireles et al., 2003).

4.1. Learning From Experiment
Generally speaking (Maier andDandy, 2000), to build an artificial
neural network, one needs three data sets, namely, training
dataset (used to train the ANN), testing dataset (utilized to
evaluate the predictive performance of the ANN model), and
validation dataset (used to avoid the overfitting). The necessity
in the latter appears when the number of learnable parameters
(weights and biases) exceeds the number of training examples,
so that the ANN can overfit the training data. In this case, the
validation dataset is employed to control the ANN’s fit on the
training dataset during the learning (training) process and to stop
training, when the ANN’s error on the validation dataset starts
to increase, thereby preventing overfitting of the training data
(Maier and Dandy, 2000).

Usually, the validation and testing datasets are extracted from
a set of experimental data in a random fashion. However, a care
should be taken that at least the representativeness of each of
the training and validation datasets has been achieved, and they
have no overlaps with the training dataset. Observe that often the
Taguchi approach is used to reduce the number of independent
experiments by application of orthogonal arrays to the model
factors, so that there will be an equal number of tests data

Frontiers in Mechanical Engineering | www.frontiersin.org 5 May 2019 | Volume 5 | Article 30

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Argatov ANNs as a Novel Modeling Technique in Tribology

points under each level of each of the ANN’s input parameters
(Teo and Sim, 1995). This means that besides an orthogonal
training dataset, which is supposed to cover the ranges of inputs,
one additionally needs independent data for cross-validating and
testing the ANNmodel.

It should be emphasized that the quality of experimental data
determines the soundness of the ANN model built upon the
data. This, in particular, means that the accuracy of the ANN’s
predictions, generally, cannot be expected to be better than that
of the row training data. At the same time, it is very important to
give the errors for the testing dataset (Sha and Edwards, 2007).

4.2. Generalizing From Examples
Recall that, usually, each entry of the dataset is called an example.
When an ANN, which is trained on a finite set of examples, is
then applied to unseen inputs, its ability of accurate prediction
is called generalization. From a function approximation point
of view, such new examples can be regarded as either
interpolation or extrapolation of the training data. With respect
to neural networks, the operation of interpolation is preferred
over extrapolation (Flood and Kartam, 1994). Therefore, it
is recommended that the training examples should span the
domain of interest completely (Liu et al., 1993). In other words,
by and large, ANNs should not be applied for generalization
outside the convex hull of the training dataset. In particular, when
preparing the training dataset, it is recommended (Yin et al.,
2003) to include examples with maximum or minimum values of
any input, while the remaining experimental examples are then
grouped randomly into the training dataset, the testing dataset,
and if needed, the validation dataset. Sha and Edwards (2007)
discussed the problems regularly encountered in applying neural
networks and a growing tendency for the misapplication of ANN
methodology. They have recommended suitable guidelines for
the proper handling of ANNs to reveal their potential for effective
modeling and analysis when using limited data for training
and testing.

4.3. Inherent Nonlinearity
Modeling of nonlinear relationships using the ANN
methodology is generally seen to be simpler in comparison to a
nonlinear regression approach (Zeng, 1998; Paliwal and Kumar,
2009). Considering the tool wear in hard machining process,
Quiza et al. (2013) compared the analysis of the data based on
MLP type neural networks and statistical (linear, quadratic, and
potential) models to conclude that the neural network model has
shown better capability for accurate predictions.

Observe that nonlinear behavior of the neural network is
introduced by the sigmoidal activation function of the hidden
neurons. For any inputs to a hidden neuron, the activation
function maps their linear combination into a specific interval
[e.g., (0, 1) in the case of the sigmoid function and (−1, 1) in the
case of the hyperbolic tangent activation function σ (x) = (ex −
e−x)/(ex + e−x)]. It should be remembered that, if a nonlinear
activation function is employed in the output layer, then the
output data should be normalized according to the range interval
of this activation function.

The inherent nonlinearity of ANNs has been exploited
to develop powerful models for various physical phenomena
(Maren et al., 2014). On the other hand, it should be noted
that the inherent nonlinearity of neural networks implies the
existence of many sub-optimal networks, which correspond to
the local minima of the error function. Therefore, it should
be expected that depending on the initial randomization of
neural network weights and biases, common training algorithms
can converge to different sub-optimal networks (Beliakov and
Abraham, 2002), especially when the stopping criterion relies on
a validation dataset.

4.4. ANN Modeling Approach
As pointed out by Yang (2008), ANNs have a strong capacity
for accurate recognizing the inherent relationship between any
sets of inputs and outputs without formulating a physical model
of a phenomenon under consideration. Moreover, given a large
amount of experimental data, the ANN model does account for
all the physical mechanisms relating the outputs to the inputs.
At the same time, a priori physical insight to the phenomenon is
necessary to determine the proper input parameters.

Recall that modeling is a mathematical framework used to
describe the physical principles underlying the interrelations
between the input and the output of a system. With respect to
industrial applications, the non-algorithmic ability of ANNs to
approximate the input to output mapping independent of the size
and complexity of the system is of great use (Meireles et al., 2003).

Observe (Dawson and Wilby, 2001) that ANNs can be
classified as parametric models that are generally lumped (or
homogeneous), because they incorporate no information about
the spatial distribution of inputs and outputs, and predict only
the spatially averaged response. Indeed, the contact pressure at a
sliding interface may vary spatially over the area of contact as well
as the linear wear rate, especially in fretting. However, the known
ANN models of fretting wear operate with the total contact load
and the wear rate, which are integrals of the former distributed
characteristics over the contact area.

It is to note that the ANN model design does not end
with the model’s implementation, and a number of algorithms
(Gevrey et al., 2003) can be afterwards used to analyze the
relative contribution (significunce) of the model variables. The
generalization capability of ANN solutions can be improved by
extracting rules using the connection strength in the network
(Andrews et al., 1995), thereby identifying regions in input space,
which are not represented sufficiently in the training dataset used
for the knowledge initialization, i.e., which are overlooked when
inserting knowledge into the ANN.

Since a trained ANN is represented by a composition of
analytical functions, the ANN model can be readily used to
investigate the effect of each input individually, whereas this
may be very difficult to do experimentally (Bhadeshia, 1999).
It is also to note (Craven and Shavlik, 1994) that ANNs may
discover salient features in the input data whose importance was
not previously recognized. It has, for instance, very recently been
shown by Verpoort et al. (2018) that elongation, as a measure
of the materials ability to deform plastically, is the material
property most strongly correlated to fracture toughness, which,
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in turn, is known to play a certain role in the wear of metals
(Hornbogen, 1975).

4.5. Adaptability and Robustness
It is recognized that the performance of an ANN model strongly
depends on the network architecture (Gandomi and Roke, 2015),
and it can be assessed using a number of unit-free performance
measures. On the other hand, the performance efficiency of a
neural network depends on the quality of information gained in
the training process performed on a finite number of examples.
Therefore, when an additional dataset becomes available for
processing, the network’s weights and biases can be updated
to accumulate the newly provided experimental evidence. This
feature of ANNs is especially useful for the design of on-line
monitoring systems. As an example of the ANN adaptability,
Ghasempoor et al. (1998) and Silva et al. (2006) developed
ANN-based intelligent condition monitoring systems for on-line
estimation of tool wear from the changes occurring in the cutting
force signals by implementing a continuous on-line training to
guarantee the adjustability of the ANN model to variations in
cutting conditions, when they fall outside of the neural network’s
trained zone.

Finally, let us underline once again that the
effectiveness/robustness of the ANN model crucially depends

on the amount and generality of the training data. As it was
observed by Pai et al. (2008), when employing neural networks
for modeling of micro-abrasion and tribo-corrosion, it should
be taken into account that there is extensive expected influence
of the interplay between the model parameters in their various
levels. Yet another condition for efficient implementation and
application of a data-driven model is the absence of significant
changes to the system under consideration during the period
covered by the model (Solomatine et al., 2008).

5. CONCLUSION

ANNs is a promisingmathematical technique that can be used for
modeling (in a general sense of this term) complex tribological
phenomena. Without doubts, an ANN modeling methodology
will be increasingly integrated into tribological studies, provided
prior knowledge about tribological systems and insights into the
physics of tribological processes has been incorporated into the
ANNmodel.
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