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Optimization of the efficiency of the condensers via different surface engineering

techniques is a subject of interest due to its wide range of application in thermal

management for aerospace vehicles, power generation systems, and etc., which will

further result in considerable savings in annual investments and operating costs by

millions of dollars. However, the current technologies are lacking either the necessary

condensation enhancements or cost-effective, large-scale fabrication method. In this

work, we present a new surface topography to enhance drop-wise condensation at

low manufacturing costs. These surfaces consist of macro-scale hydrophobic patterns

on hydrophilic structures. Due to their high wettability contrast, the biphilic surfaces

enhance drop-wise condensation with long-term functionality, andmore importantly, they

can be easily manufactured in large-scale using conventional methods as no nano- or

micro-features are needed.

Keywords: thermal management, drop-wise condensation, biphilic surfaces, heat transfer, scalable

manufacturing

INTRODUCTION

One of the main technical challenges in a variety of industrial fields including aircrafts, power
plants, and water desalination systems is the effective discharge of excessive heat generated inside
the system. From thermal management point of view, condensation or phase change in general
is considered the most optimum way of removing waste heat from the system due to its high
heat transfer rate. Efficiency of the thermal transfer during condensation strongly depends on the
mode of condensation, namely drop-wise and film-wise condensation (Schmidt et al., 1930; Song
et al., 1991; Rose, 1998, 2002; Leach et al., 2006). The current industrial condensers, however, are
very inefficient because they rely on film-wise condensation for waste heat removal. The film-wise
condensation offers low heat transfer coefficient due to thermal resistance imposed by the liquid
layer as when the film is formed, it acts as a barrier to thermal transfer and impedes the continuous
heat transfer from the condensing surface.

Several researchers have tried to address this issue and find ways to improve the heat transfer
efficiency by enhancing drop-wise condensation on the condensing surfaces (Miljkovic et al., 2012;
Xiao et al., 2013; Paxson et al., 2014). Unlike film-wise condensation, the drop-wise condensation
is achieved on a surface that is not wetted by the condensate. In drop-wise condensation, there
is a continuous surface renewal by falling drops resulting in at least 10-fold enhancement in heat
transfer rate compared to the film-wise condensation (Welch and Westwater, 1961; Le Fevre and
Rose, 1964; Carey, 1992; Kandlikar et al., 1999; Ma et al., 2000; Rose, 2002; Kim and Kim, 2011).
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The current technology to promote drop-wise condensation
is mostly limited to hydrophobic coatings (Das et al., 1999; Lara
and Holtzapple, 2011; Alizadeh et al., 2013; Zamuruyev et al.,
2014) or nano-engineered textured surfaces (Chen et al., 2011;
Anderson et al., 2012; Cheng et al., 2012; Miljkovic et al., 2012;
Lo et al., 2013; Hou et al., 2015). The hydrophobic coatings
have short life span and tend to come off depending on the
working conditions in a few hours. These coatings are mainly
polymer based with low thermal conductivity; thus, covering the
condensing surface with the coating impedes the heat transfer
and reduces the overall efficiency.

The superhydrophobic nano-patterned surfaces allow
sustained drop-wise condensation and have shown
considerably higher enhancements in heat transfer compared
to hydrophobic coatings due to variety of reasons. For example,
superhydrophobic surfaces can significantly increase themobility
of the droplets leading to a combination of both gravity-driven
falling droplets as well as self-propelled jumping droplets.
These surfaces are mostly metal substrates with nano-features,
hence high thermal conductivity. However, the nucleation
energy barrier is much higher on superhydrophobic surfaces
compared to hydrophilic surfaces, which causes a significant
reduction in droplet number density, and more importantly the
manufacturing process for nano-engineered surfaces is neither
cost-effective nor scalable.

Therefore, the state-of-the-art condensing surfaces cannot be
applied to industrial applications due to their highmanufacturing
costs and difficulty in maintaining drop-wise condensation in
long run. In order to tune the advantage of lower energy barrier
accompanied with hydrophilic surfaces and higher drop mobility
of super-hydrophobic surfaces, Kumagai et al. (1991) entertained
the possibility of using biphilic patterning of surfaces. Results
showed a great potential of using such surfaces with heat transfer
performance bounded by the two extreme cases, i.e., film and
drop wise condensation. After this work, several researchers
studied different configurations, such as biphilic strips (Drelich
et al., 1996; Morita et al., 2005; Megaridis et al., 2016; Zou et al.,
2018), biphilic dotted surfaces (Raj et al., 2012) and biphilic
pillars (Kita et al., 2018).

This paper focuses on development of biphilic surfaces with
high wettability contrast to boost drop wise condensation, while
maintaining high conduction rate through the surface at low
manufacturing costs. Previously engineered biphilic surfaces
are different arrangements of superhydrophobic designs on
hydrophilic substrates that despite their high heat transfer
efficiency, cannot overcome the large-scale fabrication challenges
and are inapplicable to industrial systems (Narhe and Beysens,
2007; Chatterjee et al., 2013; Hou et al., 2015). The unique
aspect of our work is to design a hybrid hydrophilic
hydrophobic surface in which the variation in interfacial energy is
achieved through crafting millimeter-sized hydrophobic patterns
on metal substrates that not only leads to high thermal
transfer efficiency but also can be manufactured using scalable
fabrication techniques.

Biphilic surfaces consist of hydrophobic patterns on
hydrophilic structures as shown in Figure 1. The hydrophilic
base provides high thermal conductivity and low nucleation

activation energy resulting in enhanced vapor condensation rate,
and the hydrophobic patterns inhibit transition to film-wise
condensation and enhance the rate of droplet removal from
the condensing surface, all of which increases the overall heat
transfer efficiency.

MATHEMATICAL MODELING

Understanding the mechanism of drop-wise condensation is
essential in design and optimization of durable surfaces with
enhanced drop-wise condensation for industrial applications.
There are several theories on drop formation and heat and
mass transport during drop-wise condensation (Jakob, 1936;
McCormic and Baer, 1963; Song et al., 1991; Leipertz, 2010).
The most commonly used theory for modeling of drop-wise
condensation was first introduced by Eucken (1937), which
is based on small droplet formation by direct condensation
on nucleation sites randomly distributed over the condensing
surface. According to this theory, as the clusters of vapor reach
a maximum size adjacent to the condensing surface, they form
small drops of stable thermodynamically minimum radius at sites
with the smallest free energy barrier. The small drops grow by
direct condensation only until they reach the mean nucleation
site spacing at which the neighboring drops start to coalescence.
The large droplets then fall-off of the condensing surface reaching
the critical drop size due to the force instabilities at the
contact-line. To properly model the drop-wise condensation and
calculate the overall heat flux and heat removal efficiency via
different condensing surfaces, a comprehensive understanding
of all the sub-processes is necessary. Drop-wise condensation
consists of a series of random fundamentally unsteady sub-
processes over a wide range of time- and length-scales, viz. initial
nucleation, droplet growth by direct condensation, coalescence,
droplet instability and fall-off, and renucleation of fresh droplets
(Sikarwar et al., 2013).

The first step in drop-wise condensation process is the
heterogeneous nucleation, which depends on the number
of active nucleation sites on the condensing surface. The
nucleation site density, Ns, varies with surface topography and
thermodynamic properties of fluid, and extent of subcooling
(Rose, 1976; Sikarwar et al., 2013). Based on the experimental
data, the nucleation site density was found to be within the range
of 109-1015 m−2 (Khandekar and Muralidhar, 2014; Liu and
Cheng, 2015). For the purpose of the heat transfer modeling of
drop-wise condensation, we assume the nucleation site density
to be at 1010 m−2.

The small drops that are formed by nucleation continue to
grow by direct condensation. The smallest stable droplet radius,
rmin, can be found using the classical nucleation theory (Schmidt
et al., 1930; Kim and Kim, 2011).

rmin =
2Tsatσ

hfgρ(Tsat − Tw)
(1)

For small non-interacting droplets, the droplet size distribution
is calculated following the population balance theory. The
population balance theory is based on the droplet number
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FIGURE 1 | Schematic drawing of biphilic surface showing the hydrophobic pattern on a hydrophilic base. The contact angle of water on the hydrophobic and

hydrophilic sites are 145◦ and 58◦, respectively.

conservation in a certain droplet radius range. In other words,
for an arbitrary size range of (r1 − r2), the number of droplet
entering the size range minus the number of droplet leaving the
size range is equal to the number of droplet fall-off of the surface
(AbuOrabi, 1998; Kim and Kim, 2011; Miljkovic et al., 2013):

An1G1dt = An2G2dt + Sn1−2dtdr (2)

G =
dr

dt
(3)

where A, G, n1, n2, S, and n1−2 are the surface area, droplet
growth rate, number density of the droplet of radius r1, number
density of the droplet of radius r2, sweeping (or falling) rate,
and average population density in the size range. In the limit of
infinitesimally small size range, Equation (2) reduces to:

d(Gn)

dr
=

−n

τ
(4)

where τ = A
S is the sweeping period. The number density for

small droplets can be eventually obtained by solving Equation
(4), which requires additional information discussed in the
following steps.

The next step is the large droplet growth by coalescence of the
neighboring drops. There is a well-known equation for number
distribution of large droplets derived by Le Fevre and Rose (1966)
and Glicksman and Hunt (1972).

N (r) =
1

3π2rmax

(

r

rmax

)
−2
3

(5)

where rmax is the maximum radius beyond which the drop falls
off of the surface. The maximum droplet radius is where the
tangential component of droplet weight reaches the interfacial
force at the contact-line. Following the force balance equation,
the fall-off radius can be determined as Dimitrakopoulos and
Higdon (1999).

rmax =

√

6σ (cosθr − cosθa) sinθavg

ρπ
(

2− 3cosθavg + cos3θavg
)

sinα
(6)

Where ρ, σ , θr , θa, θavg , and α are liquid density, surface tension,
receding contact angle, advancing contact angle, equilibrium

contact angle, and the substrate inclination angle, which is 90◦

for vertical substrate, respectively. The fall-off radius, as seen in
Equation (6), strongly depends on the contact angle of the liquid
droplet on the condensing surface, for example, for hydrophobic
substrates, the fall-off radius is smaller than hydrophilic surfaces.
It should be noted the reduction in fall-off radius is equivalent to
better thermal transfer as large droplets are removed and replaced
by small droplets at a faster rate.

The overall heat transfer through the condensing surface is
calculated by integrating the heat flux through one single droplet
over the condenser surface area for all the droplets both large and
small based on the number densities calculated earlier (Wu and
Maa, 1976; Carey, 1992; AbuOrabi, 1998). The heat transfer rate
for a single droplet, qd, is determined using the standard thermal
resistive model (Miljkovic et al., 2013; Sikarwar et al., 2013)
shown in Figure 2. The temperature drop from the saturated
vapor, Tsat , to the substrate, Tw, is calculated considering all
the thermal resistances in between namely the vapor-liquid
interface resistance, the droplet curvature resistance, conduction
resistance, coating resistance, and finally resistance through the
substrate. The equation for the total temperature drop, Tt , is
given by:

Tt = Tsat − Tw = Tint + Tcur + Tcond + Tcoat + Tsub

(7)

Tsat − Tw =
qd

2π2hint
(

1− cosθavg
) +

rmin (Tsat − Tw)

r

+
qdθavg

4vrklsinθavg
+

qdδcoat

π2kcoat
(

1− cos2θavg
)

+
qdδbase

π2kbase
(

1− cos2θavg
) (8)

where δcoat , δbase, hfg , hint , kl, kcoat , and kbase are the coating
thickness, the base thickness, the latent heat of vaporization, the
interfacial heat transfer coefficient, liquid thermal conductivity,
the coating thermal conductivity, and the base thermal
conductivity. The heat transfer rate through a single droplet can
be replaced using the latent heat equation for a droplet of growing
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FIGURE 2 | Drawing of droplet on a condenser surface with the related

thermal resistance network that includes the liquid-vapor interface resistance,

the curvature resistance, the droplet conduction resistance, the hydrophobic

promoter resistance, and finally the thermal resistance in the substrate. The

hydrophobic promoter has the thickness of δcoat on hydrophobic sites and

zero on hydrophilic base.

radius and changing contact angle:

qd = πρhfgr
2G

{

(

1− cos2θavg
)

sinθavg
dθavg

dr
r

+
(

1− cosθavg
)2 (

2+ cosθavg
)

}

(9)

It should be noted that the first term in Equation (9) associated
with the change in contact angle across the surface is only zero
for surfaces with constant wettability. By plugging in Equation
(8) back into Equation (7), the droplet growth rate can be
found in terms of the temperature drop and the liquid and
substrate properties.

G =









(

1− cosθavg
)

×
(

Tsat−Tw
ρfg

)

(

1− cos2θavg
)

sinθavg
dθ
dr
r +

(

1− cosθavg
)2 (

2+ cosθavg
)









×









(

1− rmin
r

)

1
2hint

+
r
(

1−cosθavg
)

θavg

4klsinθavg
+ δcoat

kcoat
(

1+cosθavg
) + δbase

kbase
(

1+cosθavg
)









(10)

Finally, the number density for small droplets can be calculated
from integrating Equation (4) by replacing the droplet growth
rate using Equation (10). As the number density function has to
be continuous, the value for number density of the small drops at
its upper limit should be equal to the lower limit of the number
density of large drops. The radius where the large and small
number density functions meet is called effective radius, re, which
is equal to the half of the spacing between the active nucleation
sites, lc, beyond which neighboring droplets can merge.

rc =
lc

2
=

1
√
4Ns

(11)

N (re) = n (re) (12)

Therefore, the overall heat transfer rate, q′, through the
condensing surface can be calculated via the following

equation (Wu and Maa, 1976):

q′ =
∫ re

rmin

qd (r) n (r) dr+
∫ rmax

re

qd (r)N (r) dr (13)

BIPHILIC VS. HYDROPHOBIC
AND HYDROPHILIC

Here, we are going to numerically compare the performance
of the biphilic surfaces to all-hydrophobic and all-hydrophilic
substrates. The previous models on condensation heat transfer
are mostly applicable to substrates with constant wettability
across the surface area; hence zero contact angle gradient with
respect to droplet radius. However, for biphilic surfaces, the
contact angle changes throughout the surface depending on
the pattern size γ. Another important thing to consider when
studying biphilic surfaces is the maximum or fall-off radius. For
biphilic surfaces, first of all, the fall-off radius for droplets on
hydrophobic site is different than fall-off radius on hydrophilic
base due to the change in dynamic and equilibrium contact
angles on these surfaces, and secondly, the fall-off radius is not
determined by Equation (6) solely, but it also depends on the
pattern size as for example, droplets growing on hydrophilic base
cannot extend past the hydrophobic boundary on account of the
reduction in adhesion forces. Thus, the maximum droplet radius
on biphilic surfaces is found using the contact-line force balance
combined with the pattern spacing.

We have incorporated the details, listed above, specific to
biphilic surfaces in our model to provide a more accurate
heat transfer analysis for these surfaces. To assess the quality
of the biphilic surfaces compared to all-hydrophobic and all-
hydrophilic substrates, first thing to consider is the number
density of small and large droplets on these surfaces, shown in
Figure 3. The hydrophobic surface seems to have the highest
number densities for both the large and small droplets, the
hydrophilic surface has the lowest number densities, and finally
the biphilic surface sits somewhere in between. It should be noted
that higher number densities especially for small droplets are
more favorable in terms of enhancing the rate of heat transfer.
Therefore, to this point, merely based on the number densities,
the hydrophobic substrate appears to be the better option.

The fall-off radius is another important quantity that should
be considered. The smaller fall-off radius represents a better
thermal transfer for rapid droplet removal from the surface
makes room for fresh small droplet formation and consequently
continual heat removal from the condensing surface. The values
for fall-off radii are shown in Figure 3. The hydrophobic surface
has smaller fall-off radius compared to hydrophilic surface as
expected. The biphilic surface, on the other hand, has two fall-
off radii, one for the droplet sitting on hydrophobic pattern and
one for hydrophilic base. The hydrophobic pattern fall-off radius
is same as all-hydrophobic substrate only if the pattern spacing is
bigger than the fall-off diameter because the droplet would fall-
off of the surface before it can grow outside the pattern. For the
hydrophilic base, however, the fall-off radius is limited by the
pattern spacing, which is much smaller than fall-off radius on the
all-hydrophilic surface.
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FIGURE 3 | Droplet size distribution as a function of droplet radius for

hydrophilic, hydrophobic, and 2mm biphilic substrates. (A) The number

densities are shown for small droplets formed by direct condensation. (B) The

number densities are shown for large droplets formed by coalescence. The

fall-off radii are shown for each substrate. The biphilic surface has two

separate fall-off radii corresponding to the hydrophobic sites and hydrophilic

base marked as biphilic1 and biphilic2, respectively. (C) The log-log graph of

combined number densities for all droplets from initial nucleation to fall-off. The

dashed line shows the borderline between small droplets and large droplets.

The associated model parameters are: Tsat = 20◦C, Tw = −10◦C, δcoat =
1µm, kcoat = 0.15 W/m.K, γ = 2mm, hydrophobic θa and θr are 150◦ and

144◦, and hydrophilic θa and θr are 73◦ and 34◦.

The third important factor is the rate of heat transfer
for droplets of specific radius, single drop heat transfer rate
multiplied by number density at that desired radius, and finally

the overall rate of heat transfer through the surface. Figure 4
shows the heat transfer rate vs. the droplet radius. As you can see,
the heat transfer rate strongly depends on the value of contact
angle as increase in contact angle imposes a barrier to thermal
transport through the droplet by changing the profile of the
isotherms within the drop (Alizadeh-Birjandi and Kavehpour,
2017). As a result, the rate of heat transfer for drops of specific
radius is much smaller on hydrophobic substrate all around the
range of droplet radius, and the hydrophilic surface has the
highest values at all points. Although the hydrophobic surfaces
had very high number densities, their local heat transfer rate is
comparably small. However, biphilic surfaces have the number
density and fall-off radius close to those of hydrophobic surface
and the local rate of heat transfer close to hydrophilic surface;
hence best of the two categories.

The overall heat transfer rate is calculated using Equation
(13) or measuring the area underneath the plot in Figure 4, and
based on the results in Table 1, as already predicted, the biphilic
surfaces have the highest heat transfer rate compared to all-
hydrophobic and all-hydrophilic substrates. It should be noted
that although the hydrophobic surfaces have smaller local heat
flux compared to the hydrophilic surfaces, their overall heat flux
is almost twice as large as that of hydrophilic substrate simply
because their fall-off radius is small and drops tend to roll-off of
these surface quickly making room for small droplet formation
via nucleation with orders-of-magnitude larger local heat flux.
The biphilic substrate with 2mm pattern spacing has the highest
overall heat flux making it a good candidate for enhancing high
efficiency drop-wise condensation. Another advantage of using
biphilic surfaces, as mentioned before, is their ability to be mass-
produced. Since the size of the patterns are in millimeters as
opposed to nano-scale features on superhydrophobic surfaces,
their manufacturing process is scalable and cost-effective; hence
applicable to industrial applications.

The analysis performed to this point were based on pattern
spacing of 2mm, which was chosen arbitrarily. To obtain an
optimum pattern spacing is essential in designing an efficient
thermal system at reasonable manufacturing cost, that is, the
smaller pattern size is favorable for heat transfer as it decreases
the fall-off radius, but the fabrication technology for small
pattern size is limited and highly costly. The overall heat flux
is calculated and presented in Table 2 for surfaces of different
pattern spacings. As shown, for surfaces of pattern spacing higher
than 4mm, the biphilic substrate loses its advantage as the
overall heat flux drops below the all-hydrophobic surface heat
flux. Therefore, there exists an upper boundary to how large the
pattern spacing can be, while to determine the lower boundary
or a definite optimum, a comprehensive cost analysis is necessary
which is part of the future work for this study.

MATERIALS AND METHODS

Next, we have performed experiments on these surfaces to
visually compare condensing droplets mobility and condensation
behavior. It should be emphasized that the experiments are
not designed to make any direct heat transfer measurements.
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FIGURE 4 | The steady-state single droplet condensation heat flux as a

function of droplet radius for hydrophilic, hydrophobic, and 2mm biphilic

substrates. (A) The heat flux is shown for small droplets formed by direct

condensation. (B) The heat flux is shown for large droplets formed by

coalescence. The fall-off radii are shown for each substrate. The biphilic

surface has two separate fall-off radii corresponding to the hydrophobic sites

and hydrophilic base marked as biphilic1 and biphilic2, respectively. (C) The

log-log graph of combined heat flux for all droplets from initial nucleation to

fall-off. The dashed line shows the borderline between small droplets and large

droplets. The associated model parameters are: Tsat = 20◦C, Tw = −10◦C,

δcoat = 1µm, kcoat = 0.15 W/m.K, γ = 2mm, hydrophobic θa and θr are

150◦ and 144◦, and hydrophilic θa and θr are 73◦ and 34◦.

The experimental setup consists of three main components, the
condenser, the cooling module, and an environmental chamber.
The condensing surface was attached vertically, using thermally
conductive paste, to a cooling module, which consists of a series
of Peltier plates and a temperature controller unit. The sample
surface temperature was recorded by thermocouples. The vapor
generation system was an automatic humidifier with controlled

TABLE 1 | The overall heat flux through the condenser surface for hydrophilic,

hydrophobic, and 2mm biphilic substrates.

Substrate Overall heat flux [W/m2]

Hydrophilic 4.38 × 105

Hydrophobic 7.08 × 105

Biphilic 2mm 1.28 × 106

TABLE 2 | The overall heat flux through the condenser surface for 2, 3, 4, 5, and

6mm biphilic substrates.

Substrate (mm) Overall heat flux [W/m2 K]

Biphilic 2 1.28 × 106

Biphilic 3 8.98 × 105

Biphilic 4 7.26 × 105

Biphilic 5 6.08 × 105 < Hydrophobic

Biphilic 6 5.71 × 105 < Hydrophobic

The overall heat flux decreases as the pattern spacing size increases. For biphilic surfaces

of pattern spacing of 5mm and higher, the overall heat flux drops below the associated

value for all-hydrophobic surface.

humidity. Finally, a high-speed camera was used to capture real-
time videos of the experiments for further image analysis. All
experiments were performed inside the environmental chamber
to regulate and maintain consistent humidity and temperature
at 80% relative humidity and 20◦C saturated temperature. The
chamber has a vent to atmosphere to mitigate the buildup of
pressure and therefore inaccurate humidity measurements.

Three different samples, hydrophilic, biphilic, and
hydrophobic, are placed on the same substrate for comparison.
All substrates are made of aluminum with thermal conductivity
of 205 W/K.m and thickness of 5mm. The hydrophobicity,
however, is achieved by spraying a 50-micron thick layer of the
WX2100TM spray on the aluminum substrate everywhere on the
surface for all-hydrophobic surface and on precisely positioned
patterns for biphilic surface. The dynamic and equilibrium
contact angles on each of these substrates are measured using
Krüss DSA 100 machine. The DSA 100 is equipped with high-
resolution camera and a controlled dispensing system that allows
measuring the contact angles with precision. The advancing and
receding contact angles on the hydrophobic and hydrophilic sites
are θa = 150◦, θr = 144◦, θa = 73◦, and θr = 34◦, respectively.

EXPERIMENTAL RESULTS
AND DISCUSSION

Experiments are performed to compare the condensation heat
transfer efficiency of biphilic surfaces to all-hydrophobic and
all-hydrophilic substrates and to test our analytical predictions
of the condensation behavior of the biphilic surfaces. To
qualitatively assess the efficiency of condensation, five important
factors, corresponding to condensation sub-processes, should
be considered namely, nucleation, the droplet growth rate,
coalescence, the droplet removal rate, and finally renucleation.
Even though the experimental work does not include any
heat transfer measurements, it assumes the enhancement
of the afore-mentioned sub-processes as indications of
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FIGURE 5 | The comparison of time evolution of condensation process on

hydrophobic (left), 2mm biphilic (center), and hydrophilic (right) regions. The

images are taken every 10min. The biphilic substrate shows better droplet

nucleation and removal throughout the experiment. The experimental

parameters are: Tsat = 20◦C, Tw = −10◦C, humidity = 80%RH, γ = 2mm,

hydrophobic θa and θr are 150◦ and 144◦, and hydrophilic θa and θr are 73◦

and 34◦. The complete videos of the experiments are presented in

Supplementary Information section.

enhanced condensation heat transfer. Figure 5 shows images
of condensation experiment on a sample at −10◦C for
hydrophobic, 2 mm-biphilic, and hydrophilic substrates. These
images are taken every 15min during the experiment. Initially,
the condensate starts forming on the hydrophilic sites on both
biphilic and hydrophilic substrates. Droplets on biphilic substrate
grow and merge at a quicker rate compared to the hydrophilic
and hydrophobic substrates. The wettability contrast on the
biphilic substrate appears to decrease the maximum droplet
size, which leads to faster droplet removal and renucleation,
the key components in efficient drop-wise condensation. The
condensation experiments are repeated for samples at −5, −10,
and −15◦C for all of which the biphilic substrate shows better
condensation efficiency. The videos of the experiments are
provided in Supplementary Information section. It can be seen
that the drops tend to form, grow, and fall rapidly on biphilic
substrate with no sign of liquid film formation. On hydrophobic
substrates, although the number densities are visually higher
than the other substrates, the slow droplet coalescence and
departure limit their performance and cause ice formation in
some cases. The reason of reducing the substrate temperature
below the freezing point, while below-dew point would be
sufficient, is to increase the condensation rate, which would be
consistent with the case for pure vapor condensation. Because
this work does not evaluate heat transfer quantities, the effect of
latent heat of fusion effect does not affect droplet dynamic.

CONCLUSION

The previously established mathematical model for drop-
wise condensation was modified to study the heat transfer
performance of textured surfaces with high wettability
contrast, biphilic surfaces, compared to hydrophilic, and
hydrophobic surfaces. The analytical model predictions show

that the biphilic surfaces of pattern spacing below 5mm can
achieve a higher drop-wise condensation heat transfer rate via
continuous droplet nucleation and consistent and controlled
droplet removal. The experimental results also verify the
advantage of using biphilic structures over the conventional
hydrophilic or hydrophobic surfaces. However, there are still
challenges and unknown aspects to this technology; hence
room for improvements and future study. For instance,
the sustainability of the hydrophobic promoter should be
studied by calculating the wall-shear stress to assess whether
or not these substrates can withstand long-term continuous
droplet formation and removal. In addition, the shape
and size of the wettability patterns, as mentioned before,
need to be optimized for both manufacturing and thermal
transfer purposes.
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Video S1 | The time-lapse video recording of condensation process on

hydrophobic (left), 2mm biphilic (center), and hydrophilic (right) regions. The videos

are played at 60× speed. The experimental parameters are: Tsat = 20◦C, Tw
= −5◦C, humidity = 80%RH, γ = 2mm, hydrophobic θa and θr are 150◦ and

144◦, and hydrophilic θa and θr are 73◦ and 34◦.

Video S2 | The time-lapse video recording of condensation process on

hydrophobic (left), 2mm biphilic (center), and hydrophilic (right) regions. The videos

are played at 60× speed. The experimental parameters are: Tsat = 20◦C, Tw
= −10◦C, humidity = 80%RH, γ = 2mm, hydrophobic θa and θr are 150◦ and

144◦, and hydrophilic θa and θr are 73◦ and 34◦.

Video S3 | The time-lapse video recording of condensation process on

hydrophobic (left), 2mm biphilic (center), and hydrophilic (right) regions. The videos

are played at 60× speed. The experimental parameters are: Tsat = 20◦C, Tw
= −15◦C, humidity = 80%RH, γ = 2mm, hydrophobic θa and θr are 150◦ and

144◦, and hydrophilic θa and θr are 73◦ and 34◦.
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